On the optimal compression of sets in P, NP, P/poly, $\ensuremath{\mathsf{PSPACE}}\xspace/\mathsf{poly}$

Marius Zimand

Towson University

CCR 2012- Cambridge

Marius Zimand (Towson U.)

Compression P, NP, P/poly sets

2011 1 / 19

SAC

< = > < = > < = > < = >

• If A is computably enumerable, then for every $x \in A$

$$C(x) \leq \log |A^{=n}| + O(\log n)$$

- description of x: index of x in an enumeration of $A^{=n}$.
- But enumeration is slow.

《曰》 《圖》 《문》 《문》

• If A is computably enumerable, then for every $x \in A$

$$C(x) \leq \log |A^{=n}| + O(\log n)$$

- description of x: index of x in an enumeration of $A^{=n}$.
- But enumeration is slow.
- Is there a time-bounded Kolmogorov complexity version of the above fact?

《曰》 《圖》 《문》 《문》

Distinguishing complexity [Sipser 83]

Informal Definition

 $CD^{t}(x) =$ length of the shortest program that accepts x and only x and runs in t(|x|) time.

990

《口》 《圖》 《臣》 《臣》

Distinguishing complexity [Sipser 83]

Informal Definition

 $CD^{t}(x) =$ length of the shortest program that accepts x and only x and runs in t(|x|) time.

Formal Definition

 $CD^{t}(x) = |p|, p$ is the shortest program such that

$$egin{aligned} U(p,x) &= \mathsf{YES}, \ U(p,y) &= \mathsf{NO}, \ \mathsf{for \ all} \ y
eq x \ U(p,x) & \mathsf{halts \ in} \ t(|p|+|x|) \ \mathsf{steps} \end{aligned}$$

(*U* is a universal Turing machine)

Distinguishing complexity [Sipser 83]

Informal Definition

 $CD^{t}(x) =$ length of the shortest program that accepts x and only x and runs in t(|x|) time.

Formal Definition

 $\mathrm{CD}^{\mathrm{t}}(\mathrm{x}) = |\mathrm{p}|$, p is the shortest program such that

$$egin{aligned} U(p,x) &= \mathsf{YES}, \ U(p,y) &= \mathsf{NO}, \ \mathsf{for \ all} \ y
eq x \ U(p,x) & \mathsf{halts} \ \mathsf{in} \ t(|p|+|x|) \ \mathsf{steps} \end{aligned}$$

(*U* is a universal Turing machine)

 $CD^{t,A}(x)$ - U uses oracle A.

 $CND^{t,A}(x) - U$ is nondeterministic, $CAMD^{t,A}(x) - U$ is Arthur-Merlin machine (randomized + nondeterministic), $CBPD^{t,A} - U$ is randomized with bounded error.

Marius Zimand (Towson U.)

[Buhrman, Fortnow, Laplante, 2001]: For any set A, for every $x \in A$

 $CD^{poly,A}(x) \leq 2 \log |A^{=n}| + O(\log n)$

DQC

[Buhrman, Fortnow, Laplante, 2001]: For any set A, for every $x \in A$ $CD^{poly,A}(x) \leq 2 \log |A^{=n}| + O(\log n)$

[Buhrman, Laplante, Miltersen, 2000]: For some sets A, 2 is necessary.

Sar

If we allow nonuniformity

[Sipser, 1983] $\forall A$, \exists advice *w* of length poly(n), $\forall x \in A$

 $CD^{poly,A}(x \mid w) \le \log |A^{=n}| + O(\log n)$

If we allow nonuniformity

[Sipser, 1983] $\forall A$, \exists advice *w* of length poly(*n*), $\forall x \in A$

 $CD^{poly,A}(x \mid w) \le \log |A^{=n}| + O(\log n)$

If we allow some error:

[Buhrman, Fortnow, Laplante, 2001] $\forall A, \forall \epsilon, \forall x \in A^{=n}$ except ϵ fraction,

 $CD^{\mathrm{poly},A}(x) \leq \log |A^{=n}| + O(\log n)$

《曰》 《圖》 《臣》 《臣》

If we allow nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005] $\forall A, \forall x \in A$

 $CND^{poly,A}(x) \le \log |A^{=n}| + O((\sqrt{\log |A^{=n}|} + \log n) \log n)$

SAC

《曰》 《圖》 《문》 《문》

If we allow nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005] $\forall A, \forall x \in A$

 $CND^{poly,A}(x) \leq \log |A^{=n}| + O((\sqrt{\log |A^{=n}|} + \log n) \log n)$

If we allow randomization + nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005] $\forall A, \forall x \in A$

 $CAMD^{poly,A}(x) \le \log |A^{=n}| + O(\log^3 n)$

If we allow nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005] $\forall A, \forall x \in A$

 $CND^{poly,A}(x) \leq \log |A^{=n}| + O((\sqrt{\log |A^{=n}|} + \log n) \log n)$

If we allow randomization + nondeterminism:

[Buhrman, Lee, van Melkebeek, 2005] $\forall A, \forall x \in A$

$$\operatorname{CAMD}^{\operatorname{poly},A}(\mathbf{x}) \leq \log |A^{=n}| + O(\log^3 n)$$

If we allow only randomization, compression can fail

[Buhrman, Lee, van Melkebeek, 2005] $\forall n, t, k < c_1 n - c_2 \log t, t, \exists A \text{ with } \log |A^{=n}| = k, \forall x \in A$

 $\operatorname{CBPD}^{t,A}(x) \geq 2\log|A^{=n}| - c_3$

QUESTION: For what sets A, can we get optimal compression:

 $\forall x \in \mathcal{A}^{=n}, \text{ } \mathrm{CD}^{\mathrm{poly}, \mathrm{A}}(x) \leq \log |\mathrm{A}^{=n}| + \mathrm{O}(\log n). \tag{*}$

2011

7 / 19

QUESTION: For what sets A, can we get optimal compression:

 $\forall x \in A^{=n}, \operatorname{CD}^{\operatorname{poly},A}(x) \le \log |A^{=n}| + O(\log n).$ (*)

ANSWER: Using a reasonable assumption, (*) holds for every A in PSPACE/poly.

990

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Last year (FCT'2011), I used a method using 2 steps.

Step 1: non-explicit extractors made partially explicit using Nisan pseudo-random generator for constant-depth circuits.

Step 2: Nisan-Wigderson pseudo-random generator assuming a ceratin hardness assumption.

Vinodchandran suggested the following simpler proof for Step 1: extractors are replaced by 2-wise independent distributions.

《曰》 《圖》 《臣》 《臣》

P/poly = class of sets decidable in polynomial time with polynomial advice.= class of sets decidable by polynomial-size circuits.

SAC

< 由 > < 回 > < 回 > < 回 > < 回 > <

P/poly = class of sets decidable in polynomial time with polynomial advice.= class of sets decidable by polynomial-size circuits.

- Let $A \in \mathsf{P}/\mathsf{poly}$ and $x \in A^{=n}$.
- Let $k = \lceil \log |A^{=n}| \rceil$.

SAC

P/poly = class of sets decidable in polynomial time with polynomial advice.= class of sets decidable by polynomial-size circuits.

Let $A \in \mathsf{P}/\mathsf{poly}$ and $x \in A^{=n}$.

Let $k = \lceil \log |A^{=n}| \rceil$.

Suppose we find $h: \{0,1\}^n \to \{0,1\}^{k+1}$, poly-time computable given |h| bits of information, which isolates x in A:

$$\forall y \in A^{=n} \setminus \{x\}, h(y) \neq h(x).$$

Then, h and h(x) distinguishes x among the strings in $A^{=n}$.

イロト イポト イモト イモト 三日

P/poly = class of sets decidable in polynomial time with polynomial advice.= class of sets decidable by polynomial-size circuits.

Let $A \in \mathsf{P}/\mathsf{poly}$ and $x \in A^{=n}$.

Let $k = \lceil \log |A^{=n}| \rceil$.

Suppose we find $h: \{0,1\}^n \to \{0,1\}^{k+1}$, poly-time computable given |h| bits of information, which isolates x in A:

$$\forall y \in A^{=n} \setminus \{x\}, h(y) \neq h(x).$$

Then, h and h(x) distinguishes x among the strings in $A^{=n}$. $CD^{poly,A}(x) \le (k+1) + |h| + O(\log n) = \log |A^{=n}| + |h| + O(\log n)$.

イロト イポト イモト イモト 三日

P/poly = class of sets decidable in polynomial time with polynomial advice.= class of sets decidable by polynomial-size circuits.

Let $A \in \mathsf{P}/\mathsf{poly}$ and $x \in A^{=n}$.

Let $k = \lceil \log |A^{=n}| \rceil$.

Suppose we find $h: \{0,1\}^n \to \{0,1\}^{k+1}$, poly-time computable given |h| bits of information, which isolates x in A:

$$\forall y \in A^{=n} \setminus \{x\}, h(y) \neq h(x).$$

Then, h and h(x) distinguishes x among the strings in $A^{=n}$. $CD^{poly,A}(x) \le (k+1) + |h| + O(\log n) = \log |A^{=n}| + |h| + O(\log n)$. To finish the proof, I need h that isolates x in A and $|h| = O(\log n)$.

イロト イポト イモト イモト 三日

Problem

 $k = \lceil \log |A^{=n}| \rceil, x \in A^{=n}.$ Find $h: \{0,1\}^n \to \{0,1\}^{k+1}$ that isolates x and |h| is $O(\log n)$.

イロト イポト イモト イモト 三日 nac 10 / 19

2011

Problem

$$\begin{split} &k = \lceil \log |A^{=n}| \rceil, \, x \in A^{=n}.\\ &\text{Find } h : \{0,1\}^n \to \{0,1\}^{k+1} \text{ that isolates } x \text{ and } |h| \text{ is } O(\log n). \end{split}$$

If we choose *h* randomly,

$$\operatorname{Prob}_{h}[h(x) = h(y)] = \frac{1}{2^{k+1}} \text{ (for any fixed } y \neq x)$$
$$\operatorname{Prob}_{h}[\exists y \in A^{=n} \setminus \{x\}, h(x) = h(y)] \leq 2^{k} \cdot \frac{1}{2^{k+1}} = \frac{1}{2}$$

So, with probability $\geq 1/2$, *h* isolates *x*. But $|h| = 2^n \cdot (k+1)$.

Problem

 $\begin{aligned} &k = \lceil \log |A^{=n}| \rceil, \, x \in A^{=n}.\\ &\text{Find } h : \{0,1\}^n \to \{0,1\}^{k+1} \text{ that isolates } x \text{ and } |h| \text{ is } O(\log n). \end{aligned}$

STEP 1 (reduction using 2-wise distributions):

• *h* only needs to be 2-wise independent.

Problem

 $\begin{aligned} &k = \lceil \log |A^{=n}| \rceil, \ x \in A^{=n}.\\ &\text{Find } h : \{0,1\}^n \to \{0,1\}^{k+1} \text{ that isolates } x \text{ and } |h| \text{ is } O(\log n). \end{aligned}$

STEP 1 (reduction using 2-wise distributions):

- h only needs to be 2-wise independent.
- Take *h* a random linear function (i.e., a random *k*-by-*n* matrix).
- *h* is 2-wise independent.

イロト イロト イヨト イヨト

Problem

 $\begin{aligned} k &= \lceil \log |A^{=n}| \rceil, \, x \in A^{=n}.\\ \text{Find } h : \{0,1\}^n \to \{0,1\}^{k+1} \text{ that isolates } x \text{ and } |h| \text{ is } O(\log n). \end{aligned}$

STEP 1 (reduction using 2-wise distributions):

- h only needs to be 2-wise independent.
- Take *h* a random linear function (i.e., a random *k*-by-*n* matrix).
- *h* is 2-wise independent.
- With probability $\geq 1/2$, h isolates x.
- $|h| = n \cdot k$.

Problem

 $\begin{aligned} k &= \lceil \log |A^{=n}| \rceil, \ x \in A^{=n}.\\ \text{Find } h : \{0,1\}^n \to \{0,1\}^{k+1} \text{ that isolates } x \text{ and } |h| \text{ is } O(\log n). \end{aligned}$

STEP 1 (reduction using 2-wise distributions):

- h only needs to be 2-wise independent.
- Take *h* a random linear function (i.e., a random *k*-by-*n* matrix).
- *h* is 2-wise independent.
- With probability $\geq 1/2$, h isolates x.
- $|h| = n \cdot k$.
- We have reduced |h| from $2^n \cdot (k+1)$ to $n \cdot k$.

Problem

$$\begin{split} &k = \lceil \log |A^{=n}| \rceil, \ x \in A^{=n}.\\ &\text{Find } h: \{0,1\}^n \to \{0,1\}^k \text{ that isolates } x \text{ and } |h| \text{ is } O(\log n). \end{split}$$

STEP 2 (reduction using pseudo-random generators - p.r.g.):

Problem

 $\begin{aligned} k &= \lceil \log |A^{=n}| \rceil, \ x \in A^{=n}.\\ \text{Find } h : \{0,1\}^n \to \{0,1\}^k \text{ that isolates } x \text{ and } |h| \text{ is } O(\log n). \end{aligned}$

STEP 2 (reduction using pseudo-random generators - p.r.g.):

• A p.r.g. that fools a class of sets C;

 $g: \{0,1\}^{c \log m} \to \{0,1\}^m$, computable in poly. time in m

such that for every $B \in \mathcal{C}$

 $\operatorname{Prob}_{s \in \{0,1\}^{c \log m}}[g(s) \in B] \approx_{\epsilon} \operatorname{Prob}_{u \in \{0,1\}^{m}}[u \in B].$

• No set in C can distinguish between an output of g and a uniformly generated string.

Marius Zimand (Towson U.)

돌 ∽ < (~ 2011 12 / 19

• $B = \{h \mid h \text{ linear and } h \text{ does not isolate } x\}$

- $B = \{h \mid h \text{ linear and } h \text{ does not isolate } x\}$
- *B* is in NP/poly.

990

- $B = \{h \mid h \text{ linear and } h \text{ does not isolate } x\}$
- *B* is in NP/poly.
- Suppose we have a p.r.g. $g : \{0,1\}^{c \log n} \to \{0,1\}^{kn}$ that fools NP/poly sets. • g fools B.

- $B = \{h \mid h \text{ linear and } h \text{ does not isolate } x\}$
- *B* is in NP/poly.
- Suppose we have a p.r.g. $g: \{0,1\}^{c \log n} \to \{0,1\}^{kn}$ that fools NP/poly sets.
- g fools B.
- \overline{B} is large, so for many $s, g(s) \in \overline{B}$.

- $B = \{h \mid h \text{ linear and } h \text{ does not isolate } x\}$
- *B* is in NP/poly.
- Suppose we have a p.r.g. $g: \{0,1\}^{c\log n} \to \{0,1\}^{kn}$ that fools NP/poly sets.
- g fools B.
- \overline{B} is large, so for many $s, g(s) \in \overline{B}$.
- For some seed s (actually for many seeds), g(s) is an h that isolates x.
- Thus we can compute h from s which has $O(\log n)$ bits.

- $B = \{h \mid h \text{ linear and } h \text{ does not isolate } x\}$
- *B* is in NP/poly.
- Suppose we have a p.r.g. $g: \{0,1\}^{c\log n} \to \{0,1\}^{kn}$ that fools NP/poly sets.
- g fools B.
- \overline{B} is large, so for many $s, g(s) \in \overline{B}$.
- For some seed s (actually for many seeds), g(s) is an h that isolates x.
- Thus we can compute h from s which has $O(\log n)$ bits.
- This is exactly what we need.

• How do we get a p.r.g.?

- How do we get a p.r.g.?
- Start with a function f computable in $E = \bigcup_c DTIME[2^{cn}]$ that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.

イロト イロト イヨト イヨト

- How do we get a p.r.g.?
- Start with a function f computable in $E = \bigcup_c DTIME[2^{cn}]$ that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.
- To fool sets in NP/poly we need an f that requires circuits with SAT gates of size 2^{εn}, for some ε > 0.

イロト イポト イヨト イヨト

- How do we get a p.r.g.?
- Start with a function f computable in $E = \bigcup_c DTIME[2^{cn}]$ that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.
- To fool sets in NP/poly we need an f that requires circuits with SAT gates of size 2^{εn}, for some ε > 0.
- The output of *f* is somewhat unpredictable, but the p.r.g. requirements are much more demanding.
- Using lots of clever ideas (Nisan, Wigderson, Impagliazzo, Sudan, Trevisan, Vadhan, Klivans, van Melkebeek) from *f* one can construct a p.r.g *g* that fools NP/poly.

《曰》 《圖》 《臣》 《臣》

- How do we get a p.r.g.?
- Start with a function f computable in $E = \bigcup_c DTIME[2^{cn}]$ that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.
- To fool sets in NP/poly we need an f that requires circuits with SAT gates of size 2^{εn}, for some ε > 0.
- The output of *f* is somewhat unpredictable, but the p.r.g. requirements are much more demanding.
- Using lots of clever ideas (Nisan, Wigderson, Impagliazzo, Sudan, Trevisan, Vadhan, Klivans, van Melkebeek) from *f* one can construct a p.r.g *g* that fools NP/poly.
- Assumption H: There exists a function f computable in E that for some ε > 0 cannot be computed by circuits with SAT gates of size 2^{εn}.
- H \Rightarrow p.r.g. that fools NP/poly \Rightarrow sets in P/poly can be compressed optimally.

Assumption H: There exists a function f computable in E that for some $\epsilon > 0$ cannot be computed by circuits with SAT gates of size $2^{\epsilon n}$.

Theorem

Assume H. For any set A in P/poly, there exists a polynomial p such that for every $x \in A$

 $CD^{p,A}(x) \le \log |A^{=n}| + O(\log n)$

・ロト ・四ト ・ヨト ・ ヨト

• Similar results for sets in P, NP, Σ_k^p , PSPACE/poly.

- Similar results for sets in P, NP, Σ_k^p , PSPACE/poly.
- For PSPACE/poly

Theorem

Assume there exists a function f computable in E but not in DSPACE[$2^{o(n)}$]. For any set A in PSPACE/poly, there exists a polynomial p such that for every $x \in A$

 $CD^{p,A}(x) \leq \log |A^{=n}| + O(\log n)$

- Pseudo-random generators based on similar assumptions have been used before in resource-bounded Kolmogorov complexity.
- (Antunes, Fortnow, 2009) If hardness assumption holds, then $m^p(x) = 2^{-C^p(x)}$ is universal among P-samplable distributions.

For any P-samplable distribution σ , there is a polynomial p such that $C^{p}(x) \leq \log 1/\sigma(x) + O(\log n)$.

• (Antunes, Fortnow, Pinto, Souza, 2007) Computational depth cannot grow fast.

How to show $P \neq NP$

How to show $\mathrm{P} \neq \mathrm{NP}$

Find a set A such that

- (1) $CD^{poly,A}(x) \ge 2 \log |A^{=n}|$, for some $x \in A$ (like [Buhrman,Laplante, Miltersen])
- (2) $\operatorname{CD}^{\operatorname{poly},\Sigma_k^p\oplus A}(x) \leq (2-\epsilon) \log |A^{=n}|$, for all $x \in A$

Then, $\Sigma_k^p \neq P$.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How to show $P \neq NP$

Find a set A such that

CD^{poly,A}(x) ≥ 2 log |A⁼ⁿ|, for some x ∈ A (like [Buhrman,Laplante, Miltersen])
 CD^{poly,Σ^P_k⊕A}(x) ≤ (2 − ε) log |A⁼ⁿ|, for all x ∈ A

Then, $\Sigma_k^p \neq P$.

It is reasonable to try A in the Polynomial Hierarchy.

But $PH \subseteq PSPACE$, so (1) will not succeed.

So look for A outside PSPACE.

Thank you.