On the optimal compression of sets in $\mathrm{P}, \mathrm{NP}, \mathrm{P} /$ poly, PSPACE/poly

Marius Zimand

Towson University

CCR 2012- Cambridge

The language compression problem

- If A is computably enumerable, then for every $x \in A$

$$
C(x) \leq \log \left|A^{=n}\right|+O(\log n)
$$

- description of x : index of x in an enumeration of $A^{=n}$.
- But enumeration is slow.

The language compression problem

- If A is computably enumerable, then for every $x \in A$

$$
C(x) \leq \log \left|A^{=n}\right|+O(\log n)
$$

- description of x : index of x in an enumeration of $A^{=n}$.
- But enumeration is slow.
- Is there a time-bounded Kolmogorov complexity version of the above fact?

Distinguishing complexity [Sipser 83]

Informal Definition

$\mathrm{CD}^{\mathrm{t}}(\mathrm{x})=$ length of the shortest program that accepts x and only x and runs in $t(|x|)$ time.

Distinguishing complexity [Sipser 83]

Informal Definition

$\mathrm{CD}^{\mathrm{t}}(\mathrm{x})=$ length of the shortest program that accepts x and only x and runs in $t(|x|)$ time.

Formal Definition

$\mathrm{CD}^{\mathrm{t}}(\mathrm{x})=|\mathrm{p}|, p$ is the shortest program such that

$$
\begin{aligned}
& U(p, x)=\text { YES, } \\
& U(p, y)=\text { NO, for all } y \neq x \\
& U(p, x) \quad \text { halts in } t(|p|+|x|) \text { steps }
\end{aligned}
$$

(U is a universal Turing machine)

Distinguishing complexity [Sipser 83]

Informal Definition

$\mathrm{CD}^{\mathrm{t}}(\mathrm{x})=$ length of the shortest program that accepts x and only x and runs in $t(|x|)$ time.

Formal Definition

$\mathrm{CD}^{\mathrm{t}}(\mathrm{x})=|\mathrm{p}|, p$ is the shortest program such that

$$
\begin{aligned}
& U(p, x)=\text { YES }, \\
& U(p, y)=\text { NO, for all } y \neq x \\
& U(p, x) \quad \text { halts in } t(|p|+|x|) \text { steps }
\end{aligned}
$$

(U is a universal Turing machine)
$\mathrm{CD}^{\mathrm{t}, \mathrm{A}}(\mathrm{x})-U$ uses oracle A.
$\mathrm{CND}^{\mathrm{t}, \mathrm{A}}(\mathrm{x})-U$ is nondeterministic, $\mathrm{CAMD}^{\mathrm{t}, \mathrm{A}}(\mathrm{x})-U$ is Arthur-Merlin machine (randomized + nondeterministic), $\mathrm{CBPD}^{t, A}-U$ is randomized with bounded error.

What is known:

[Buhrman, Fortnow, Laplante, 2001]: For any set A, for every $x \in A$

$$
\mathrm{CD}^{\text {poly, } \mathrm{A}}(\mathrm{x}) \leq 2 \log \left|\mathrm{~A}^{=\mathrm{n}}\right|+\mathrm{O}(\log \mathrm{n})
$$

What is known:

[Buhrman, Fortnow, Laplante, 2001]: For any set A, for every $x \in A$

$$
\mathrm{CD}^{\text {poly, } \mathrm{A}}(\mathrm{x}) \leq 2 \log \left|\mathrm{~A}^{=\mathrm{n}}\right|+\mathrm{O}(\log \mathrm{n})
$$

[Buhrman, Laplante, Miltersen, 2000]: For some sets A, 2 is necessary.

What is known (cont.):

If we allow nonuniformity
[Sipser, 1983] $\forall A, \exists$ advice w of length poly $(n), \forall x \in A$

$$
\mathrm{CD}^{\text {poly, } \mathrm{A}}(\mathrm{x} \mid \mathrm{w}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}(\log \mathrm{n})
$$

What is known (cont.):

If we allow nonuniformity
[Sipser, 1983] $\forall A, \exists$ advice w of length poly $(n), \forall x \in A$

$$
\mathrm{CD}^{\text {poly }, \mathrm{A}}(\mathrm{x} \mid \mathrm{w}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}(\log \mathrm{n})
$$

If we allow some error:
[Buhrman, Fortnow, Laplante, 2001]
$\forall A, \forall \epsilon, \forall x \in A^{=n}$ except ϵ fraction,

$$
\mathrm{CD}^{\text {poly, } \mathrm{A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}(\log \mathrm{n})
$$

What is known (cont.):

If we allow nondeterminism:
[Buhrman, Lee, van Melkebeek, 2005] $\forall A, \forall x \in A$

$$
\mathrm{CND}^{\text {poly, } \mathrm{A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}\left(\left(\sqrt{\log \left|\mathrm{~A}^{=n}\right|}+\log \mathrm{n}\right) \log \mathrm{n}\right)
$$

What is known (cont.):

If we allow nondeterminism:
[Buhrman, Lee, van Melkebeek, 2005]
$\forall A, \forall x \in A$

$$
\mathrm{CND}^{\text {poly, } \mathrm{A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}\left(\left(\sqrt{\log \left|\mathrm{~A}^{=n}\right|}+\log \mathrm{n}\right) \log \mathrm{n}\right)
$$

If we allow randomization + nondeterminism:
[Buhrman, Lee, van Melkebeek, 2005] $\forall A, \forall x \in A$

$$
\mathrm{CAMD}^{\text {poly }, \mathrm{A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}\left(\log ^{3} \mathrm{n}\right)
$$

What is known (cont.):

If we allow nondeterminism:
[Buhrman, Lee, van Melkebeek, 2005]
$\forall A, \forall x \in A$

$$
\mathrm{CND}^{\text {poly, } \mathrm{A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}\left(\left(\sqrt{\log \left|\mathrm{~A}^{=n}\right|}+\log \mathrm{n}\right) \log \mathrm{n}\right)
$$

If we allow randomization + nondeterminism:
[Buhrman, Lee, van Melkebeek, 2005]
$\forall A, \forall x \in A$

$$
\mathrm{CAMD}^{\text {poly }, \mathrm{A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}\left(\log ^{3} \mathrm{n}\right)
$$

If we allow only randomization, compression can fail
[Buhrman, Lee, van Melkebeek, 2005]
$\forall n, t, k<c_{1} n-c_{2} \log t, t, \exists A$ with $\log \left|A^{=n}\right|=k, \forall x \in A$

$$
\mathrm{CBPD}^{t, A}(x) \geq 2 \log \left|A^{=n}\right|-c_{3}
$$

QUESTION: For what sets A, can we get optimal compression:

$$
\begin{equation*}
\forall x \in A^{=n}, \mathrm{CD}^{\text {poly }, \mathrm{A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}(\log \mathrm{n}) . \tag{*}
\end{equation*}
$$

QUESTION: For what sets A, can we get optimal compression:
$\forall x \in A^{=n}, \mathrm{CD}^{\text {poly }, \mathrm{A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}(\log \mathrm{n})$.
ANSWER: Using a reasonable assumption, (*) holds for every A in PSPACE/poly.

Last year (FCT'2011), I used a method using 2 steps.
Step 1: non-explicit extractors made partially explicit using Nisan pseudo-random generator for constant-depth circuits.
Step 2: Nisan-Wigderson pseudo-random generator assuming a ceratin hardness assumption.

Vinodchandran suggested the following simpler proof for Step 1: extractors are replaced by 2 -wise independent distributions.

PROOF for $A \in \mathrm{P} /$ poly

$\mathrm{P} /$ poly $=$ class of sets decidable in polynomial time with polynomial advice.
$=$ class of sets decidable by polynomial-size circuits.

PROOF for $A \in \mathrm{P} /$ poly

$\mathrm{P} /$ poly $=$ class of sets decidable in polynomial time with polynomial advice.
$=$ class of sets decidable by polynomial-size circuits.
Let $A \in \mathrm{P} /$ poly and $x \in A^{=n}$.
Let $k=\left\lceil\log \left|A^{=n}\right|\right\rceil$.

PROOF for $A \in \mathrm{P} /$ poly

$\mathrm{P} /$ poly $=$ class of sets decidable in polynomial time with polynomial advice.
$=$ class of sets decidable by polynomial-size circuits.
Let $A \in \mathrm{P} /$ poly and $x \in A^{=n}$.
Let $k=\left\lceil\log \left|A^{=n}\right|\right\rceil$.
Suppose we find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+1}$, poly-time computable given $|h|$ bits of information, which isolates x in A :

$$
\forall y \in A^{=n} \backslash\{x\}, h(y) \neq h(x) .
$$

Then, h and $h(x)$ distinguishes x among the strings in $A^{=n}$.

PROOF for $A \in \mathrm{P} /$ poly

$\mathrm{P} /$ poly $=$ class of sets decidable in polynomial time with polynomial advice.
$=$ class of sets decidable by polynomial-size circuits.
Let $A \in \mathrm{P} /$ poly and $x \in A^{=n}$.
Let $k=\left\lceil\log \left|A^{=n}\right|\right\rceil$.
Suppose we find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+1}$, poly-time computable given $|h|$ bits of information, which isolates x in A :

$$
\forall y \in A^{=n} \backslash\{x\}, h(y) \neq h(x) .
$$

Then, h and $h(x)$ distinguishes x among the strings in $A^{=n}$.
$\mathrm{CD}^{\text {poly, }}(\mathrm{x}) \leq(\mathrm{k}+1)+|\mathrm{h}|+\mathrm{O}(\log \mathrm{n})=\log \left|\mathrm{A}^{=\mathrm{n}}\right|+|\mathrm{h}|+\mathrm{O}(\log \mathrm{n})$.

PROOF for $A \in \mathrm{P} /$ poly

$\mathrm{P} /$ poly $=$ class of sets decidable in polynomial time with polynomial advice.
$=$ class of sets decidable by polynomial-size circuits.
Let $A \in \mathrm{P} /$ poly and $x \in A^{=n}$.
Let $k=\left\lceil\log \left|A^{=n}\right|\right\rceil$.
Suppose we find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+1}$, poly-time computable given $|h|$ bits of information, which isolates x in A :

$$
\forall y \in A^{=n} \backslash\{x\}, h(y) \neq h(x)
$$

Then, h and $h(x)$ distinguishes x among the strings in $A^{=n}$.
$\mathrm{CD}^{\text {poly, }}(\mathrm{x}) \leq(\mathrm{k}+1)+|\mathrm{h}|+\mathrm{O}(\log \mathrm{n})=\log \left|\mathrm{A}^{=\mathrm{n}}\right|+|\mathrm{h}|+\mathrm{O}(\log \mathrm{n})$.
To finish the proof, I need h that isolates x in A and $|h|=O(\log n)$.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

Problem
$k=\left\lceil\log \left|A^{=n}\right|\right\rceil, x \in A^{=n}$.
Find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

Problem

$k=\left\lceil\log \left|A^{=n}\right|\right\rceil, x \in A^{=n}$.
Find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

If we choose h randomly,

$$
\begin{gathered}
\operatorname{Prob}_{h}[h(x)=h(y)]=\frac{1}{2^{k+1}}(\text { for any fixed } y \neq x) \\
\operatorname{Prob}_{h}\left[\exists y \in A^{=n} \backslash\{x\}, h(x)=h(y)\right] \leq 2^{k} \cdot \frac{1}{2^{k+1}}=\frac{1}{2}
\end{gathered}
$$

So, with probability $\geq 1 / 2, h$ isolates x.
But $|h|=2^{n} \cdot(k+1)$.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

```
Problem
k= \lceillog |A =n |\rceil, x 隹=n.
Find h:{0,1\mp@subsup{}}{}{n}->{0,1\mp@subsup{}}{}{k+1}\mathrm{ that isolates }x\mathrm{ and |h| is O(log n).}
```

STEP 1 (reduction using 2-wise distributions):

- h only needs to be 2-wise independent.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

Problem

$k=\left\lceil\log \left|A^{=n}\right|\right\rceil, x \in A^{=n}$.
Find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

STEP 1 (reduction using 2-wise distributions):

- h only needs to be 2-wise independent.
- Take h a random linear function (i.e., a random k-by- n matrix).
- h is 2-wise independent.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

Problem

$k=\left\lceil\log \left|A^{=n}\right|\right\rceil, x \in A^{=n}$.
Find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

STEP 1 (reduction using 2-wise distributions):

- h only needs to be 2-wise independent.
- Take h a random linear function (i.e., a random k-by- n matrix).
- h is 2 -wise independent.
- With probability $\geq 1 / 2, h$ isolates x.
- $|h|=n \cdot k$.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

Problem

$k=\left\lceil\log \left|A^{=n}\right|\right\rceil, x \in A^{=n}$.
Find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+1}$ that isolates x and $|h|$ is $O(\log n)$.

STEP 1 (reduction using 2-wise distributions):

- h only needs to be 2-wise independent.
- Take h a random linear function (i.e., a random k-by- n matrix).
- h is 2 -wise independent.
- With probability $\geq 1 / 2, h$ isolates x.
- $|h|=n \cdot k$.
- We have reduced $|h|$ from $2^{n} \cdot(k+1)$ to $n \cdot k$.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

Problem

$k=\left\lceil\log \left|A^{=n}\right|\right\rceil, x \in A^{=n}$.
Find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ that isolates x and $|h|$ is $O(\log n)$.

STEP 2 (reduction using pseudo-random generators - p.r.g.):

PROOF for $A \in \mathrm{P} /$ poly (cont.)

Problem

$k=\left\lceil\log \left|A^{=n}\right|\right\rceil, x \in A^{=n}$.
Find $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ that isolates x and $|h|$ is $O(\log n)$.

STEP 2 (reduction using pseudo-random generators - p.r.g.):

- A p.r.g. that fools a class of sets \mathcal{C};

$$
g:\{0,1\}^{c \log m} \rightarrow\{0,1\}^{m}, \text { computable in poly. time in } m
$$

such that for every $B \in \mathcal{C}$

$$
\operatorname{Prob}_{s \in\{0,1\}^{\operatorname{cog} m}}[g(s) \in B] \approx_{\epsilon} \operatorname{Prob}_{u \in\{0,1\}^{m}}[u \in B] .
$$

- No set in \mathcal{C} can distinguish between an output of g and a uniformly generated string.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

- $B=\{h \mid h$ linear and h does not isolate $x\}$

PROOF for $A \in \mathrm{P} /$ poly (cont.)

- $B=\{h \mid h$ linear and h does not isolate $x\}$
- B is in NP/poly.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

- $B=\{h \mid h$ linear and h does not isolate $x\}$
- B is in NP/poly.
- Suppose we have a p.r.g. $g:\{0,1\}^{c \log n} \rightarrow\{0,1\}^{k n}$ that fools NP/poly sets.
- g fools B.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

- $B=\{h \mid h$ linear and h does not isolate $x\}$
- B is in NP/poly.
- Suppose we have a p.r.g. $g:\{0,1\}^{c \log n} \rightarrow\{0,1\}^{k n}$ that fools NP/poly sets.
- g fools B.
- \bar{B} is large, so for many $s, g(s) \in \bar{B}$.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

- $B=\{h \mid h$ linear and h does not isolate $x\}$
- B is in NP/poly.
- Suppose we have a p.r.g. $g:\{0,1\}^{c \log n} \rightarrow\{0,1\}^{k n}$ that fools NP/poly sets.
- g fools B.
- \bar{B} is large, so for many $s, g(s) \in \bar{B}$.
- For some seed s (actually for many seeds), $g(s)$ is an h that isolates x.
- Thus we can compute h from s which has $O(\log n)$ bits.

PROOF for $A \in \mathrm{P} /$ poly (cont.)

- $B=\{h \mid h$ linear and h does not isolate $x\}$
- B is in NP/poly.
- Suppose we have a p.r.g. $g:\{0,1\}^{c \log n} \rightarrow\{0,1\}^{k n}$ that fools NP/poly sets.
- g fools B.
- \bar{B} is large, so for many $s, g(s) \in \bar{B}$.
- For some seed s (actually for many seeds), $g(s)$ is an h that isolates x.
- Thus we can compute h from s which has $O(\log n)$ bits.
- This is exactly what we need.

Pseudo random generators

- How do we get a p.r.g.?

Pseudo random generators

- How do we get a p.r.g.?
- Start with a function f computable in $\mathrm{E}=\cup_{c}$ DTIME[2cn] that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.

Pseudo random generators

- How do we get a p.r.g.?
- Start with a function f computable in $\mathrm{E}=\cup_{c}$ DTIME[2cn] that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.
- To fool sets in NP/poly we need an f that requires circuits with SAT gates of size $2^{\epsilon n}$, for some $\epsilon>0$.

Pseudo random generators

- How do we get a p.r.g.?
- Start with a function f computable in $\mathrm{E}=\cup_{c}$ DTIME[2cn] that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.
- To fool sets in NP/poly we need an f that requires circuits with SAT gates of size $2^{\epsilon n}$, for some $\epsilon>0$.
- The output of f is somewhat unpredictable, but the p.r.g. requirements are much more demanding.
- Using lots of clever ideas (Nisan, Wigderson, Impagliazzo, Sudan, Trevisan, Vadhan, Klivans, van Melkebeek) from f one can construct a p.r.g g that fools NP/poly.

Pseudo random generators

- How do we get a p.r.g.?
- Start with a function f computable in $\mathrm{E}=\mathrm{U}_{c}$ DTIME[2cn] that is hard.
- How hard? Depends on what sets do we want the p.r.g. to fool.
- To fool sets in NP/poly we need an f that requires circuits with SAT gates of size $2^{\epsilon n}$, for some $\epsilon>0$.
- The output of f is somewhat unpredictable, but the p.r.g. requirements are much more demanding.
- Using lots of clever ideas (Nisan, Wigderson, Impagliazzo, Sudan, Trevisan, Vadhan, Klivans, van Melkebeek) from f one can construct a p.r.g g that fools NP/poly.
- Assumption H : There exists a function f computable in E that for some $\epsilon>0$ cannot be computed by circuits with SAT gates of size $2^{\epsilon n}$.
- $\mathrm{H} \Rightarrow$ p.r.g. that fools NP/poly \Rightarrow sets in P/poly can be compressed optimally.

Our result

Assumption H : There exists a function f computable in E that for some $\epsilon>0$ cannot be computed by circuits with SAT gates of size $2^{\epsilon n}$.

Theorem
Assume H. For any set A in $P /$ poly, there exists a polynomial p such that for every $x \in A$

$$
\mathrm{CD}^{\mathrm{p}, \mathrm{~A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}(\log \mathrm{n})
$$

- Similar results for sets in P, NP, \sum_{k}^{p}, PSPACE/poly.
- Similar results for sets in P, NP, Σ_{k}^{p}, PSPACE/poly.
- For PSPACE/poly

Theorem

Assume there exists a function f computable in E but not in DSPACE $\left[2^{\circ(n)}\right]$. For any set A in PSPACE/poly, there exists a polynomial p such that for every $x \in A$

$$
\mathrm{CD}^{\mathrm{p}, \mathrm{~A}}(\mathrm{x}) \leq \log \left|\mathrm{A}^{=\mathrm{n}}\right|+\mathrm{O}(\log \mathrm{n})
$$

- Pseudo-random generators based on similar assumptions have been used before in resource-bounded Kolmogorov complexity.
- (Antunes, Fortnow, 2009) If hardness assumption holds, then $m^{p}(x)=2^{-C^{p}(x)}$ is universal among P -samplable distributions.

For any P -samplable distribution σ, there is a polynomial p such that $C^{p}(x) \leq \log 1 / \sigma(x)+O(\log n)$.

- (Antunes, Fortnow, Pinto, Souza, 2007) Computational depth cannot grow fast.

How to show $\mathrm{P} \neq \mathrm{NP}$

How to show $\mathrm{P} \neq \mathrm{NP}$

Find a set A such that
(1) $\mathrm{CD}^{\text {poly, } \mathrm{A}}(\mathrm{x}) \geq 2 \log \left|\mathrm{~A}^{=\mathrm{n}}\right|$, for some $x \in A$ (like [Buhrman, Laplante, Miltersen])
(2) $\mathrm{CD}^{\text {poly }, \Sigma_{\mathrm{k}}^{\mathrm{p}} \oplus \mathrm{A}}(\mathrm{x}) \leq(2-\epsilon) \log \left|\mathrm{A}^{=\mathrm{n}}\right|$, for all $x \in A$

Then, $\Sigma_{k}^{p} \neq P$.

How to show $\mathrm{P} \neq \mathrm{NP}$

Find a set A such that
(1) $\mathrm{CD}^{\text {poly, } \mathrm{A}}(\mathrm{x}) \geq 2 \log \left|\mathrm{~A}^{=\mathrm{n}}\right|$, for some $x \in A$ (like [Buhrman, Laplante, Miltersen])
(2) $\mathrm{CD}^{\text {poly }, \Sigma_{\mathrm{k}}^{\mathrm{p}} \oplus \mathrm{A}}(\mathrm{x}) \leq(2-\epsilon) \log \left|\mathrm{A}^{=\mathrm{n}}\right|$, for all $x \in A$

Then, $\Sigma_{k}^{p} \neq P$.
It is reasonable to try A in the Polynomial Hierarchy.
But $\mathrm{PH} \subseteq$ PSPACE, so (1) will not succeed.
So look for A outside PSPACE.

Thank you.

