Short lists with short programs in short time

Bruno Bauwens
Anton Makhlin
Nikolay Vereshchagin
Marius Zimand

April 2013

v v vy

v

U - universal TM, U(p) = x, we say p is a program for x.
C(x) = min{|p| | p program for x}.
C(x) - canonical example of an uncomputable function.

Finding a shortest program for x: also uncomputable.

Our question: Is it possible to compute a short list containing a
short program for x?

» DEFINITION. p is a c-short program for x if U(p) = x and
lpl = C(x) +c.

» DEFINITION. A function f is a list approximator for c-short
programs if
Vx, f(x) is a finite list containing a c-short program for x.

Our results

» There exists a computable list approximator f for O(1)-short
programs, with size O(n?).

» For any computable list approximator for c-short programs, size is
Q(n?/c?).

» There exists a poly.-time computable list approximator for
O(log n)-short programs, with size poly(n).

Our results

What about lists containing a shortest program?
Answer: It depends on the universal machine.

» For some U, any computable list containing a shortest program for x
has size 27—°(1),

» For some U, there is a computable list containing a shortest
program of size O(n?).

Proof of the upper bounds

Upper bounds
Th. 1: There exists a computable list approximator f for O(1)-short programs with size O(n?).

Th. 2 There exists a poly time computable list approximator for O(log n)-short programs, with
size poly(n).

Bipartite graphs with online matching with overhead c.

Proof of the upper bounds

Upper bounds
Th. 1: There exists a computable list approximator f for O(1)-short programs with size O(n?).

Th. 2 There exists a poly time computable list approximator for O(log n)-short programs, with
size poly(n).

Bipartite graphs with online matching with overhead c.

strings short programs

Proof of the upper bounds

Upper bounds
Th. 1: There exists a computable list approximator f for O(1)-short programs with size O(n?).
Th. 2 There exists a poly time computable list approximator for O(log n)-short programs, with

size poly(n).
Bipartite graphs with online matching with overhead c.

strings short programs

()] C

e matching requests arrive one by one

e request (x, k): match x € LEFT with a free node y € N(x) s.t.

ly| < k+c.

e Promise: k < |x| and Vk there are < 2k requests (x, k).

e Requirement: all requests should be satisfied online (before seeing the
next request).

Proof of the upper bounds

Upper bounds
Th. 1: There exists a computable list approximator f for O(1)-short programs with size O(n?).
Th. 2 There exists a poly time computable list approximator for O(log n)-short programs, with

size poly(n).
Bipartite graphs with online matching with overhead c.

strings short programs

(x1, k)

e matching requests arrive one by one

e request (x, k): match x € LEFT with a free node y € N(x) s.t.

ly| < k+c.

e Promise: k < |x| and Vk there are < 2k requests (x, k).

e Requirement: all requests should be satisfied online (before seeing the
next request).

Proof of the upper bounds

Upper bounds
Th. 1: There exists a computable list approximator f for O(1)-short programs with size O(n?).
Th. 2 There exists a poly time computable list approximator for O(log n)-short programs, with

size poly(n).
Bipartite graphs with online matching with overhead c.

strings short programs

e matching requests arrive one by one

e request (x, k): match x € LEFT with a free node y € N(x) s.t.

ly| < k+c.

e Promise: k < |x| and Vk there are < 2k requests (x, k).

e Requirement: all requests should be satisfied online (before seeing the
next request).

Short lists - combinatorial characterization

Theorem

3 (poly time) computable G with on-line matching with overhead c and the
matching strategy is computable

IFF
3 (poly time) computable list of size deg(x) containing a c + O(1)-short
program for x

Proof. (= only)

e Enumerate strings in LEFT(G) as they are produced by U.

e Say, at step s, U(q) = x, with |g| = k.

o Make request (x, k).

e x is matched with y of length k + c.

e y is a program for x.

e Why: on input y, re-play the matching process till some left string is
matched to it; output this left string, which will be x.

So when q is the shortest program for x, we get a program for x of
length C(x) + c.
The list consists of x's neighbors in G.

How to build a graph with online matching

Focus first on requests of type (x, k) with fixed k.

DEFINITION. A bipartite graph G is a (K, K’)-expander if every K left
nodes have > K’ neighbors.

Lemma

Let G be a (K, K + 1)-expander. If 2K matching requests are made,then
less than K are rejected.

Proof.

If |[REJECTED| > K, then |[N(REJECTED)| > K + 1.

But each node in N(REJECTED) has satisfied a request.

So number of requests would be at least (K + 1)(satisfied) + K
(rejected) = 2K + 1. Contradiction.

Gp k - basic building brick.

Ly = {0,137 Ry k = {0, 1}K+2

deg = n+1

Gp k - basic building brick.

Lok = {0,137

Ro i = {0, 134+2

deg = n+1

(2K, 2K + 1)-expander

Gp k - basic building brick.

Ly = {0,1}" Ry k = {0, 1}K+2

deg = n+1

(2K, 2K + 1)-expander

Can be built with the probabilistic method + exhaustive search.

If 2K online matching requests are made, < K are rejected (where
K =2k

Rp k—1

K requests

< K /2 rejected

Rp k—1

K requests

< K /2 rejected

< K /4 rejected

Rp k—1

K requests

< K /2 rejected

< K /4 rejected

< 1 rejected

K requests

< K /2 rejected

< K /4 rejected

< 1 rejected

Satisfies all requests (x, k) with |x| = n, fixed k.
left degree = (k — 1)(n+ 1) = O(n?).

overhead =1

Hp = HpnUHpp1U...UHp1
Satisfies all requests (x, k), |x| = n, k < n.
left degree = O(n%).

overhead =1

Hp = HpnUHpp1U...UHp1
Satisfies all requests (x, k), |x| = n, k < n.
left degree = O(n%).

overhead =1

H=H,UH,U...UH,U..., but append to each right node in H, a code
for n

Satisfies all requests
left degree(x) = O(|x/[3).

overhead O(log n) (due to codes).

Hp = HpnUHpp1U...UHp1
Satisfies all requests (x, k), |x| = n, k < n.
left degree = O(n%).

overhead =1

H=H,UH,U...UH,U..., but append to each right node in H, a code
for n

Satisfies all requests
left degree(x) = O(|x/[3).

overhead O(log n) (due to codes).

With a more elaborate construction, left degree (x) = O(|x|?), overhead
= 0(1).
So:

Th. 1: There exists a computable list approximator f for O(1)-short
programs, with size O(n?)

Gn.« Basic building brick in poly time

L = {0,137 Ry i = {0, 1}KF1

deg = poly(n)

Gn.« Basic building brick in poly time

Ly = {0,1}"

Rok = {0,114+

deg = poly(n)

(2K, 2K 4 1)-expander

Gn.« Basic building brick in poly time

Ly = {0,137 Rn k= {0, 1}KF1

deg = poly(n)

(2K, 2K 4 1)-expander

e Use [Ta-Shma, Umans, Zuckerman'07] disperser:

o L={0,1}",R = {0, 1}+~ 908", deg = poly(n)

o every AC L |Al = K = [N(A)| > 3IR| = 5o

e We take poly(n) copies of R to get (K, K + 1)-expander.

Gn.« Basic building brick in poly time

Ly = {0,1}" Ry = {0, 1}K+1

deg = poly(n)

(2K, 2K 4 1)-expander

e Use [Ta-Shma, Umans, Zuckerman'07] disperser:

o L= {0,1}", R = {0, 1}¥~0o"), deg — poly(n)

o every AC L |Al = K = [N(A)| > 3IR| = 5o

e We take poly(n) copies of R to get (K, K + 1)-expander.
So:

Th. 2 There exists a poly time computable list approximator for
O(log n)-short programs with size poly(n).

Further developments

[Teutsch 2012] overhead O(1), so list has O(1)-short programs - arxiv
1212.0682

[Zimand 2013] simpler, shorter proof, list size = nbte

Short lists with short programs in short time - a short proof - arxiv
1302.1109

Lower bounds - 1

Th. If a computable list contains a c-short program for x, then its size is

Q(n?/(c+ O(1))?) .

o x — list f(x) = {y1,...,y:} contains a c-short program for x.
e bipartite G: LEFT = {0,1}", Vx € LEFT, (x,y;) € E for all y; € f(x).

e G has on-line matching with overhead ¢ = also has off-line matching
with overhead c.

e G[¢, k] is G from which we cut right nodes y with |y| < £ or |y| > k.
e Vk, G[0, k + c] is (2%, 2K)-expander

e So, Yk, G[k — 1,k + c] is (2%, 2k~ 4 1)-expander.

LEMMA

Graph G has |LEFT| = 2%, |RIGHT| = 2%*<, and is a
(2k,25=1 4 1)-expander.
Then 3x € LEFT with deg(x) > min(2k—2, &K,

e Take k € (n/4,n/2]. By LEMMA
(with £ =3n/4), in G[k —1,k+c],
all x € LEFT, except 23"/%, have

deg(x) = 373

{0.1}"

[k —1,k+c]

n
deg > 7c3)

e Take k € (n/4,n/2]. By LEMMA
(with £ =3n/4), in G[k —1,k+c],
all x € LEFT, except 23"/%, have
deg(x) = 373

e Pick

kg — 1,k +
nf4d <k <ky<...<ks<n/2, deg > 7y
and (c + 2) apart from each other; o — 1k +
e In each G[k; — 1, ki +], all left
nodes, except 23n/4 have deg
> n [ks — 1, ks +
= 4(c+3)" deg > gl

e The RIGHT sets are disjoint.

e So, dx € LEFT, with

deg(x) >'s - = Q)

4(c13) (c+3)

Lower Bounds - 2

Th. For some U, any list containing a shortest program for x has size 29

f(x) = the list = {y1,...,y|¢(x)|} containing x* -shortest program for x.
Clearly C(x* | x) < log|f(x)| + O(1).

Would like C(x* | x) to be big, but C(x* | x) <logn+ O(1).

Use CT - total conditional complexity.

CT(u|v)=min{|p| | U(p,v) = uand U(p,w) | for all w.

We still have CT(x* | x) < log |f(x)| + O(1).

We show: FUj, for infinitely many x, every shortest program p for x
w.rt. Uy, CT(p | x) > n— O(1).

So, |f(x)| > 2n—°(),

Start with U standard machine. Build V s.t. for every n,
3p.x, |pl = x| = n:

(a) p is the unique shortest program for x w.r.t V,

(b) Cy(x)>n-3

(c) CTy(Op | x) > n—3.

Start with U standard machine. Build V s.t. for every n,
3p, x, |p| = |x| = n:

(a) p is the unique shortest program for x w.r.t V,

(b) Cy(x)>n-3

(c) CTy(Op | x) > n—3.

Next define Up:

(1) Uo(0q) = V(a),

(2) Uo(1°q) = U(q) (so Uy is a standard universal machine).

Start with U standard machine. Build V s.t. for every n,
3p, x, |p| = |x| = n:
(a) p is the unique shortest program for x w.r.t V,
(b) Cy(x)>n-3
(c) CTy(Op | x) > n—3.
Next define Up:
(1) Uo(0q) = V(a),
(2) Uo(1°q) = U(q) (so Uy is a standard universal machine).
Then,
Uo(0p) = V(p) = x
Op is the unique shortest program for x w.r.t. Up
CTy(Op | x)>n—3.

Start with U standard machine. Build V s.t. for every n,
3p.x, |pl = x| = n:

(a) p is the unique shortest program for x w.r.t V,

(b) Cy(x)>n-3

(c) CTy(Op | x) > n—3.

Defining V via a game

V on inputs of length n; N = 2"; use N x N board.

1

2

XN

P1

P2

PN

Defining V via a game

V on inputs of length n; N = 2"; use N x N board.

x X Xy
Pl X
m | X | @ X X X X X | x
X
PN X

WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V: pawn placed on (p, x) = V(p) = x.

Defining V via a game

V on inputs of length n; N = 2"; use N x N board.

X L) S . Y
P1 X X
m | X | @ X X X X x| x
X X
: X
N X X

WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V: pawn placed on (p, x) = V(p) = x.

BLACK can pass, or disable all cells in a column

Defining V via a game

V on inputs of length n; N = 2"; use N x N board.

x X S S S S]
1 X X
m | X | xX® X X X X x| x
X X
: X
PN X X

WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V: pawn placed on (p, x) = V(p) = x.

BLACK can pass, or disable all cells in a column, or disable a cell in each
column.

Defining V via a game

V on inputs of length n; N = 2"; use N x N board.

X1 X : : : : Y]
21 X X
m x | x® | x x x x X X

X X

PN X X

WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V: pawn placed on (p, x) = V(p) = x.

BLACK can pass, or disable all cells in a column, or disable a cell in each
column.

BLACK can do < N/4 disabling moves.

WHITE loses if at some point, after her turn, all pawns are in disabled
cells.

WHITE has a winning strategy (later).

Defining V via a game (2)

Build V s.t. for every n, 3p, x, |p| = |x| = n:

(a) p is the unique shortest program for x w.r.t V,
(b) Cu(x)=zn-3

(c) CTu(0p [x) = n—3.

Consider the following BLACK's blind strategy:

(a) Enumerate all strings x of length n with Cy(x) < n—3

(b) and all g, |g| < n—3 s.t. U(g,x) | for all strings x of length
n.

At step s: if (a) happens, disable column x.
if (b) happens, disable all cells (p, x) s.t. U(qg,x) = 0p.

BLACK does < 2773 + 2773 = N /4 moves.

WHITE moves define V: pawn placed on (p, x) = V(p) = x.

WHITE wins: some cell (p, x) has pawn and is not disabled. Then (p, x)
satisfies (a), (b), (c).

WHITE's winning strategy

(1) Initially, put a pawn on any cell
(2) When that cell gets disabled, put another pawn in an available cell.

BLACK makes < N/4 moves, so WHITE makes < N /4 moves
At each move, BLACK disables N cells
At each WHITE's move, (2N — 1) cells become unavailable (row + col)
So, total number of unavailable cells is:
< (N/4)N + N/4(2N — 1) < N?/4 + N?/2 < N?

So WHITE can always place a pawn.

SUMMARY

» One can compute a O(n?)-sized list containing a O(1)-short
program.

» Any computable list containing a O(1)-short program has size

Q(n?).

» One can compute in poly time a poly(n)-sized list containing a
O(log n)-short program.

» For some universal TM, any computable list containing a shortest
program has size Q(2").

» There exists a universal TM, with a computable O(n?)-sized list
containing a shortest program.

Thank you.

