Short lists with short programs in short time

Bruno Bauwens
Anton Makhlin
Nikolay Vereshchagin
Marius Zimand

April 2013

- U - universal TM, $U(p)=x$, we say p is a program for x.
- $C(x)=\min \{|p| \mid p$ program for $x\}$.
- $C(x)$ - canonical example of an uncomputable function.
- Finding a shortest program for x : also uncomputable.
- Our question: Is it possible to compute a short list containing a short program for x ?
- DEFINITION. p is a c-short program for x if $U(p)=x$ and $|p|=C(x)+c$.
- DEFINITION. A function f is a list approximator for c-short programs if $\forall x, f(x)$ is a finite list containing a c-short program for x.

Our results

- There exists a computable list approximator f for $O(1)$-short programs, with size $O\left(n^{2}\right)$.
- For any computable list approximator for c-short programs, size is $\Omega\left(n^{2} / c^{2}\right)$.
- There exists a poly.-time computable list approximator for $O(\log n)$-short programs, with size poly (n).

Our results

What about lists containing a shortest program?
Answer: It depends on the universal machine.

- For some U, any computable list containing a shortest program for x has size $2^{n-O(1)}$.
- For some U, there is a computable list containing a shortest program of size $O\left(n^{2}\right)$.

Proof of the upper bounds

Upper bounds

Th. 1: There exists a computable list approximator f for $O(1)$-short programs with size $O\left(n^{2}\right)$. Th. 2 There exists a poly time computable list approximator for $O(\log n)$-short programs, with size poly (n).

Bipartite graphs with online matching with overhead c.

Proof of the upper bounds

Upper bounds

Th. 1: There exists a computable list approximator f for $O(1)$-short programs with size $O\left(n^{2}\right)$. Th. 2 There exists a poly time computable list approximator for $O(\log n)$-short programs, with size poly (n).

Bipartite graphs with online matching with overhead c.

Proof of the upper bounds

Upper bounds

Th. 1: There exists a computable list approximator f for $O(1)$-short programs with size $O\left(n^{2}\right)$. Th. 2 There exists a poly time computable list approximator for $O(\log n)$-short programs, with size poly (n).

Bipartite graphs with online matching with overhead c.

short programs

- matching requests arrive one by one
- request (x, k) : match $x \in L E F T$ with a free node $y \in N(x)$ s.t.
$|y| \leq k+c$.
- Promise: $k \leq|x|$ and $\forall k$ there are $\leq 2^{k}$ requests $(*, k)$.
- Requirement: all requests should be satisfied online (before seeing the next request).

Proof of the upper bounds

Upper bounds

Th. 1: There exists a computable list approximator f for $O(1)$-short programs with size $O\left(n^{2}\right)$. Th. 2 There exists a poly time computable list approximator for $O(\log n)$-short programs, with size poly (n).

Bipartite graphs with online matching with overhead c.

- matching requests arrive one by one
- request (x, k) : match $x \in L E F T$ with a free node $y \in N(x)$ s.t.
$|y| \leq k+c$.
- Promise: $k \leq|x|$ and $\forall k$ there are $\leq 2^{k}$ requests $(*, k)$.
- Requirement: all requests should be satisfied online (before seeing the next request).

Proof of the upper bounds

Upper bounds

Th. 1: There exists a computable list approximator f for $O(1)$-short programs with size $O\left(n^{2}\right)$. Th. 2 There exists a poly time computable list approximator for $O(\log n)$-short programs, with size poly (n).

Bipartite graphs with online matching with overhead c.

- matching requests arrive one by one
- request (x, k) : match $x \in L E F T$ with a free node $y \in N(x)$ s.t.
$|y| \leq k+c$.
- Promise: $k \leq|x|$ and $\forall k$ there are $\leq 2^{k}$ requests $(*, k)$.
- Requirement: all requests should be satisfied online (before seeing the next request).

Short lists - combinatorial characterization

Theorem

\exists (poly time) computable G with on-line matching with overhead c and the matching strategy is computable

IFF
\exists (poly time) computable list of size $\operatorname{deg}(x)$ containing a $c+O(1)$-short program for x

Proof. (\Rightarrow only)

- Enumerate strings in $\operatorname{LEFT}(G)$ as they are produced by U.
- Say, at step $s, U(q)=x$, with $|q|=k$.
- Make request (x, k).
- x is matched with y of length $k+c$.
- y is a program for x.
- Why: on input y, re-play the matching process till some left string is matched to it; output this left string, which will be x.

So when q is the shortest program for x, we get a program for x of length $C(x)+c$.
The list consists of x 's neighbors in G.

How to build a graph with online matching

Focus first on requests of type $(*, k)$ with fixed k.
DEFINITION. A bipartite graph G is a $\left(K, K^{\prime}\right)$-expander if every K left nodes have $\geq K^{\prime}$ neighbors.

Lemma

Let G be a $(K, K+1)$-expander. If $2 K$ matching requests are made,then less than K are rejected.

Proof.
If \mid REJECTED $\mid \geq K$, then $|N(R E J E C T E D)| \geq K+1$.
But each node in N(REJECTED) has satisfied a request. So number of requests would be at least $(K+1)$ (satisfied) $+K$ $($ rejected $)=2 K+1$. Contradiction.

$G_{n, k}$ - basic building brick.

$G_{n, k}$ - basic building brick.

$G_{n, k}$ - basic building brick.

Can be built with the probabilistic method + exhaustive search.
If $2 K$ online matching requests are made, $<K$ are rejected (where $K=2^{k}$)
$H_{n, k}$

$H_{n, k}$

$H_{n, k}$

$H_{n, k}$

Satisfies all requests (x, k) with $|x|=n$, fixed k.
left degree $=(k-1)(n+1)=O\left(n^{2}\right)$.
overhead $=1$

$$
H_{n}=H_{n, n} \cup H_{n, n-1} \cup \ldots \cup H_{n, 1}
$$

Satisfies all requests $(x, k),|x|=n, k \leq n$.
left degree $=O\left(n^{3}\right)$.
overhead $=1$

$$
H_{n}=H_{n, n} \cup H_{n, n-1} \cup \ldots \cup H_{n, 1}
$$

Satisfies all requests $(x, k),|x|=n, k \leq n$.
left degree $=O\left(n^{3}\right)$.
overhead $=1$
$H=H_{1} \cup H_{2} \cup \ldots \cup H_{n} \cup \ldots$, but append to each right node in H_{n} a code for n

Satisfies all requests
left degree $(x)=O\left(|x|^{3}\right)$.
overhead $O(\log n)$ (due to codes).

$$
H_{n}=H_{n, n} \cup H_{n, n-1} \cup \ldots \cup H_{n, 1}
$$

Satisfies all requests $(x, k),|x|=n, k \leq n$.
left degree $=O\left(n^{3}\right)$.
overhead $=1$
$H=H_{1} \cup H_{2} \cup \ldots \cup H_{n} \cup \ldots$, but append to each right node in H_{n} a code for n

Satisfies all requests
left degree $(x)=O\left(|x|^{3}\right)$.
overhead $O(\log n)$ (due to codes).

With a more elaborate construction, left degree $(x)=O\left(|x|^{2}\right)$, overhead $=O(1)$.
So :

Th. 1: There exists a computable list approximator f for $O(1)$-short programs, with size $O\left(n^{2}\right)$

$G_{n, k}$ Basic building brick in poly time

$G_{n, k}$ Basic building brick in poly time

$G_{n, k}$ Basic building brick in poly time

- Use [Ta-Shma, Umans, Zuckerman'07] disperser:
- $L=\{0,1\}^{n}, R=\{0,1\}^{k-O(\log n)}, \operatorname{deg}=\operatorname{poly}(n)$
- every $A \subseteq L,|A|=K \Rightarrow|N(A)| \geq \frac{1}{2}|R|=\frac{K}{2 \operatorname{poly}(n)}$
- We take poly (n) copies of R to get $(K, K+1)$-expander.

$G_{n, k}$ Basic building brick in poly time

- Use [Ta-Shma, Umans, Zuckerman'07] disperser:
- $L=\{0,1\}^{n}, R=\{0,1\}^{k-O(\log n)}, \operatorname{deg}=\operatorname{poly}(n)$
- every $A \subseteq L,|A|=K \Rightarrow|N(A)| \geq \frac{1}{2}|R|=\frac{K}{2 \text { poly }(n)}$
- We take poly (n) copies of R to get $(K, K+1)$-expander. So:

Th. 2 There exists a poly time computable list approximator for $O(\log n)$-short programs with size poly (n).

Further developments

[Teutsch 2012] overhead $O(1)$, so list has $O(1)$-short programs - arxiv 1212.0682
[Zimand 2013] simpler, shorter proof, list size $=n^{6+\epsilon}$
Short lists with short programs in short time - a short proof - arxiv 1302.1109

Lower bounds - 1

Th. If a computable list contains a c-short program for x, then its size is $\Omega\left(n^{2} /(c+O(1))^{2}\right)$.

- $x \rightarrow$ list $f(x)=\left\{y_{1}, \ldots, y_{t}\right\}$ contains a c-short program for x.
- bipartite $G:$ LEFT $=\{0,1\}^{n}, \forall x \in \operatorname{LEFT},\left(x, y_{i}\right) \in E$ for all $y_{i} \in f(x)$.
- G has on-line matching with overhead $c \Rightarrow$ also has off-line matching with overhead c.
- $G[\ell, k]$ is G from which we cut right nodes y with $|y|<\ell$ or $|y|>k$.
- $\forall k, G[0, k+c]$ is $\left(2^{k}, 2^{k}\right)$-expander
- So, $\forall k, G[k-1, k+c]$ is $\left(2^{k}, 2^{k-1}+1\right)$-expander.

LEMMA

Graph G has $|L E F T|=2^{\ell},|R I G H T|=2^{k+c}$, and is a $\left(2^{k}, 2^{k-1}+1\right)$-expander.
Then $\exists x \in L E F T$ with $\operatorname{deg}(x) \geq \min \left(2^{k-2}, \frac{\ell-k}{c+2}\right)$.

- Take $k \in(n / 4, n / 2]$. By LEMMA (with $\ell=3 n / 4$), in $G[k-1, k+c]$, all $x \in L E F T$, except $2^{3 n / 4}$, have $\operatorname{deg}(x) \geq \frac{n}{4(c+3)}$.

- Take $k \in(n / 4, n / 2]$. By LEMMA (with $\ell=3 n / 4$), in $G[k-1, k+c]$, all $x \in L E F T$, except $2^{3 n / 4}$, have $\operatorname{deg}(x) \geq \frac{n}{4(c+3)}$.
- Pick
$n / 4<k_{1}<k_{2}<\ldots<k_{s}<n / 2$, and $(c+2)$ apart from each other; $s \approx \frac{n}{4(c+2)}$.
- In each $G\left[k_{i}-1, k_{i}+c\right]$, all left nodes, except $2^{3 n / 4}$, have deg
$\geq \frac{n}{4(c+3)}$.

- The RIGHT sets are disjoint.
- So, $\exists x \in L E F T$, with $\operatorname{deg}(x) \geq s \cdot \frac{n}{4(c+3)}=\Omega\left(\frac{n^{2}}{(c+3)^{2}}\right)$.

Lower Bounds - 2

Th. For some U, any list containing a shortest program for x has size $2^{\Omega(n)}$
$f(x)=$ the list $=\left\{y_{1}, \ldots, y_{|f(x)|}\right\}$ containing x^{*}-shortest program for x.
Clearly $C\left(x^{*} \mid x\right) \leq \log |f(x)|+O(1)$.
Would like $C\left(x^{*} \mid x\right)$ to be big, but $C\left(x^{*} \mid x\right) \leq \log n+O(1)$.
Use CT - total conditional complexity.
$C T(u \mid v)=\min \{|p| \mid U(p, v)=u$ and $U(p, w) \downarrow$ for all w.
We still have $C T\left(x^{*} \mid x\right) \leq \log |f(x)|+O(1)$.
We show: $\exists U_{0}$, for infinitely many x, every shortest program p for x w.r.t. $U_{0}, C T(p \mid x) \geq n-O(1)$.

So, $|f(x)| \geq 2^{n-O(1)}$.

Start with U standard machine. Build V s.t. for every n, $\exists p, x,|p|=|x|=n:$
(a) p is the unique shortest program for x w.r.t V,
(b) $C_{U}(x) \geq n-3$
(c) $C T_{U}(0 p \mid x) \geq n-3$.

Start with U standard machine. Build V s.t. for every n, $\exists p, x,|p|=|x|=n$:
(a) p is the unique shortest program for x w.r.t V,
(b) $C_{U}(x) \geq n-3$
(c) $C T_{U}(0 p \mid x) \geq n-3$.

Next define U_{0} :
(1) $U_{0}(0 q)=V(q)$,
(2) $U_{0}\left(1^{5} q\right)=U(q)$ (so U_{0} is a standard universal machine).

Start with U standard machine. Build V s.t. for every n, $\exists p, x,|p|=|x|=n$:
(a) p is the unique shortest program for x w.r.t V,
(b) $C_{U}(x) \geq n-3$
(c) $C T_{U}(0 p \mid x) \geq n-3$.

Next define U_{0} :
(1) $U_{0}(0 q)=V(q)$,
(2) $U_{0}\left(1^{5} q\right)=U(q)$ (so U_{0} is a standard universal machine).

Then,

$$
U_{0}(0 p)=V(p)=x
$$

$0 p$ is the unique shortest program for x w.r.t. U_{0}

$$
C T_{U}(0 p \mid x) \geq n-3 .
$$

Start with U standard machine. Build V s.t. for every n, $\exists p, x,|p|=|x|=n:$
(a) p is the unique shortest program for x w.r.t V,
(b) $C_{U}(x) \geq n-3$
(c) $C T_{U}(0 p \mid x) \geq n-3$.

Defining V via a game

V on inputs of length n; $N=2^{n}$; use $N \times N$ board.

	x_{1}	x_{2}	$\cdot \quad$.	\cdot	x_{N}
p_{1}					
p_{2}					
\vdots					
\vdots					
\vdots					
p_{N}					

Defining V via a game

V on inputs of length n; $N=2^{n}$; use $N \times N$ board.

	x_{1}	x_{2}	\cdot	\cdot	\cdot	\cdot	\cdot	x_{N}
p_{1}		X						
p_{2}	X		X	X	X	X	X	X
\vdots			X					
\vdots								
p_{N}		X						

WHITE can pass or put a pawn, but only one in a row or a column. WHITE moves define V : pawn placed on $(p, x) \Rightarrow V(p)=x$.

Defining V via a game

V on inputs of length n; $N=2^{n}$; use $N \times N$ board.

	x_{1}	x_{2}	\cdot	\cdot	\cdot	\cdot	\cdot	x_{N}
p_{1}		X					X	
p_{2}	X		X	X	X	X	X	X
.								
\vdots		X					X	
\vdots								
p_{N}		X					X	

WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V : pawn placed on $(p, x) \Rightarrow V(p)=x$.
BLACK can pass, or disable all cells in a column

Defining V via a game

V on inputs of length n; $N=2^{n}$; use $N \times N$ board.

	x_{1}	x_{2}	\cdot	\cdot	\cdot	\cdot	\cdot	x_{N}
p_{1}		X	X					
p_{2}	X	X	X	X	X	X	X	X
\vdots	X	X						
\vdots								
p_{N}		X					X	

WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V : pawn placed on $(p, x) \Rightarrow V(p)=x$.
BLACK can pass, or disable all cells in a column, or disable a cell in each column.

Defining V via a game

V on inputs of length n; $N=2^{n}$; use $N \times N$ board.

	x_{1}	x_{2}	\cdot	\cdot	\cdot	\cdot	\cdot	x_{N}
p_{1}		X	X					
p_{2}	X	X	X	X	X	X	X	X
\vdots	X	X						
\vdots								
p_{N}		X					X	

WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V : pawn placed on $(p, x) \Rightarrow V(p)=x$.
BLACK can pass, or disable all cells in a column, or disable a cell in each column.

BLACK can do $<N / 4$ disabling moves.
WHITE loses if at some point, after her turn, all pawns are in disabled cells.

WHITE has a winning strategy (later).

Defining V via a game (2)

Build V s.t. for every $n, \exists p, x,|p|=|x|=n$:
(a) p is the unique shortest program for x w.r.t V,
(b) $C_{U}(x) \geq n-3$
(c) $C T_{u}(0 p \mid x) \geq n-3$.

Consider the following BLACK's blind strategy:
(a) Enumerate all strings x of length n with $C_{U}(x)<n-3$
(b) and all $q,|q|<n-3$ s.t. $U(q, x) \downarrow$ for all strings x of length
n.
At step s : if (a) happens, disable column x.
if (b) happens, disable all cells (p, x) s.t. $U(q, x)=0 p$.
BLACK does $<2^{n-3}+2^{n-3}=N / 4$ moves.
WHITE moves define V : pawn placed on $(p, x) \Rightarrow V(p)=x$.
WHITE wins: some cell (p, x) has pawn and is not disabled. Then (p, x) satisfies (a), (b), (c).

WHITE's winning strategy

(1) Initially, put a pawn on any cell
(2) When that cell gets disabled, put another pawn in an available cell.

BLACK makes $<N / 4$ moves, so WHITE makes $\leq N / 4$ moves
At each move, BLACK disables N cells
At each WHITE's move, $(2 N-1)$ cells become unavailable (row +col)
So, total number of unavailable cells is:

$$
\leq(N / 4) N+N / 4(2 N-1)<N^{2} / 4+N^{2} / 2<N^{2}
$$

So WHITE can always place a pawn.

SUMMARY

- One can compute a $O\left(n^{2}\right)$-sized list containing a $O(1)$-short program.
- Any computable list containing a $O(1)$-short program has size $\Omega\left(n^{2}\right)$.
- One can compute in poly time a poly(n)-sized list containing a $O(\log n)$-short program.
- For some universal TM, any computable list containing a shortest program has size $\Omega\left(2^{n}\right)$.
- There exists a universal TM, with a computable $O\left(n^{2}\right)$-sized list containing a shortest program.

Thank you.

