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I U - universal TM, U(p) = x , we say p is a program for x .

I C (x) = min{|p| | p program for x}.
I C (x) - canonical example of an uncomputable function.

I Finding a shortest program for x : also uncomputable.

I Our question: Is it possible to compute a short list containing a
short program for x?



I DEFINITION. p is a c-short program for x if U(p) = x and
|p| = C (x) + c .

I DEFINITION. A function f is a list approximator for c-short
programs if
∀x , f (x) is a finite list containing a c-short program for x .



Our results

I There exists a computable list approximator f for O(1)-short
programs, with size O(n2).

I For any computable list approximator for c-short programs, size is
Ω(n2/c2).

I There exists a poly.-time computable list approximator for
O(log n)-short programs, with size poly(n).



Our results

What about lists containing a shortest program?
Answer: It depends on the universal machine.

I For some U, any computable list containing a shortest program for x
has size 2n−O(1).

I For some U, there is a computable list containing a shortest
program of size O(n2).



Proof of the upper bounds

Upper bounds
Th. 1: There exists a computable list approximator f for O(1)-short programs with size O(n2).
Th. 2 There exists a poly time computable list approximator for O(log n)-short programs, with
size poly(n).

Bipartite graphs with online matching with overhead c .
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• matching requests arrive one by one
• request (x , k): match x ∈ LEFT with a free node y ∈ N(x) s.t.
|y | ≤ k + c .
• Promise: k ≤ |x | and ∀k there are ≤ 2k requests (∗, k).
• Requirement: all requests should be satisfied online (before seeing the
next request).
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Short lists - combinatorial characterization

Theorem
∃ (poly time) computable G with on-line matching with overhead c and the
matching strategy is computable

IFF
∃ (poly time) computable list of size deg(x) containing a c + O(1)-short
program for x

Proof. (⇒ only)
• Enumerate strings in LEFT(G) as they are produced by U.
• Say, at step s, U(q) = x , with |q| = k .
• Make request (x , k).
• x is matched with y of length k + c .
• y is a program for x .
• Why: on input y , re-play the matching process till some left string is
matched to it; output this left string, which will be x .

So when q is the shortest program for x , we get a program for x of
length C (x) + c .
The list consists of x ’s neighbors in G .



How to build a graph with online matching

Focus first on requests of type (∗, k) with fixed k .

DEFINITION. A bipartite graph G is a (K ,K ′)-expander if every K left
nodes have ≥ K ′ neighbors.

Lemma

Let G be a (K ,K + 1)-expander. If 2K matching requests are made,then
less than K are rejected.

Proof.
If |REJECTED| ≥ K , then |N(REJECTED)| ≥ K + 1.
But each node in N(REJECTED) has satisfied a request.
So number of requests would be at least (K + 1)(satisfied) + K
(rejected) = 2K + 1. Contradiction.



Gn,k - basic building brick.

Ln,k = {0, 1}n Rn,k = {0, 1}k+2

x

deg = n+1

(2k , 2k + 1)-expander

Can be built with the probabilistic method + exhaustive search.

If 2K online matching requests are made, < K are rejected (where
K = 2k)
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x
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...
Rn,1

< 1 rejected

Satisfies all requests (x , k) with |x | = n, fixed k.

left degree = (k − 1)(n + 1) = O(n2).

overhead = 1



Hn,k

Ln,k−1

Rn,k−1 K requests

x

< K/2 rejected

Rn,k−2

< K/4 rejected

...
Rn,1

< 1 rejected

Satisfies all requests (x , k) with |x | = n, fixed k.

left degree = (k − 1)(n + 1) = O(n2).

overhead = 1



Hn,k

Ln,k−1

Rn,k−1 K requests

x

< K/2 rejected

Rn,k−2

< K/4 rejected

...
Rn,1

< 1 rejected

Satisfies all requests (x , k) with |x | = n, fixed k.

left degree = (k − 1)(n + 1) = O(n2).

overhead = 1



Hn,k

Ln,k−1

Rn,k−1 K requests

x

< K/2 rejected

Rn,k−2

< K/4 rejected

...
Rn,1

< 1 rejected

Satisfies all requests (x , k) with |x | = n, fixed k .

left degree = (k − 1)(n + 1) = O(n2).

overhead = 1



Hn = Hn,n ∪ Hn,n−1 ∪ . . . ∪ Hn,1

Satisfies all requests (x , k), |x | = n, k ≤ n.

left degree = O(n3).

overhead = 1

H=H1 ∪H2 ∪ . . .∪Hn ∪ . . . , but append to each right node in Hn a code
for n

Satisfies all requests

left degree(x) = O(|x |3).

overhead O(log n) (due to codes).

With a more elaborate construction, left degree (x) = O(|x |2), overhead
= O(1).
So :

Th. 1: There exists a computable list approximator f for O(1)-short
programs, with size O(n2)
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Gn,k Basic building brick in poly time

Ln,k = {0, 1}n Rn,k = {0, 1}k+1

x

deg = poly(n)

(2k , 2k + 1)-expander

• Use [Ta-Shma, Umans, Zuckerman’07] disperser:
• L = {0, 1}n,R = {0, 1}k−O(log n), deg = poly(n)
• every A ⊆ L, |A| = K ⇒ |N(A)| ≥ 1

2 |R| = K
2poly(n)

• We take poly(n) copies of R to get (K ,K + 1)-expander.
So:

Th. 2 There exists a poly time computable list approximator for
O(log n)-short programs with size poly(n).
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Further developments

[Teutsch 2012] overhead O(1), so list has O(1)-short programs - arxiv
1212.0682

[Zimand 2013] simpler, shorter proof, list size = n6+ε

Short lists with short programs in short time - a short proof - arxiv
1302.1109



Lower bounds - 1

Th. If a computable list contains a c-short program for x , then its size is
Ω(n2/(c + O(1))2) .

• x → list f (x) = {y1, . . . , yt} contains a c-short program for x .

• bipartite G : LEFT = {0, 1}n, ∀x ∈ LEFT , (x , yi ) ∈ E for all yi ∈ f (x).

• G has on-line matching with overhead c ⇒ also has off-line matching
with overhead c .

• G [`, k] is G from which we cut right nodes y with |y | < ` or |y | > k.

• ∀k ,G [0, k + c] is (2k , 2k)-expander

• So, ∀k,G [k − 1, k + c] is (2k , 2k−1 + 1)-expander.

LEMMA

Graph G has |LEFT | = 2`, |RIGHT | = 2k+c , and is a
(2k , 2k−1 + 1)-expander.
Then ∃x ∈ LEFT with deg(x) ≥ min(2k−2, `−kc+2 ).



• Take k ∈ (n/4, n/2]. By LEMMA
(with ` = 3n/4), in G [k − 1, k + c] ,
all x ∈ LEFT , except 23n/4, have
deg(x) ≥ n

4(c+3) .

• Pick
n/4 < k1 < k2 < . . . < ks < n/2,
and (c + 2) apart from each other;
s ≈ n

4(c+2) .

• In each G [ki − 1, ki + c], all left
nodes, except 23n/4, have deg
≥ n

4(c+3) .

• The RIGHT sets are disjoint.

• So, ∃x ∈ LEFT , with
deg(x) ≥ s · n

4(c+3) = Ω( n2

(c+3)2 ).

{0.1}n
[k − 1, k + c]

deg ≥ n
4(c+3)

{0.1}n
[k1 − 1, k1 + c]

deg ≥ n
4(c+3)

[k2 − 1, k2 + c]

deg ≥ n
4(c+3)

...

[ks − 1, ks + c]

deg ≥ n
4(c+3)
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Lower Bounds - 2

Th. For some U, any list containing a shortest program for x has size 2Ω(n) .

f (x) = the list = {y1, . . . , y|f (x)|} containing x∗ -shortest program for x .

Clearly C (x∗ | x) ≤ log |f (x)|+ O(1).

Would like C (x∗ | x) to be big, but C (x∗ | x) ≤ log n + O(1).

Use CT - total conditional complexity.

CT (u | v) = min{|p| | U(p, v) = u and U(p,w) ↓ for all w .

We still have CT (x∗ | x) ≤ log |f (x)|+ O(1).

We show: ∃U0, for infinitely many x , every shortest program p for x
w.r.t. U0, CT (p | x) ≥ n − O(1).

So, |f (x)| ≥ 2n−O(1).



Start with U standard machine. Build V s.t. for every n,
∃p, x , |p| = |x | = n:

(a) p is the unique shortest program for x w.r.t V ,

(b) CU(x) ≥ n − 3

(c) CTU(0p | x) ≥ n − 3.

Next define U0:

(1) U0(0q) = V (q),

(2) U0(15q) = U(q) (so U0 is a standard universal machine).

Then,

U0(0p) = V (p) = x

0p is the unique shortest program for x w.r.t. U0

CTU(0p | x) ≥ n − 3.
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WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V : pawn placed on (p, x) ⇒ V (p) = x .



Defining V via a game

V on inputs of length n; N = 2n; use N × N board.

x1 x2 · · · · · xN
p1 X X

p2 X • X X X X X X

.

.

. X X

.

.

. X

pN X X

WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V : pawn placed on (p, x) ⇒ V (p) = x .

BLACK can pass, or disable all cells in a column



Defining V via a game

V on inputs of length n; N = 2n; use N × N board.

x1 x2 · · · · · xN
p1 X X

p2 X X• X X X X X X

.

.

. X X

.

.

. X

pN X X

WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V : pawn placed on (p, x) ⇒ V (p) = x .

BLACK can pass, or disable all cells in a column, or disable a cell in each
column.



Defining V via a game

V on inputs of length n; N = 2n; use N × N board.

x1 x2 · · · · · xN
p1 X X

p2 X X• X X X X X X
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WHITE can pass or put a pawn, but only one in a row or a column.
WHITE moves define V : pawn placed on (p, x) ⇒ V (p) = x .

BLACK can pass, or disable all cells in a column, or disable a cell in each
column.

BLACK can do < N/4 disabling moves.

WHITE loses if at some point, after her turn, all pawns are in disabled
cells.

WHITE has a winning strategy (later).



Defining V via a game (2)

Build V s.t. for every n, ∃p, x , |p| = |x | = n:

(a) p is the unique shortest program for x w.r.t V ,

(b) CU(x) ≥ n − 3

(c) CTU(0p | x) ≥ n − 3.

Consider the following BLACK’s blind strategy:
(a) Enumerate all strings x of length n with CU(x) < n − 3
(b) and all q, |q| < n − 3 s.t. U(q, x) ↓ for all strings x of length

n.

At step s: if (a) happens, disable column x .
if (b) happens, disable all cells (p, x) s.t. U(q, x) = 0p.

BLACK does < 2n−3 + 2n−3 = N/4 moves.
WHITE moves define V : pawn placed on (p, x) ⇒ V (p) = x .
WHITE wins: some cell (p, x) has pawn and is not disabled. Then (p, x)
satisfies (a), (b), (c).



WHITE’s winning strategy

(1) Initially, put a pawn on any cell
(2) When that cell gets disabled, put another pawn in an available cell.

BLACK makes < N/4 moves, so WHITE makes ≤ N/4 moves

At each move, BLACK disables N cells

At each WHITE’s move, (2N − 1) cells become unavailable (row + col)

So, total number of unavailable cells is:

≤ (N/4)N + N/4(2N − 1) < N2/4 + N2/2 < N2

So WHITE can always place a pawn.



SUMMARY

I One can compute a O(n2)-sized list containing a O(1)-short
program.

I Any computable list containing a O(1)-short program has size
Ω(n2).

I One can compute in poly time a poly(n)-sized list containing a
O(log n)-short program.

I For some universal TM, any computable list containing a shortest
program has size Ω(2n).

I There exists a universal TM, with a computable O(n2)-sized list
containing a shortest program.



Thank you.


