Polynomial time algorithms in Kolmogorov complexity theory

Marius Zimand

Towson University

CCR 2015

Marius Zimand (Towson University)

・ロ・・日・・日・・日・・ のくぐ

2015

1 / 40

What is this talk about

- It will challenge the common perception that most objects in Kolmogorov complexity are uncomputable.
- In fact, not only are many important objects computable, they are efficiently

computable (i.e., computable in polynomial time,

provided a few help bits are available, or a small error probability is allowed, or some reasonable complexity assumptions hold.

イロト イポト イヨト イヨト

What is this talk about

- It will challenge the common perception that most objects in Kolmogorov complexity are uncomputable.
- In fact, not only are many important objects computable, they are efficiently

computable (i.e., computable in polynomial time,) provided a few help bits are available, or a small error probability is allowed, or some reasonable complexity assumptions hold.

イロト イポト イヨト イヨト

What is this talk about

- It will challenge the common perception that most objects in Kolmogorov complexity are uncomputable.
- In fact, not only are many important objects computable, they are efficiently

computable (i.e., computable in polynomial time,) provided a few help bits are available, or a small error probability is allowed, or some reasonable complexity assumptions hold.

- It is a survey talk.
- Most results are not new; a few are new.

Kolmogorov complexity: notation

- U optimal universal TM.
- If U(p) = x, we say p is a program for x.
- If U(p, y) = x, we say p is a program for x conditioned by y.
- $C(x) = \min\{|p| \mid p \text{ program for } x\}.$
- $C(x \mid y) = \min\{|p| \mid p \text{ program for } x \text{ conditioned by } y\}.$

< = > < @ > < E > < E > < E</p>

Kolmogorov complexity: notation

- U optimal universal TM.
- If U(p) = x, we say p is a program for x.
- If U(p, y) = x, we say p is a program for x conditioned by y.
- $C(x) = \min\{|p| \mid p \text{ program for } x\}.$
- $C(x \mid y) = \min\{|p| \mid p \text{ program for } x \text{ conditioned by } y\}.$
- |x| =length of x; in general we denote |x| by n.

< = > < @ > < E > < E > < E</p>

1 C(x) - canonical example of an uncomputable function.

nac

・ロト ・四ト ・モト ・モト

- (1) C(x) canonical example of an uncomputable function.
- 2 Finding a shortest program for x: also uncomputable.

イロト イポト イヨト イヨト

- (1) C(x) canonical example of an uncomputable function.
- ② Finding a shortest program for x: also uncomputable.
- 3 No algorithm enumerates more than finitely many strings with high complexity.

- (1) C(x) canonical example of an uncomputable function.
- ⁽²⁾ Finding a shortest program for x: also uncomputable.
- 3 No algorithm enumerates more than finitely many strings with high complexity.
- 4 Can we prove all statements " $C(x) \ge k$?" NO.

イロト イポト イヨト イヨト

- (1) C(x) canonical example of an uncomputable function.
- ② Finding a shortest program for x: also uncomputable.
- 3 No algorithm enumerates more than finitely many strings with high complexity.
- Can we prove all statements " $C(x) \ge k$?" NO.
- S Can we effectively label k-tuples of strings (x₁,..., x_k) with {Random, Non - Random}^k, so that at least one label is correct for each k-tuplet? NO, for every k (Teutsch, Z., 2014).

《曰》 《圖》 《臣》 《臣》

- (1) C(x) canonical example of an uncomputable function.
- ② Finding a shortest program for x: also uncomputable.
- 3 No algorithm enumerates more than finitely many strings with high complexity.
- **(4)** Can we prove all statements " $C(x) \ge k$?" NO.
- S Can we effectively label k-tuples of strings (x₁,..., x_k) with {Random, Non - Random}^k, so that at least one label is correct for each k-tuplet? NO, for every k (Teutsch, Z., 2014).
- In the second second

< = > < @ > < E > < E > < E</p>

- (1) C(x) canonical example of an uncomputable function.
- ② Finding a shortest program for x: also uncomputable.
- 3 No algorithm enumerates more than finitely many strings with high complexity.
- **(4)** Can we prove all statements " $C(x) \ge k$?" NO.
- S Can we effectively label k-tuples of strings (x₁,..., x_k) with {Random, Non - Random}^k, so that at least one label is correct for each k-tuplet? NO, for every k (Teutsch, Z., 2014).
- In the second second
- **(2)** We want to compute a list of integers containing C(x). Any such computable list must have size $\Omega(|x|)$ for infinitely many x. (Beigel, Buhrman, Fejer, Fortnow, Grabowski, Longpré, Muchnik, Stephan, Torenvliet, 2006).

• Given x and C(x), it is possible to compute a shortest program for x.

Ξ

・ロト ・四ト ・モト ・モト

• Given x and C(x), it is possible to compute a shortest program for x.

• But the computation time is larger than any computable function.

< = > < = > < = > < = >

- Given x and C(x), it is possible to compute a shortest program for x.
- But the computation time is larger than any computable function.
- In fact, for any computable function t(n) if an algorithm on input (x, C(x)) computes in time t(n) a program p for x, then $|p| \ge C(x) + \Omega(n)$ for infinitely many n. (Bauwens, Z., 2014).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Given x and C(x), it is possible to compute a shortest program for x.
- But the computation time is larger than any computable function.
- In fact, for any computable function t(n) if an algorithm on input (x, C(x)) computes in time t(n) a program p for x, then $|p| \ge C(x) + \Omega(n)$ for infinitely many n. (Bauwens, Z., 2014).

There is a probabilistic polynomial time algorithm that on input (x, ℓ) returns a string p of length $\leq \ell + O(\log^2(n))$, and if $\ell = C(x)$ then, with probability 0.99, p is a program for x (Bauwens, Z. , 2014).

《口》 《圖》 《문》 《문》

- Given x and C(x), it is possible to compute a shortest program for x.
- But the computation time is larger than any computable function.
- In fact, for any computable function t(n) if an algorithm on input (x, C(x)) computes in time t(n) a program p for x, then $|p| \ge C(x) + \Omega(n)$ for infinitely many n. (Bauwens, Z., 2014).
- There is a probabilistic polynomial time algorithm that on input (x, ℓ) returns a string p of length $\leq \ell + O(\log^2(n))$, and if $\ell = C(x)$ then, with probability 0.99, p is a program for x (Bauwens, Z. , 2014).
- The above is a <u>promise</u> algorithm. If the promise $\ell = C(x)$ holds, then the output has the coveted property (with high probability), if it does not hold, then no guarantee.

Computing short conditional programs

On input (x, y, C(x | y)) it is possible to compute a program p of x conditioned by y of length |p| = C(x | y).

・ロト ・四ト ・ヨト ・ ヨト

Computing short conditional programs

- On input (x, y, C(x | y)) it is possible to compute a program p of x conditioned by y of length |p| = C(x | y).
- (Muchnik's Theorem, 2002): On input (x, y, C(x | y)) and O(log n) help bits, one can compute a string p of length C(x | y) + O(log n) such that (p, y) is a program for x.

《曰》 《圖》 《臣》 《臣》

Computing short conditional programs

- On input (x, y, C(x | y)) it is possible to compute a program p of x conditioned by y of length |p| = C(x | y).
- (Muchnik's Theorem, 2002): On input (x, y, C(x | y)) and O(log n) help bits, one can compute a string p of length C(x | y) + O(log n) such that (p, y) is a program for x.
- (Musatov, Romashchenko, Shen, 2011): Different proof for Muchnik's Th.

2015

6 / 40

Muchnik's Theorem

Theorem (Muchnik's Theorem)

For every x, y of complexity at most n, there exists p such that

- (p, y) is a program for x.
- $C(p \mid x) = O(\log n)$,
- $|p| = C(x \mid y) + O(\log n)$,

< = > < = > < = > < = >

Muchnik's Theorem

< = > < = > < = > < = >

Gauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can compute in polynomial time a list containing a string p of length C(x | y) + O(log n) such that (p, y) is a program for x.

イロト イポト イヨト イヨト

- Gauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can compute in polynomial time a list containing a string p of length C(x | y) + O(log n) such that (p, y) is a program for x.
- Teutsch, 2014) $C(x \mid y) + O(\log n)O(1)$ list size = $n^{7+\epsilon}$.

- Gauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can compute in polynomial time a list containing a string p of length C(x | y) + O(log n) such that (p, y) is a program for x.
- Teutsch, 2014) $C(x \mid y) + O(\log n)O(1)$ list size = $n^{7+\epsilon}$. • C(x, 2014) $C(x \mid y) + O(1)$ list size = $n^{6+\epsilon}$.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

- Gauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can compute in polynomial time a list containing a string p of length C(x | y) + O(log n) such that (p, y) is a program for x.
- Teutsch, 2014) $C(x \mid y) + O(\log n)O(1)$ list size = $n^{7+\epsilon}$. • (Z., 2014) $C(x \mid y) + O(1)$ list size = $n^{6+\epsilon}$.
- Is it possible that list size = 1? Yes, if a promise condition holds and if we allow some small error probability.

《口》 《圖》 《문》 《문》

- Gauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can compute in polynomial time a list containing a string p of length C(x | y) + O(log n) such that (p, y) is a program for x.
- Teutsch, 2014) $C(x \mid y) + O(\log n)O(1)$ list size = $n^{7+\epsilon}$. • (Z., 2014) $C(x \mid y) + O(1)$ list size = $n^{6+\epsilon}$.
- Is it possible that list size = 1? Yes, if a promise condition holds and if we allow some small error probability.
- Promise algorithms: The input must satisfy some promise. If it doesn't, then the algorithm does not guarantee anything (but still halts).

イロト イロト イモト イモト 二日

- Gauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can compute in polynomial time a list containing a string p of length C(x | y) + O(log n) such that (p, y) is a program for x.
- Teutsch, 2014) $C(x \mid y) + O(\log n)O(1)$ list size = $n^{7+\epsilon}$. • (Z., 2014) $C(x \mid y) + O(1)$ list size = $n^{6+\epsilon}$.
- Is it possible that list size = 1? Yes, if a promise condition holds and if we allow some small error probability.
- Promise algorithms: The input must satisfy some promise. If it doesn't, then the algorithm does not guarantee anything (but still halts).

(Bauwens, Z., 2014) On input x, ℓ one can compute in probabilistic polynomial time a string p of length $\ell + (\log^2 n)$ and if the promise $\ell = C(x \mid y)$ holds, then, with probability 0.99, (p, y) is a program for x.

イロト イポト イモト イモト 三日

Slepian-Wolf Theorem

 $(X_1, Y_1), \dots, (X_n, Y_n), n \text{ i.i.d. random}$ variables, $\{0, 1\}$ -valued, with joint distribution p(x, y). $X = (X_1, \dots, X_n), Y = (Y_1, \dots, Y_n).$ $E_1 : \{0, 1\}^n \rightarrow \{0, 1\}^{r_1 n},$ $E_2 : \{0, 1\}^n \rightarrow \{0, 1\}^{r_2 n}.$ Rates r_1, r_2 are achievable if with high probability $D(E_1(X), E_2(Y)) = (X, Y).$

イロト イロト イヨト イヨト

200

Slepian-Wolf Theorem

 $(X_1, Y_1), \dots, (X_n, Y_n), n \text{ i.i.d. random}$ variables, $\{0, 1\}$ -valued, with joint distribution p(x, y). $X = (X_1, \dots, X_n), Y = (Y_1, \dots, Y_n).$ $E_1 : \{0, 1\}^n \rightarrow \{0, 1\}^{r_1 n},$ $E_2 : \{0, 1\}^n \rightarrow \{0, 1\}^{r_2 n}.$ Rates r_1, r_2 are achievable if with high probability $D(E_1(X), E_2(Y)) = (X, Y).$

< ロト < 回ト < 注ト < 注ト -

Question: What rates are achievable?

Clearly it is necessary that $r_1 + r_2 \ge H(X_i, Y_i)$, $r_1 \ge H(X_i \mid Y_i)$, $r_2 \ge H(Y_i \mid X_i)$.

Slepian-Wolf Theorem

 $(X_1, Y_1), \dots, (X_n, Y_n), n \text{ i.i.d. random}$ variables, $\{0, 1\}$ -valued, with joint distribution p(x, y). $X = (X_1, \dots, X_n), Y = (Y_1, \dots, Y_n).$ $E_1 : \{0, 1\}^n \rightarrow \{0, 1\}^{r_1 n},$ $E_2 : \{0, 1\}^n \rightarrow \{0, 1\}^{r_2 n}.$ Rates r_1, r_2 are achievable if with high probability $D(E_1(X), E_2(Y)) = (X, Y).$

< = > < @ > < E > < E > < E</p>

Question: What rates are achievable?

Clearly it is necessary that $r_1 + r_2 \ge H(X_i, Y_i)$, $r_1 \ge H(X_i \mid Y_i)$, $r_2 \ge H(Y_i \mid X_i)$.

Theorem (Slepian-Wolf)

Any pair (r_1, r_2) satisfying the above inequalities is achievable.

2015 9 / 40

Kolmogorov complexity versions of the Slepian-Wolf Theorem - (1)

$$\begin{array}{l} x, y \text{ binary strings} \\ E_1 : \{0, 1\}^* \to \{0, 1\}^*, \\ E_2 : \{0, 1\}^* \to \{0, 1\}^*. \\ \text{Decoding task: } D(E_1(x), E_2(y)) = (x, y). \end{array}$$

< = > < = > < = > < = >

Kolmogorov complexity versions of the Slepian-Wolf Theorem - (1)

$$\begin{array}{l} x,y \text{ binary strings} \\ E_1: \{0,1\}^* \to \{0,1\}^*, \\ E_2: \{0,1\}^* \to \{0,1\}^*. \\ \text{Decoding task: } D(E_1(x),E_2(y)) = (x,y). \end{array}$$

イロト イポト イヨト イヨト

Question: What rates s, t ((i.e., lengths of $E_1(x), E_2(y)$) are achievable? Clearly it is necessary that $s + t \ge C(x, y)$, $s \ge C(x | y)$, $t \ge C(y | x)$.

Kolmogorov complexity versions of the Slepian-Wolf Theorem - (1)

$$\begin{array}{l} x,y \text{ binary strings} \\ E_1: \{0,1\}^* \to \{0,1\}^*, \\ E_2: \{0,1\}^* \to \{0,1\}^*. \\ \text{Decoding task: } D(E_1(x),E_2(y)) = (x,y). \end{array}$$

Question: What rates s, t ((i.e., lengths of $E_1(x), E_2(y)$) are achievable? Clearly it is necessary that $s + t \ge C(x, y)$, $s \ge C(x | y)$, $t \ge C(y | x)$.

Theorem (Muchnik Theorem)

 $s = C(x | y) + O(\log n), t = C(y)$ is achievable (provided E_1, E_2 can use $O(\log n)$ help bits).

イロト イポト イヨト イヨト
Kolmogorov complexity versions of the Slepian-Wolf Theorem -(2)

 $\begin{array}{l} x,y \text{ binary strings} \\ E_1: \{0,1\}^* \to \{0,1\}^*, \\ E_2: \{0,1\}^* \to \{0,1\}^*. \\ \text{Decoding task: } D(E_1(x), E_2(y)) = (x,y). \\ \text{Question: What rates } s,t \text{ (i.e., lengths of } \\ E_1(x), E_2(y)) \text{ are achievable?} \end{array}$

イロト イポト イヨト イヨト

Kolmogorov complexity versions of the Slepian-Wolf Theorem -(2)

 $\begin{array}{l} x,y \text{ binary strings} \\ E_1: \{0,1\}^* \to \{0,1\}^*, \\ E_2: \{0,1\}^* \to \{0,1\}^*. \\ \text{Decoding task: } D(E_1(x),E_2(y)) = (x,y). \\ \text{Question: What rates } s,t \text{ (i.e., lengths of } \\ E_1(x),E_2(y)) \text{ are achievable?} \end{array}$

[Teutsch 2014, s = C(x | y) + O(1), t = C(y) are achievable with polynomial time E_1 and E_2 (provided E_1, E_2 can use $O(\log n)$ help bits).

[Bauwens, Z., 2014, $f = C(x | y) + O(\log^2 n), t = C(y)$ are achievable with probabilistic polynomial time E_1 and E_2 (provided E_1 knows $C(x | y), E_2$ knows C(y)).

Kolmogorov complexity versions of the Slepian-Wolf Theorem -(3)

 $\begin{array}{l} x,y \text{ binary strings} \\ E_1: \{0,1\}^* \to \{0,1\}^*, \\ E_2: \{0,1\}^* \to \{0,1\}^*. \\ \text{Decoding task: } D(E_1(x),E_2(y)) = (x,y). \\ \text{Question: What rates } s,t \text{ (i.e., lengths of } \\ E_1(x),E_2(y)) \text{ are achievable?} \end{array}$

Kolmogorov complexity versions of the Slepian-Wolf Theorem -(3)

 $\begin{array}{l} x,y \text{ binary strings} \\ E_1: \{0,1\}^* \to \{0,1\}^*, \\ E_2: \{0,1\}^* \to \{0,1\}^*. \\ \text{Decoding task: } D(E_1(x),E_2(y)) = (x,y). \\ \text{Question: What rates } s,t \text{ (i.e., lengths of } \\ E_1(x),E_2(y)) \text{ are achievable?} \end{array}$

《曰》 《圖》 《臣》 《臣》

[Z. 2015,] Roughly any s, t with $s + t \ge C(x, y), s \ge C(x | y), t \ge C(y | x)$ are achievable (if a few help bits are available, or some promise conditions hold).

Kolmogorov complexity versions of the Slepian-Wolf Theorem -(3)

 $\begin{array}{l} x, y \text{ binary strings} \\ E_1 : \{0,1\}^* \to \{0,1\}^*, \\ E_2 : \{0,1\}^* \to \{0,1\}^*. \\ \text{Decoding task: } D(E_1(x), E_2(y)) = (x,y). \\ \text{Question: What rates } s, t (i.e., \text{ lengths of } E_1(x), E_2(y)) \text{ are achievable}? \end{array}$

[Z. 2015, 🔏]

- Let s, t be such that $s \ge C(x \mid y) + O(\log^3 n)$, $t \ge C(y \mid x) + O(\log n)$, and $s + t \ge C(x, y)$. $|E_1(x)| = s$, $|E_2(y)| = t$ is achievable with polynomial time E_1 and E_2 (provided E_1 can use $O(\log^3 n)$ help bits, and E_2 can use $O(\log n)$ help bits).
- Let s, t be such that $s \ge C(x \mid y) + O(\log^3 n)$, $t \ge C(y \mid x) + O(\log^3 n)$, and $s + t \ge C(x, y)$. $|E_1(x)| = s$, $|E_2(y)| = t$ is achievable with probabilistic polynomial time E_1 and E_2 (provided that E_1 knows C(x), $C(x \mid y)$, E_2 knows $C(y \mid x)$).

Coding Theorems

Theorem (Shannon Source Coding Theorem) Let X be a random variable with finite support. Then there is a way to code the support of X such that $E[|code(X)|] \le H(X) + 1.$

```
(H is Shannon entropy; H(X) = E[-\log p(X)].
So, E[|code(X)|] \le E[-\log p(X)] + 1).
```

Theorem (Levin, Chaitin)

Let μ be a left c.e. semi-measure. Then for all x, $K(x) \leq -\log \mu(x) + O(1)$. (K is the prefix-free Kolmogorov complexity.)

Coding Theorems

Theorem (Shannon Source Coding Theorem) Let X be a random variable with finite support. Then there is a way to code the support of X such that $E[|code(X)|] \le H(X) + 1.$

```
(H is Shannon entropy; H(X) = E[-\log p(X)].
So, E[|code(X)|] \le E[-\log p(X)] + 1).
```

Theorem (Levin, Chaitin)

Let μ be a left c.e. semi-measure. Then for all x, $K(x) \leq -\log \mu(x) + O(1)$. (K is the prefix-free Kolmogorov complexity.)

Is there a polynomial-time Coding Theorem?

Marius Zimand (Towson University)

Polynomial-time Coding Theorem

• A probability distribution is P-samplable if there exists a polynomial time (family of) computable function $F : \{0,1\}^m \to \{0,1\}^n$, with $n \ge m^{\Omega(1)}$, such that

$$\mu(x) = \frac{|\{w \in \{0,1\}^m \mid F(w) = x\}|}{2^m}.$$

Assume assumption H. If μ is P-samplable, there exists a polynomial p, such that for all x, $C^{p}(x) \leq -\log(\mu(x)) + O(\log n).$ $(C^{p}(\cdot)$ is the Kolm. complexity with time bound p.)

Polynomial-time Coding Theorem

• A probability distribution is P-samplable if there exists a polynomial time (family of) computable function $F : \{0,1\}^m \to \{0,1\}^n$, with $n \ge m^{\Omega(1)}$, such that

$$\mu(x) = \frac{|\{w \in \{0,1\}^m \mid F(w) = x\}|}{2^m}.$$

Assume assumption H. If μ is P-samplable, there exists a polynomial p, such that for all x, $C^{p}(x) \leq -\log(\mu(x)) + O(\log n).$ $(C^{p}(\cdot)$ is the Kolm. complexity with time bound p.)

Assumption $H: \exists f \in E$ which cannot be computed in space $2^{o(n)}$.

< = > < @ > < E > < E > < E</p>

Polynomial-time Coding Theorem

• A probability distribution is P-samplable if there exists a polynomial time (family of) computable function $F : \{0,1\}^m \to \{0,1\}^n$, with $n \ge m^{\Omega(1)}$, such that

$$\mu(x) = \frac{|\{w \in \{0,1\}^m \mid F(w) = x\}|}{2^m}.$$

Assume assumption H. If μ is P-samplable, there exists a polynomial p, such that for all x, $C^{p}(x) \leq -\log(\mu(x)) + O(\log n)$. $(C^{p}(\cdot)$ is the Kolm. complexity with time bound p.)

Assumption $H: \exists f \in E$ which cannot be computed in space $2^{o(n)}$.

$$\mathbf{E} = \bigcup_{c > 0} \mathrm{DTIME}[2^{cn}]$$

Marius Zimand (Towson University)

< ロ > < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 = </p>

The typical route:

- Ind an appropriate combinatorial object for the job.
- ② Show that it exists using the probabilistic method.
- 3 Construct it in polynomial time using tools from the theory of pseudo randomness:

expanders, extractors, dispersers, pseudo-random generators.

イロト イポト イヨト イヨト

Example of a combinatorial object

Key tool: bipartite graphs $G = (L, R, E \subseteq L \times R)$ with the rich owner property:

For any $B \subseteq L$ of size $|B| \approx K$, most x in B own most of their neighbors (these neighbors are not shared with any other node from B).

《曰》 《圖》 《臣》 《臣》

Example of a combinatorial object

Key tool: bipartite graphs $G = (L, R, E \subseteq L \times R)$ with the rich owner property:

For any $B \subseteq L$ of size $|B| \approx K$, most x in B own most of their neighbors (these neighbors are not shared with any other node from B).

- $x \in B$ owns $y \in N(x)$ w.r.t. B if $N(y) \cap B = \{x\}$.
- $x \in B$ is a rich owner if x owns (1δ) of its neighbors w.r.t. B.
- $G = (L, R, E \subseteq L \times R)$ has the (K, δ) -rich owner property if for all B with $|B| \leq K$, $(1 - \delta)K$ of the elements in B are rich owners w.r.t. B.

イロト イポト イモト イモト 三日

Bipartite graph G

・ロット 中国 マイ 山マ ト (日) シック

2015 17 / 40

Bipartite graph G

```
x is a rich owner
w.r.t B
if x owns (1 - \delta) of
N(x)
```


4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 今 Q (~
2015 17 / 40

Bipartite graph G

```
x is a rich owner
w.r.t B
if x owns (1 - \delta) of
N(x)
```

```
G has the (K, \delta)
rich owner property:
\forall B \subseteq L, of size at
most K,
all nodes in B
except at most \delta \cdot K
are rich owners
w.r.t. B
```


< = > < = > < = > < = >

Sar

```
x is a rich owner
w.r.t B
if x owns (1 - \delta) of
N(x)
```

G has the (K, δ) rich owner property: $\forall B \subseteq L$, of size at most K, all nodes in B except at most $\delta \cdot K$ are rich owners w.r.t. B

< = > < = > < = > < = >

2015 17 / 40

nac

```
x is a rich owner
w.r.t B
if x owns (1 - \delta) of
N(x)
```

```
G has the (K, \delta)
rich owner property:
\forall B \subseteq L, of size at
most K,
all nodes in B
except at most \delta \cdot K
are rich owners
w.r.t. B
```


Theorem (Bauwens, Z'14)

There exists a poly time computable (uniformly in n, k and $1/\delta$) graph with the rich owner property for parameters $(2^k,\delta)$ with:

- $L = \{0, 1\}^n$
- $R = \{0, 1\}^{k+O(\log^2(n/\delta))}$
- $D(left degree) = 2^{O(\log^2(n/\delta))}$.

Short programs in probabilistic poly. time

Theorem (Bauwens, Z., 2014)

There exists a probabilistic poly. time algorithm A such that

- On input (x, δ) and promise parameter k, A outputs p,
- $|p| = k + \log^2(|x|/\delta)$,
- If the promise condition k = C(x) holds, then,

with probability $(1 - \delta)$, p is a program for x.

< = > < = > < = > < = >

Lemma

There exists a **poly-time** algorithm A that Input: $x \in \{0,1\}^n$, $k \in \mathbb{N}$, $\delta > 0$ Output: list of size $2^{\log^2(n/\delta)}$, each element of length $k + O(\log^2(n/\delta))$ If k = C(x) then $(1 - \delta)$ of the elements are programs for x. (each element of the list printed in poly time).

200

Lemma

There exists a **poly-time** algorithm A that Input: $x \in \{0,1\}^n$, $k \in \mathbb{N}$, $\delta > 0$ Output: list of size $2^{\log^2(n/\delta)}$, each element of length $k + O(\log^2(n/\delta))$ If k = C(x) then $(1 - \delta)$ of the elements are programs for x. (each element of the list printed in poly time).

The theorem follows immediately by taking p to be a random element from the list $A(x, k, \delta)$.

Theorem [Bauwens, Z'14] There exists a poly.time computable (uniformly in *n*, *k* and $1/\delta$) graph with the rich owner property for parameters $(2^k, \delta)$ with: • $L = \{0, 1\}^n$ • $R = \{0, 1\}^{k+O(\log^2(n/\delta))}$ • $D(\text{left degree}) = 2^{O(\log^2(n/\delta))}$.

< = > < = > < = > < = >

We obtain our lists:

- List for x: N(x)
- Any $p \in N(x)$ owned by x w.r.t. $B = \{x' \mid C(x') \le k\}$ is a program for x.

How to construct x from p: Enumerate B till we find an element that owns p. This is x.

Theorem [Bauwens, Z'14] There exists a poly.time computable (uniformly in *n*, *k* and $1/\delta$) graph with the rich owner property for parameters $(2^k, \delta)$ with: • $L = \{0, 1\}^n$ • $R = \{0, 1\}^{k+O(\log^2(n/\delta))}$ • $D(\text{left degree}) = 2^{O(\log^2(n/\delta))}$.

< = > < = > < = > < = >

We obtain our lists:

- List for x: N(x)
- Any $p \in N(x)$ owned by x w.r.t. $B = \{x' \mid C(x') \le k\}$ is a program for x.

How to construct x from p: Enumerate B till we find an element that owns p. This is x.

• So if x is a rich owner, $(1 - \delta)$ of his neighbors are programs for it.

Theorem [Bauwens, Z'14] There exists a poly.time computable (uniformly in *n*, *k* and $1/\delta$) graph with the rich owner property for parameters $(2^k, \delta)$ with: • $L = \{0, 1\}^n$ • $R = \{0, 1\}^{k+O(\log^2(n/\delta))}$ • $D(\text{left degree}) = 2^{O(\log^2(n/\delta))}$.

We obtain our lists:

• List for x: N(x)

• Any $p \in N(x)$ owned by x w.r.t. $B = \{x' \mid C(x') \le k\}$ is a program for x.

How to construct x from p: Enumerate B till we find an element that owns p. This is x.

- So if x is a rich owner, (1δ) of his neighbors are programs for it.
- What if x is a poor owner? There are few poor owners, so x has complexity < k.

21 / 40

• Step 1: $(1 - \delta)$ of $x \in B$ partially own $(1 - \delta)$ of its neighbors.

990

イロト イポト イモト イモト 一日

• Step 2: $(1 - \delta)$ of $x \in B$ **partially** own $(1 - \delta)$ of its neighbors.

イロト イポト イヨト イヨト

• Step 2: $(1 - \delta)$ of $x \in B$ partially own $(1 - \delta)$ of its neighbors.

Step 1 is done with extractors that have small entropy loss. Step 2 is done by hashing.

イロト イポト イヨト イヨト

Extractors

 $\begin{array}{l} E: \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m \text{ is a } (k,\epsilon) \text{-extractor if for any } B \subseteq \{0,1\}^n \text{ of size } \\ |B| \geq 2^k \text{ and for any } A \subseteq \{0,1\}^m, \end{array}$

 $|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(U_m \in A)| \leq \epsilon,$

SAC

イロト イポト イヨト イヨト

Extractors

$$\begin{split} E: \{0,1\}^n\times\{0,1\}^d \to \{0,1\}^m \text{ is a } (k,\epsilon)\text{-extractor if for any } B\subseteq \{0,1\}^n \text{ of size } \\ |B| \geq 2^k \text{ and for any } A\subseteq \{0,1\}^m, \end{split}$$

$$|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(U_m \in A)| \leq \epsilon,$$

or, in other words,

$$\frac{|E(B,A)|}{|B|\cdot 2^d} - \frac{|A|}{2^m} \le \epsilon.$$

The entropy loss is s = k + d - m.

< 由 > < 回 > < 回 > < 回 > < 回 > <

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in *B* share most of their neighbors with only poly(n) other nodes from *B*.

We can view an extractor E as a bipartite graph G_E with $L = \{0, 1\}^n, R = \{0, 1\}^m$ and left-degree $D = 2^d$.

If *E* is a (k, ϵ) -extractor, then it has low congestion: for any $B \subseteq L$ of size $|B| \approx 2^k$, most $x \in B$ share most of their neighbors with only $O(1/\epsilon \cdot 2^s)$ other nodes in *B*.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in *B* share most of their neighbors with only poly(n) other nodes from *B*.

We can view an extractor E as a bipartite graph G_E with $L = \{0, 1\}^n, R = \{0, 1\}^m$ and left-degree $D = 2^d$.

If *E* is a (k, ϵ) -extractor, then it has low congestion: proof on next slide for any $B \subseteq L$ of size $|B| \approx 2^k$, most $x \in B$ share most of their neighbors with only $O(1/\epsilon \cdot 2^s)$ other nodes in *B*.

《口》 《圖》 《臣》 《臣》

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in *B* share most of their neighbors with only poly(n) other nodes from *B*.

We can view an extractor E as a bipartite graph G_E with $L = \{0, 1\}^n, R = \{0, 1\}^m$ and left-degree $D = 2^d$.

If *E* is a (k, ϵ) -extractor, then it has low congestion: for any $B \subseteq L$ of size $|B| \approx 2^k$, most $x \in B$ share most of their neighbors with only $O(1/\epsilon \cdot 2^s)$ other nodes in *B*.

By the probabilistic method: There are extractors whith entropy loss $s = O(\log(1/\epsilon))$ and log-left degree $d = O(\log n/\epsilon)$.

[Guruswami, Umans, Vadhan, 2009] Poly-time extractors with entropy loss $s = O(\log(1/\epsilon))$ and log-left degree $d = O(\log^2 n/\epsilon)$.

So for $1/\epsilon = poly(n)$, we get our GOAL.

Extractors have low congestion

DEF: $E: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -extractor if for any $B \subseteq \{0,1\}^n$ of size $|B| \ge 2^k$ and for any $A \subseteq \{0,1\}^m$, $|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(A)| \le \epsilon$. The entropy loss is s = k + d - m.
Extractors have low congestion

DEF: $E : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -extractor if for any $B \subseteq \{0,1\}^n$ of size $|B| \ge 2^k$ and for any $A \subseteq \{0,1\}^m$, $|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(A)| \le \epsilon$. The entropy loss is s = k + d - m.

Lemma

Let E be a (k, ϵ) -extractor, $B \subseteq L$, $|B| = \frac{1}{\epsilon}2^k$. Then all $x \in B$, except at most 2^k , share $(1 - 2\epsilon)$ of N(x) with at most $2^s(\frac{1}{\epsilon})^2$ other nodes in B.

Extractors have low congestion

DEF: $E: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -extractor if for any $B \subseteq \{0,1\}^n$ of size $|B| \ge 2^k$ and for any $A \subseteq \{0,1\}^m$, $|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(A)| \le \epsilon$. The entropy loss is s = k + d - m.

Lemma

Let E be a (k, ϵ) -extractor, $B \subseteq L$, $|B| = \frac{1}{\epsilon}2^k$. Then all $x \in B$, except at most 2^k , share $(1 - 2\epsilon)$ of N(x) with at most $2^s(\frac{1}{\epsilon})^2$ other nodes in B.

PROOF. Restrict left side to *B*. Avg-right-degree $=\frac{|B|2^d}{2^m} = \frac{1}{\epsilon} \cdot 2^s$. Take *A* - the set of right nodes with $\deg_B \ge (2^s(1/\epsilon)) \cdot (1/\epsilon)$. Then $|A|/|R| \le \epsilon$. Take *B'* the nodes in *B* that do not have the property, i.e., they have $> 2\epsilon$ fraction of neighbors in *A*.

$$|\operatorname{Prob}(\mathcal{E}(\mathcal{U}_{B'},\mathcal{U}_d)\in\mathcal{A})-|\mathcal{A}|/|\mathcal{R}||>|2\epsilon-\epsilon|=\epsilon.$$

So $|\mathcal{B}'|\leq 2^k.$

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing them with no other nodes.

y is shared by x with $x_2, \ldots, x_{poly(n)}$

x_____y

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing them with no other nodes.

Let $x_1, x_2, \ldots, x_{poly(n)}$ be *n*-bit strings. Consider p_1, \ldots, p_T the first *T* prime numbers, where $T = (1/\delta) \cdot n \cdot poly(n)$. For every x_i , for $(1 - \delta)$ of the *T* prime numbers, $(x_i \mod p)$ is unique in $(x_1 \mod p, \ldots, x_T \mod p)$.

y is shared by x with $x_2, \ldots, x_{poly(n)}$

< = > < @ > < E > < E > < E</p>

<u>х у</u>

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing them with no other nodes.

Let $x_1, x_2, \ldots, x_{poly(n)}$ be *n*-bit strings.

Consider p_1, \ldots, p_T the first T prime numbers, where $T = (1/\delta) \cdot n \cdot \text{poly}(n)$.

For every x_i , for $(1 - \delta)$ of the *T* prime numbers, $(x_i \mod p)$ is unique in $(x_1 \mod p, \dots, x_T \mod p)$.

In this way, by "splitting" each edge into T new edges we reach our GOAL.

y is shared by x with $x_2, \ldots, x_{poly(n)}$

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing them with no other nodes.

Let $x_1, x_2, \ldots, x_{poly(n)}$ be *n*-bit strings.

Consider p_1, \ldots, p_T the first T prime numbers, where $T = (1/\delta) \cdot n \cdot poly(n)$.

For every x_i , for $(1 - \delta)$ of the *T* prime numbers, $(x_i \mod p)$ is unique in $(x_1 \mod p, \dots, x_T \mod p)$.

In this way, by "splitting" each edge into T new edges we reach our GOAL.

Cost: overhead of $O(\log n)$ to the right nodes and the left degree increases by a factor of T = poly(n).

・ロト ・四ト ・ヨト ・ヨト

Polynomial time Coding Theorem

Theorem (Antunes, Fortnow)

Let us assume complexity assumption H holds.

Let μ be a P-samplable distribution.

There exists a polynomial p such that for every x, $C^{p}(x) \leq -\log \mu(x) + O(\log n)$.

< = > < = > < = > < = >

Polynomial time Coding Theorem

Theorem (Antunes, Fortnow)

Let us assume complexity assumption H holds. Let μ be a P-samplable distribution. There exists a polynomial p such that for every x, $C^{p}(x) \leq -\log \mu(x) + O(\log n)$.

Assumption H

 $\exists f \in E$ which cannot be computed in space $2^{o(n)}$.

Polynomial time Coding Theorem

Theorem (Antunes, Fortnow)

Let us assume complexity assumption H holds. Let μ be a P-samplable distribution. There exists a polynomial p such that for every x, $C^{p}(x) \leq -\log \mu(x) + O(\log n)$.

Assumption H implies pseudo-random generators that fool PSPACE predicates

[Nisan-Wigderson'94, Klivans - van Melkebeek'02, Miltersen'01]

If H is true, then there exists a pseudo-random generator g that fools any predicate computable in PSPACE.

There exists $g: \{0,1\}^{c \log n} \to \{0,1\}^n$ such that for any T computable in PSPACE

 $\left|\operatorname{Prob}[T(g(U_s))] - \operatorname{Prob}_R[T(U_n)]\right| < \epsilon.$

Theorem [Antunes, Fortnow] Assume H holds. Let μ be a P-samplable distribution. There exists a polynomial p such that for every x, $C^{p}(x) \leq -\log \mu(x) + O(\log n)$.

Proof (sketch):

• There is poly time $F: \{0,1\}^m \to \{0,1\}^n$, $n \geq m^{\Omega(1)}$, s.t.

$$\mu(x) = |\{w \in \{0,1\}^m \mid F(w) = x\}|/2^m.$$

• Pick maximal k such that $\mu(x) \ge 2^{k-m}$.

• Let
$$T_x = \{w \in \{0,1\}^m \mid F(w) = x\}.$$

- We need that some $w \in T_x$ has $C^p(w) \le m k + O(\log n)$.
- Let $\text{HEAVY}_k = \{x' \mid |x'| = n, |T_{x'}| \ge 2^k\}$. $|\text{HEAVY}_k| \le 2^m/2^k$ (because the $T_{x'}$ are disjoint).
- Take $\ell = m k + c \log n$, consider random $H : \{0, 1\}^{\ell} \rightarrow \{0, 1\}^{m}$.
- *H* is good if range(*H*) intersects every $T_{x'}$ with x' in HEAVY_k.
- By coupon collecting, most *H* are good (if *c* is large enough).

2015

29 / 40

• Checking "*H* is good" is in PSPACE. So there is poly time G_1

 $G_1: \{0,1\}^{poly(n)} \to \{0,1\}^{|H|}$

so that for most v, $G_1(v)$ is a good H.

• Checking " $G_1(v)$ is good" is in PSPACE. So there is poly time G_2

$$G_2: \{0,1\}^{O(\log(n))} \to \{0,1\}^{|v|}$$

so that for most v', $G_2(v')$ is a good v, $G_1(G_2(v'))$ is a good H.

- For some v', range $(G_1(G_2(v')))$ intersects T_x .
- So there is z such that $G_1(G_2(v'))(z) = w$ and F(w) = x.
- So $C^{p}(x) \leq |z| + |v'| = m k + c \log n + O(\log n) \leq -\log(\mu(x)) + O(\log n)$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○へ⊙

Kolmogorov complexity version of the Slepian-Wolf Th.

Theorem (Z) Let x, y be binary strings and s, t numbers such that • $s + t \ge C(x, y)$ • $s \ge C(x \mid y)$ • $t \ge C(y \mid x)$. There exists strings p, q such that (1) $|p| = s + O(\log^3 |x|)$, $|q| = t + O(\log(|x| + |y|))$. (2) $C^{\text{poly}}(p \mid x) = O(\log^3 |x|)$, $C^{\text{poly}}(q \mid y) = O(\log |y|)$ (3) (p, q) is a program for (x, y).

Bipartite graphs satisfying 2^k -online matching.

990

Bipartite graphs satisfying 2^k -online matching.

Bipartite graphs satisfying 2^k -online matching.

- matching requests arrive one by one
- request x: match $x \in LEFT$ with a free node $y \in N(x)$,
- Promise: there are $\leq 2^k$ requests.
- Requirement: all requests should be satisfied online (before seeing the next request).

- 4 回 ト - 4 三 ト - 4 三 ト

Bipartite graphs satisfying 2^k -online matching.

- matching requests arrive one by one
- request x: match $x \in LEFT$ with a free node $y \in N(x)$,
- Promise: there are $\leq 2^k$ requests.
- Requirement: all requests should be satisfied online (before seeing the next request).

- 4 回 ト - 4 三 ト - 4 三 ト

Bipartite graphs satisfying 2^k -online matching.

- matching requests arrive one by one
- request x: match $x \in LEFT$ with a free node $y \in N(x)$,
- Promise: there are $\leq 2^k$ requests.
- Requirement: all requests should be satisfied online (before seeing the next request).

Proof overview

- Let n = C(x). We can assume that |x| = n.
- Let $n_1 = C(x \mid y), n_2 = C(y \mid x).$
- Let $A = \{(x', y') \in \{0, 1\}^{|x|} \times \{0, 1\}^{|y|} \mid C(x' \mid y') \le n_1, C(y' \mid x') \le n_2\}.$
- We show that there exist explicit bipartite graphs G_1, G_2 with the following property:
 - (1) We enumerate A
 - 2 Each enumerated (x', y') is matched on-line with some (p', q') such that (x', p') edge in G₁ and (y', q') edge in G₂.
 - 3 In particular (x, y) is matched to (p, q), so (p, q) is a description of (x, y).
 - \bigcirc p and q have the desired lengths.
 - **5** G_1 has left degree $D_1 = 2^{O(\log^3 |x|)}$, so $C^{\text{poly}}(p \mid x) = O(\log^3 |x|)$.
 - 6 G_2 has left degree $D_2 = 2^{O(\log |y|)}$, so $C^{\operatorname{poly}}(q \mid y) = O(\log |y|)$.

right neighbor is computed in poly time

- Let n = C(x). We can assume |x| = n. Let $n_1 = C(x \mid y), n_2 = C(y \mid x)$ Let $A = \{(x', y') \in \{0, 1\}^{|x|} \times \{0, 1\}^{|y|} \mid C(x' \mid y') \le n_1, C(y' \mid x') \le n_2\}.$
- We show that there exist explicit \forall bipartite graphs G_1, G_2 with the following property:
 - We enumerate A

Proof overvie

- 2 Each enumerated (x', y') is matched on-line with some (p', q') such that (x', p') edge in G_1 and (y', q') edge in G_2 .
- 3 In particular (x, y) is matched to (p, q), so (p, q) is a description of (x, y).
- ④ p and q have the desired lengths.
- So G_1 has left degree $D_1 = 2^{O(\log^3 |x|)}$, so $C^{\text{poly}}(p \mid x) = O(\log^3 |x|)$.
 G G_2 has left degree $D_2 = 2^{O(\log |y|)}$, so $C^{\text{poly}}(q \mid y) = O(\log |y|)$.

200

Refined "rich owner" property

- We use bipartite graphs $G = (L, R, E \subseteq L \times R)$, where $R = \{0, 1\}^{\ell} \times \{0, 1\}^{m}$.
- For m' < m, the m'-prefix of $(y_1, y_2) \in R$ is (y_1, y_2') , where y_2' is the m'-prefix of y_2 .
- The m'-level of G, is G' obtained from G by collapsing the right nodes that have the same m'-prefix.
- G has the incremental $(2^k, \delta)$ -rich owner property if for any m' < m, the m'-level of G has the $(2^{k-(m-m')}, \delta)$ -rich owner property.

Combining [Raz, Reingold, Vadhan'99] and [Bauwens,Z'14], there exists $G_1 = (L_1, R_1, E_1 \subseteq L_1 \times R_1)$ incremental $(2^s, \delta)$ rich owner property, with $L_1 = \{0, 1\}^{|x|}$,

- 2 $R_1 = \{0,1\}^{O(\log^3(|x|/\delta))} \times \{0,1\}^s$,
- 3 left degree $=2^{d_1}, d_1 = O(\log^3 |x|/\delta),$
- ④ G_1 is explicit: given left node x and i, we can produce the *i*-th neighbor of x in poly time.

Combining [Raz, Reingold, Vadhan'99] and [Bauwens,Z'14], there exists $G_1 = (L_1, R_1, E_1 \subseteq L_1 \times R_1)$ incremental $(2^s, \delta)$ rich owner property, with

- 1) $L_1 = \{0, 1\}^{|x|}$,
- $@ R_1 = \{0,1\}^{O(\log^3(|x|/\delta))} \times \{0,1\}^s,$
- 3 left degree $= 2^{d_1}, d_1 = O(\log^3 |x|/\delta),$
- G₁ is explicit: given left node x and i, we can produce the i-th neighbor of x in poly time.

Using [Teutsch'14], there exists

 $G_2=(L_2,R_2,E_2\subseteq L_2\times R_2)$ that satisfies $2^{t+c\log(|x|+|y|)}$ on-line matching requests, with

- **1** $L_2 = \{0, 1\}^{|y|},$
- 2 $R_2 = \{0, 1\}^{t+O(\log(|x|+|y|))+1}$,
- 3 left degree $= 2^{d_2}, d_2 = O(\log |y|),$
- ④ G_2 is explicit.

< □ > < □ > < 豆 > < 豆 > < 豆 > . 豆 . のへ()

We build $G = (L, R, E \subseteq L \times R) = G_1 \times G_2$ in the obvious way:

- $L = L_1 \times L_2$,
- $R = R_1 \times R_2$,

 $(x,y),(p,q)\in E$ iff $[(x,p)\in E_1$ and $(y,q)\in E_2$

We view R organized into clusters:

- one cluster for each $p \in R_1$
- each cluster is a copy of R_2 .

 x_{reduced} = keep the first *s* bits of *x*, and fill with (|x| - s) zeroes.

Matching process

Enumerate

 $A = \{(x', y') \in \{0, 1\}^{|x|} \times \{0, 1\}^{|y|} \mid C(x' \mid y') \le n_1, C(y' \mid x') \le n_2.$

- When (x', y') is enumerated ...
- Step 1. Select at random the *r*-th neighbor of $x'_{reduced}$ in G_1 ; this is $p_{x',r}$.
- Step 2. We say that y' makes a request to cluster $p_{x',r}$. If y' has not made a request before to cluster $p_{x',r}$, take $q_{y'}$ to be first unused node in the cluster (if there is one).

(x', y') is matched to $(p_{x',r}, q_{y'})$.

Claim

With probability $1 - 2\delta$, (x, y) finds a match.

Ignoring some minor technical details, this ends the proof (as in the overview).

イロト イヨト イモト イモト 三日

Proof of Claim (sketch)

- x_{reduced} is a rich owner in G_1 with respect to $\{x'_{\text{reduced}} \mid x' \in \{0,1\}^{|x|}\}$ (otherwise $C(x_{\text{reduced}})$ small, so C(x) small, contradiction).
- So at most 2^{n-s} strings x' can be matched to $p_{x,r}$ (namely, those x' that have the same reduced form as $x_{reduced}$).
- At most $2^{n-s} \cdot 2^{n_2}$ strings y' make a request to cluster $p_{x,r}$ (because if (x', y') makes a request then $C(y' \mid x') \leq n_2$).
- $s + t \ge C(x, y) \ge C(x) + C(y | x) O(\log(|x| + |y|)) =$ $n + n_2 - O(\log(|x| + |y|)).$
- So the number of requests is at most $2^{n-s} \cdot 2^{n_2} \leq 2^{t+O(\log(|x|+|y|))}$.
- Since G_2 satisfies these many requests, the first request made by any y' is satisfied.

Proof of Claim (sketch)-cont.

- So the first request (x', y) is satisfied.
- We show that with probability 1δ , x' = x. This implies that (x, y) finds a match, and we're done.
- Suppose $x' \neq x$.
- $C(x \mid y) \leq n_1$ (hypothesis) and $C(x' \mid y) \leq n_1$ (because $(x', y) \in A$).
- x, x' share $p_{x,r}$; so they also share the n_1 -prefix of $p_{x',r}$ in the n_1 -level of G_1 .
- So, either x is a poor owner w.r.t. $B = \{u \mid C(u \mid y) \le n_1\}$, but then $C(x \mid y) \le n_1$, FALSE,
- or x is a rich owner, and the node was chosen among those few neighbors that are shared- this happens with probability at most δ .

Thank you.