Polynomial time algorithms in Kolmogorov complexity
theory

Marius Zimand

Towson University

CCR 2015

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 1/ 40

What is this talk about

o It will challenge the common perception that most objects in Kolmogorov
complexity are uncomputable.

o In fact, not only are many important objects computable, they are efficiently

computable (i.e., computable in polynomial time, ﬁ)

provided a few help bits are available, or a small error probability is allowed, or some reasonable complexity assumptions hold.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 2/40

What is this talk about

o It will challenge the common perception that most objects in Kolmogorov
complexity are uncomputable.
o In fact, not only are many important objects computable, they are efficiently

computable (i.e., computable in polynomial time, ﬁ)
provided a few help bits are available, or a small error probability is allowed,
or some reasonable complexity assumptions hold.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 2 /40

What is this talk about

o It will challenge the common perception that most objects in Kolmogorov
complexity are uncomputable.

o In fact, not only are many important objects computable, they are efficiently

computable (i.e., computable in polynomial time, ﬁ)
provided a few help bits are available, or a small error probability is allowed,
or some reasonable complexity assumptions hold.

o It is a survey talk.

o Most results are not new; a few are new.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 2 /40

Kolmogorov complexity: notation

(+]

U - optimal universal TM.

©

If U(p) = x, we say p is a program for x.

©

If U(p,y) = x, we say p is a program for x conditioned by y.

©

C(x) = min{|p| | p program for x}.

©

C(x | y) = min{|p| | p program for x conditioned by y}.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 3 /40

Kolmogorov complexity: notation

o U - optimal universal TM.

o If U(p) = x, we say p is a program for x.

o If U(p,y) = x, we say p is a program for x conditioned by y.
o C(x) = min{|p| | p program for x}.

o C(x|y)=min{|p| | p program for x conditioned by y}.

o |x| = length of x; in general we denote |x| by n.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 3 /40

Kolmogorov complexity: uncomputability results

@ C(x) - canonical example of an uncomputable function.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 4 /40

Kolmogorov complexity: uncomputability results

@ C(x) - canonical example of an uncomputable function.

@ Finding a shortest program for x: also uncomputable.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 4 /40

Kolmogorov complexity: uncomputability results

@ C(x) - canonical example of an uncomputable function.

@ Finding a shortest program for x: also uncomputable.

@ No algorithm enumerates more than finitely many strings with high
complexity.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

4 /40

Kolmogorov complexity: uncomputability results

@ C(x) - canonical example of an uncomputable function.

@ Finding a shortest program for x: also uncomputable.

@ No algorithm enumerates more than finitely many strings with high
complexity.

@ Can we prove all statements “C(x) > k?" NO.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 4 /40

Kolmogorov complexity: uncomputability results

@ C(x) - canonical example of an uncomputable function.
Finding a shortest program for x: also uncomputable.

© @

No algorithm enumerates more than finitely many strings with high
complexity.
@ Can we prove all statements “C(x) > k?" NO.

® Can we effectively label k-tuples of strings (x1,. .., xx) with
{Random, Non — Random}¥, so that at least one label is correct for each
k-tuplet? NO, for every k (Teutsch, Z., 2014).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 4 /40

Kolmogorov complexity: uncomputability results

@ C(x) - canonical example of an uncomputable function.

Finding a shortest program for x: also uncomputable.

© @

No algorithm enumerates more than finitely many strings with high
complexity.
@ Can we prove all statements “C(x) > k?" NO.

® Can we effectively label k-tuples of strings (x1,. .., xx) with
{Random, Non — Random}¥, so that at least one label is correct for each
k-tuplet? NO, for every k (Teutsch, Z., 2014).

® No unbounded, computable function is a lower bound for Kolmogorov
complexity (Zvonkin, Levin).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 4 /40

Kolmogorov complexity: uncomputability results

© @

C(x) - canonical example of an uncomputable function.

Finding a shortest program for x: also uncomputable.

No algorithm enumerates more than finitely many strings with high
complexity.

Can we prove all statements “C(x) > k?" NO.

Can we effectively label k-tuples of strings (xi, ..., xx) with
{Random, Non — Random}¥, so that at least one label is correct for each
k-tuplet? NO, for every k (Teutsch, Z., 2014).

No unbounded, computable function is a lower bound for Kolmogorov
complexity (Zvonkin, Levin).

We want to compute a list of integers containing C(x). Any such computable
list must have size Q(|x|) for infinitely many x. (Beigel, Buhrman, Fejer,
Fortnow, Grabowski, Longpré, Muchnik, Stephan, Torenvliet, 2006).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 4 /40

Computing short programs

o Given x and C(x), it is possible to compute a shortest program for x.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 5/ 40

Computing short programs

o Given x and C(x), it is possible to compute a shortest program for x.

o But the computation time is larger than any computable function.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 5/ 40

Computing short programs

o Given x and C(x), it is possible to compute a shortest program for x.
o But the computation time is larger than any computable function.

o In fact, for any computable function t(n) if an algorithm on input (x, C(x))
computes in time t(n) a program p for x, then |p| > C(x) + Q(n) for
infinitely many n. (Bauwens, Z. , 2014).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 5/ 40

Computing short programs

o Given x and C(x), it is possible to compute a shortest program for x.
o But the computation time is larger than any computable function.

o In fact, for any computable function t(n) if an algorithm on input (x, C(x))
computes in time t(n) a program p for x, then |p| > C(x) + Q(n) for
infinitely many n. (Bauwens, Z. , 2014).

o 'ﬂ: There is a probabilistic polynomial time algorithm that on input (x, ¢)
returns a string p of length < £+ O(log®(n)), and if £ = C(x) then, with
probability 0.99, p is a program for x (Bauwens, Z. , 2014).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 5/ 40

Computing short programs

o Given x and C(x), it is possible to compute a shortest program for x.
o But the computation time is larger than any computable function.

o In fact, for any computable function t(n) if an algorithm on input (x, C(x))
computes in time t(n) a program p for x, then |p| > C(x) + Q(n) for
infinitely many n. (Bauwens, Z. , 2014).

o 'ﬂ: There is a probabilistic polynomial time algorithm that on input (x, ¢)
returns a string p of length < £+ O(log®(n)), and if £ = C(x) then, with
probability 0.99, p is a program for x (Bauwens, Z. , 2014).

o The above is a promise algorithm. If the promise £ = C(x) holds, then the
output has the coveted property (with high probability), if it does not hold,
then no guarantee.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 5/ 40

Computing short conditional programs

o On input (x,y, C(x | y)) it is possible to compute a program p of x
conditioned by y of length |p| = C(x | y).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 6 /40

Computing short conditional programs

o On input (x,y, C(x | y)) it is possible to compute a program p of x
conditioned by y of length |p| = C(x | y).

o (Muchnik's Theorem, 2002): On input (x35-E{xt3}) and O(log n) help bits,
one can compute a string p of length C(x | y) + O(log n) such that (p,y) is
a program for x.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 6 /40

Computing short conditional programs

o On input (x,y, C(x | y)) it is possible to compute a program p of x
conditioned by y of length |p| = C(x | y).

o (Muchnik's Theorem, 2002): On input (x35-E{xt3}) and O(log n) help bits,
one can compute a string p of length C(x | y) + O(log n) such that (p,y) is
a program for x.

o (Musatov, Romashchenko, Shen, 2011): Different proof for Muchnik's Th.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 6 /40

Muchnik’s Theorem

Theorem (Muchnik's Theorem)

For every x, y of complexity at most n, there exists p such that
e (p,y) is a program for x.

e C(p| x) = O(logn),

* |p| = C(x | y) + O(log n),

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 7/ 40

Muchnik’s Theorem

Theorem (Muchnik'’

overhead
Dre

For every x, y of co
e (p,y) is a program for x
e C(p| x) = O(logn),
® |p| = C(x | y) + O(log n),

Jst n, there exists p such that

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 7/ 40

Muchnik’s Theorem

. C(pIX)
e |p|= C(X\y)+0(|0gn)

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 7/ 40

Muchnik’'s Theorem in polynomial time

o ﬁ (Bauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can
compute in polynomial time a list containing a string p of length
C(x | y) + O(log n) such that (p, y) is a program for x.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 8 /40

Muchnik’'s Theorem in polynomial time

o ﬁ (Bauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can
compute in polynomial time a list containing a string p of length
C(x | y) + O(log n) such that (p, y) is a program for x.

° 'ﬂ: (Teutsch, 2014) C(x | y)+ OfegnyO(1).... list size = n’*e.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

8/ 40

Muchnik’'s Theorem in polynomial time

o ﬁ (Bauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can
compute in polynomial time a list containing a string p of length
C(x | y) + O(log n) such that (p, y) is a program for x.

° 'ﬂ: (Teutsch, 2014) C(x | y)+ OfegnyO(1).... list size = n’*e.

° 'ﬂ: (Z.,2014) C(x|y)+ O(1).... list size = nb%<.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

8/ 40

Muchnik’'s Theorem in polynomial time

'ﬂ: (Bauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can
compute in polynomial time a list containing a string p of length
C(x | y) + O(log n) such that (p, y) is a program for x.

©

° 'ﬂ: (Teutsch, 2014) C(x | y)+ OfegnyO(1).... list size = n’*e.

'ﬂ: (Z.,2014) ... C(x|y)+ O(1).... list size = n°*<.

Is it possible that list size = 17 Yes, if a promise condition holds and if we
allow some small error probability.

©

©

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 8 /40

Muchnik’'s Theorem in polynomial time

'ﬂ: (Bauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can
compute in polynomial time a list containing a string p of length
C(x | y) + O(log n) such that (p, y) is a program for x.

©

° 'ﬂ: (Teutsch, 2014) C(x | y)+ OfegnyO(1).... list size = n’*e.

'ﬂ: (Z.,2014) ... C(x|y)+ O(1).... list size = n°*<.

Is it possible that list size = 17 Yes, if a promise condition holds and if we
allow some small error probability.

©

©

©

Promise algorithms: The input must satisfy some promise. If it doesn’t, then
the algorithm does not guarantee anything (but still halts).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 8 /40

Muchnik’'s Theorem in polynomial time

'ﬂ: (Bauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can
compute in polynomial time a list containing a string p of length
C(x | y) + O(log n) such that (p, y) is a program for x.

©

° 'ﬂ: (Teutsch, 2014) C(x | y)+ OfegnyO(1).... list size = n’*e.

'ﬂ: (Z.,2014) ... C(x|y)+ O(1).... list size = n°*<.

Is it possible that list size = 17 Yes, if a promise condition holds and if we
allow some small error probability.

©

©

©

Promise algorithms: The input must satisfy some promise. If it doesn’t, then
the algorithm does not guarantee anything (but still halts).

©

ﬂ: (Bauwens, Z., 2014) On input x, £ one can compute in probabilistic
polynomial time a string p of length ¢ 4 (Iog2 n) and if the promise
¢ = C(x | y) holds, then, with probability 0.99, (p,y) is a program for x.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 8 /40

Slepian-Wolf Theorem

! ! (X1, Y1),...,(Xa, Ys), niid. random

variables, {0, 1}-valued, with joint

distribution p(x,y).

{ ’ X=(Xt,..., %), Y=(Y1,...,Yn).
E; :{0,1}" — {0,1}"",

’ E: {0,1}" — {0,1}"",

- Rates r1, r; are achievable if with high
probability D(Ey(X), E2(Y)) = (X, Y).

DN
Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 9 /40

Slepian-Wolf Theorem

! ! (X1, Y1),...,(Xa, Ys), niid. random

variables, {0, 1}-valued, with joint

distribution p(x,y).
{ ’ X=(X,..., %), Y=(Y1,...,Yn).
E; :{0,1}" — {0,1}"",
’ E;:{0,1}" — {0,1}"".
- Rates r1, r; are achievable if with high
probability D(Ey(X), E2(Y)) = (X, Y).
Question: What rates are achievable?

Clearly it is necessary that ri + rn > H(X;, Yi), n > H(X; | Yi), rn > H(Y: | X).

DQAC
Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 9 /40

Slepian-Wolf Theorem

(X1, Y1), ..., (Xn, Yn), niid. random
! F variables, {0, 1}-valued, with joint

distribution p(x,y).
{ ’ X=(Xt,..., %), Y=(Y1,...,Yn).
E; : {0,1}" — {0,1}",
’ E»:{0,1}" — {0,1}"".
- Rates r1, r; are achievable if with high
probability D(Ey(X), E2(Y)) = (X, Y).

Question: What rates are achievable?
Clearly it is necessary that ri + rn > H(X;, Yi), n > H(X; | Yi), rn > H(Y: | X).

Any pair (r1, ry) satisfying the above inequalities is achievable.

Theorem (Slepian-Wolf) J

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 9 /40

Kolmogorov complexity versions of the Slepian-Wolf
Theorem - (1)

X, ¥ binary strings
i ; 2 o) o)

Decoding task: D(Ei(x), Ex(y)) = (x,y)
E=

Marius Zimand (Towson University)

Poly. Time Kolmogorov

2015 10 / 40

Kolmogorov complexity versions of the Slepian-Wolf
Theorem - (1)

X, ¥ binary strings
’ ! Ei - {0,1}* — {0,1}*,
Ey: {0,1}* — {0,1}*.
{ ’ Decoding task: D(E;i(x), Ex(y)) = (x, y).

Question: What rates s, t ((i.e., lengths of Ej(x), Ex(y)) are achievable?
Clearly it is necessary that s+t > C(x,y), s > C(x | y), t > C(y | x).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 10 / 40

Kolmogorov complexity versions of the Slepian-Wolf
Theorem - (1)

X, ¥ binary strings

’ ! Ei:{0,1}* — {0,1}*,

Ey: {0,1}* — {0,1}*.
{ ’ Decoding task: D(E;i(x), Ex(y)) = (x, y).

Question: What rates s, t ((i.e., lengths of Ej(x), Ex(y)) are achievable?
Clearly it is necessary that s +t > C(x,y), s > C(x | y), t > C(y | x).
Theorem (Muchnik Theorem)

s=C(x|y)+ O(logn),t = C(y) is achievable (provided E;, E; can use O(log n)
help bits).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 10 / 40

Kolmogorov complexity versions of the Slepian-Wolf
Theorem -(2)

X,y binary strings
Ey:{0,1}* — {0,1}*,

T N
Q. ’ E:{0,1}* — {0,1}*.

’ Decoding task: D(Ei(x), Ex(y)) = (x,y).
L Question: What rates s, t (i.e., lengths of
Ei(x), Ex(y)) are achievable?

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 11 / 40

Kolmogorov complexity versions of the Slepian-Wolf
Theorem -(2)

X,y binary strings
Ey:{0,1}* — {0,1}*,

" "
Q. ’ E:{0,1}* — {0,1}*.

’ Decoding task: D(Ei(x), Ex(y)) = (x,y).
¥

Question: What rates s, t (i.e., lengths of
Ei(x), Ex(y)) are achievable?

[Teutsch 2014, 'ﬂ:]
s=C(x]y)+ O(1),t = C(y) are achievable with polynomial time E; and E;
(provided Ej, E; can use O(log n) help bits).

[Bauwens, Z., 2014, ﬂ:] s = C(x|y)+ O(log® n),t = C(y) are achievable

with probabilistic polynomial time E; and E, (provided E; knows C(x | y), Ez
knows C(y)).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 11 / 40

Kolmogorov complexity versions of the Slepian-Wolf
Theorem -(3)

X, y binary strings
= ¥ y Yy g

" . £ : {0,1}* — {0,1}",

Q. ’ E»:{0,1}* — {0,1}*.
’ Decoding task: D(Ei(x), Ex(y)) = (x,y).
7]

Question: What rates s, t (i.e., lengths of
Ei(x), Ex(y)) are achievable?

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 12 / 40

Kolmogorov complexity versions of the Slepian-Wolf
Theorem -(3)

X, ¥ binary strings

" = Ei : {0,1}* — {0,1}*,

{ ’ E,: {0,1}* — {0,1}".
’ Decoding task: D(E;i(x), E2(y)) = (x,y).
37 Question: What rates s, t (i.e., lengths of

Ei(x), Ex(y)) are achievable?

[Z. 2015, 'ﬂ:] Roughly any s, t with s+t > C(x,y),s > C(x | y),t > C(y | x)
are achievable (if a few help bits are available, or some promise conditions hold).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 12 / 40

Kolmogorov complexity versions of the Slepian-Wolf
Theorem -(3)

X,y binary strings

¥y ¥ Ey:{0,1}* — {0,1}*,

Q. ’ E»:{0,1}* — {0,1}*.
’ Decoding task: D(Ei(x), Ex(y)) = (x,y).
L Question: What rates s, t (i.e., lengths of

Ei(x), Ex(y)) are achievable?

[Z. 2015, 'ﬂt]

o Let s, t be such that s > C(x | y) 4+ O(log® n),t > C(y | x) + O(log n), and
s+t>C(x,y).
|E1(x)| = s,|Ex(y)| = t is achievable with polynomial time E; and E;
(provided E; can use O(log® n) help bits, and E, can use O(log n) help bits).
o Let s, t be such that s > C(x | y) + O(log® n), t > C(y | x) + O(log> n), and
s+t>C(x,y).
|E1(x)| = s, |Ex(y)| = t is achievable with probabilistic polynomial time E;
and E, (provided that E; knows C(x), C(x | y), E2 knows C(y | x)).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 12 / 40

Coding Theorems

Theorem (Shannon Source Coding Theorem)

Let X be a random variable with finite support.
Then there is a way to code the support of X such that
E[|code(X)|] < H(X) + 1.

(H is Shannon entropy; H(X) = E[— log p(X)].
So, E|code(X)[] < E[—log p(X)] +1).

Theorem (Levin, Chaitin)

Let 1 be a left c.e. semi-measure.
Then for all x, K(x) < —log u(x) + O(1) .
(K is the prefix-free Kolmogorov complexity.)

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

13 / 40

Coding Theorems

Theorem (Shannon Source Coding Theorem)

Let X be a random variable with finite support.
Then there is a way to code the support of X such that
E[|code(X)|] < H(X) + 1.

(H is Shannon entropy; H(X) = E[— log p(X)].
So, E|code(X)[] < E[—log p(X)] +1).

Theorem (Levin, Chaitin)

Let 1 be a left c.e. semi-measure.
Then for all x, K(x) < —log u(x) + O(1) .
(K is the prefix-free Kolmogorov complexity.)

Is there a polynomial-time Coding Theorem?

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

13 / 40

Polynomial-time Coding Theorem

e A probability distribution is P-samplable if there exists a polynomial time (family
of) computable function F : {0,1}" — {0,1}", with n > m®®), such that

_ Hw e {01} | F(w) = x}|

11(x) o

Theorem (Antunes-Fortnow, 2009, 1‘-)

Assume assumption H.

If is P-samplable, there exists a polynomial p, such that for all x,
CP(x) < — log(u(x)) + O(log n).

(CP() is the Kolm. complexity with time bound p.)

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 14 / 40

Polynomial-time Coding Theorem

e A probability distribution is P-samplable if there exists a polynomial time (family
of) computable function F : {0,1}" — {0,1}", with n > m®®), such that

_ Hw e {01} | F(w) = x}|

11(x) o

Theorem (Antunes-Fortnow, 2009, 1‘-)

Assume assumption H.

If is P-samplable, there exists a polynomial p, such that for all x,
CP(x) < — log(u(x)) + O(log n).

(CP() is the Kolm. complexity with time bound p.)

Assumption H: 3f € E which cannot be computed in space 2°("),

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 14 / 40

Polynomial-time Coding Theorem

e A probability distribution is P-samplable if there exists a polynomial time (family

of) computable function F : {0,1}" — {0,1}", with n > m®®), such that

_ Hw e {01} | F(w) = x}|

11(x) o

Theorem (Antunes-Fortnow, 2009, 1‘-)

Assume assumption H.

If is P-samplable, there exists a polynomial p, such that for all x,
CP(x) < — log(u(x)) + O(log n).

(CP() is the Kolm. complexity with time bound p.)

Assumption H: 3f € E which cannot be computed in space 2°("),

o

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

14 / 40

Some proofs...

The typical route:
@ Find an appropriate combinatorial object for the job.
@ Show that it exists using the probabilistic method.
@ Construct it in polynomial time using tools from the theory of pseudo
randomness:
expanders, extractors, dispersers, pseudo-random generators.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

15 / 40

Example of a combinatorial object

Key tool: bipartite graphs G = (L, R, E C L x R) with the rich owner property:

For any B C L of size |B| ~ K, most x in B own most of their neighbors (these
neighbors are not shared with any other node from B).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 16 / 40

Example of a combinatorial object

Key tool: bipartite graphs G = (L, R, E C L x R) with the rich owner property:

For any B C L of size |B| ~ K, most x in B own most of their neighbors (these
neighbors are not shared with any other node from B).

e x € Bownsy e N(x)w.rt. Bif N(y)n B = {x}.
e x € B is a rich owner if x owns (1 — ¢) of its neighbors w.r.t. B.

e G=(L,R,ECLXR) has the (K, d)-rich owner property if
for all B with |B| < K, (1 — §)K of the elements in B are rich owners w.r.t. B.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 16 / 40

Bipartite graph G

x's neighborhood

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 17 / 40

Bipartite graph G

X is a rich owner
w.rt B

if x owns (1 — 4) of
N(x)

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 17 / 40

Bipartite graph G

X is a rich owner
w.rt B

if x owns (1 — 4) of
N(x)

G has the (K,)
rich owner property:
VB C L, of size at
most K,

all nodes in B
except at most § - K
are rich owners
w.rt. B

Marius Zimand (Towson University)

Poly. Time Kolmogorov

2015

17 / 40

X is a rich owner
w.rt B

if x owns (1 — 4) of
N(x)

G has the (K,)
rich owner property:
VB C L, of size at
most K,

all nodes in B
except at most § - K
are rich owners
w.rt. B

Marius Zimand (Towson University)

Poly. Time Kolmogorov

2015

17 / 40

X is a rich owner
w.rt B

if x owns (1 — 4) of
N(x)

G has the (K,)
rich owner property:
VB C L, of size at
most K,

all nodes in B
except at most § - K
are rich owners
w.rt. B

Marius Zimand (Towson University)

Poly. Time Kolmogorov

poor owners

2015

17 / 40

Theorem (Bauwens, Z'14)

There exists a poly time computable (uniformly in n, k and 1/6) graph with the rich
owner property for parameters (2, 8) with:

o L ={0,1}"

o R — {071}k+0(|0g2(n/5))

o D(left degree) = 20(log’(n/8))

vB,|B| <2

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

18 / 40

Short programs in probabilistic poly. time

Theorem (Bauwens, Z., 2014)

There exists a probabilistic poly. time algorithm A such that
e On input (x,) and promise parameter k, A outputs p,

o p| = K+ log?(|x|/),

e [f the promise condition k = C(x) holds, then,

with probability (1 — 0), p is a program for x.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

19 / 40

Lemma

There exists a poly-time algorithm A that

Input: x € {0,1}", ke N, § >0

Output: list of size 2°8°("/%) each element of length k + O(log?(n/9))
If k = C(x) then (1 — ¢) of the elements are programs for x.

(each element of the list printed in poly time).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 20 / 40

Lemma

There exists a poly-time algorithm A that

Input: x € {0,1}", ke N, § >0

Output: list of size 2\°5° (/9 each element of length k + O(log?(n/5))
If k = C(x) then (1 — ¢) of the elements are programs for x.

(each element of the list printed in poly time).

The theorem follows immediately by taking p to be a random element from the
list A(x, k, 9).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 20 / 40

Theorem [Bauwens, Z'14] There
exists a poly.time computable
(uniformly in n, k and 1/§) graph
with the rich owner property for
parameters (2%,) with:

o L ={0,1}"

o R = {0, 1}k+0log*(n/))

e D(left degree) = 2008’ (n/2)),

We obtain our lists:
o List for x: N(x)

e Any p € N(x) owned by x w.rt. B={x"| C(x’) < k} is a program for x.

How to construct x from p: Enumerate B till we find an element that owns p.

This is x.

Marius Zimand (Towson University)

Poly. Time Kolmogorov

2015

21/ 40

Theorem [Bauwens, Z'14] There
exists a poly.time computable
(uniformly in n, k and 1/§) graph
with the rich owner property for
parameters (2%,) with:

o L ={0,1}"

o R = {0, 1}k+0log*(n/))

o D(left degree) = 200" (n/9)),

We obtain our lists:
o List for x: N(x)
e Any p € N(x) owned by x w.rt. B={x"| C(x’) < k} is a program for x.

How to construct x from p: Enumerate B till we find an element that owns p.
This is x.

e So if x is a rich owner, (1 — §) of his neighbors are programs for it.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 21/ 40

Theorem [Bauwens, Z'14] There
exists a poly.time computable
(uniformly in n, k and 1/§) graph
with the rich owner property for
parameters (2%,) with:

o L ={0,1}"

o R = {0, 1}k+0log*(n/))

o D(left degree) = 200" (n/9)),

We obtain our lists:
o List for x: N(x)
e Any p € N(x) owned by x w.rt. B={x"| C(x’) < k} is a program for x.

How to construct x from p: Enumerate B till we find an element that owns p.
This is x.

e So if x is a rich owner, (1 — §) of his neighbors are programs for it.
e What if x is a poor owner? There are few poor owners, so x has complexity < k.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 21/ 40

Building graphs with the rich owner property

e Step 1: (1 —0) of x € B partially own (1 — §) of its neighbors.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 22 / 40

Building graphs with the rich owner property

shared with only poly(n) nodes

e Step 1: (1 —0) of x € B partially own (1 — §) of its neighbors.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 22 / 40

Building graphs with the rich owner property

shared with only poly(n) nodes

e Step 1: (1 —0) of x € B partially own (1 — §) of its neighbors.

e Step 2: (1 —0) of x € B partially own (1 — §) of its neighbors.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 22 / 40

Building graphs with the rich owner property

shared with only poly(n) nodes

e Step 1: (1 —0) of x € B partially own (1 — §) of its neighbors.

e Step 2: (1 —0) of x € B partially own (1 — §) of its neighbors.

Step 1 is done with extractors that have small entropy loss.
Step 2 is done by hashing.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 22 / 40

Extractors

E:{0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2k and for any A C {0,1}™,

|[Prob(E(Ug , Uy) € A) — Prob(U,, € A)| <,

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 23/ 40

Extractors

uniform distr. on {0,1}"

E:{0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor
|B| > 2k and for any A C {0,1}™,

for any B C {0,1}" of size

|[Prob(E(Ug , Ug) € A) — Prob(Up € A)| <,

uniform distr. on B uniform distr. on {0,1}¢

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 23/ 40

Extractors

E:{0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2k and for any A C {0,1}™,

|[Prob(E(Ug , Uy) € A) — Prob(U,, € A)| <,

or, in other words,
|E(B,A) Al
|B| - 2d 2m
The entropy lossis s =k +d — m.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 23/ 40

Step 1

GOAL : VB C L with |B| ~ K, most nodes in B share most of their
neighbors with only poly(n) other nodes from B.

We can view an extractor E as a bipartite graph Gg with L = {0,1}", R = {0,1}™
and left-degree D = 2¢.

If E is a (k, €)-extractor, then it has low congestion:
for any B C L of size |B| ~ 2%, most x € B share most of their neighbors with
only O(1/e-2°) other nodes in B.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 24 / 40

Step 1

GOAL : VB C L with |B| ~ K, most nodes in B share most of their
neighbors with only poly(n) other nodes from B.

We can view an extractor E as a bipartite graph Gg with L = {0,1}", R = {0,1}™
and left-degree D = 2¢.

If E is a (k, €)-extractor, then it has low congestion: proof on next slide
for any B C L of size |B| ~ 2%, most x € B share most of their hergnoors wi

only O(1/e-2°) other nodes in B.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 24 / 40

Step 1

GOAL : VB C L with |B| ~ K, most nodes in B share most of their
neighbors with only poly(n) other nodes from B.

We can view an extractor E as a bipartite graph Gg with L = {0,1}", R = {0,1}™
and left-degree D = 2¢.

If E is a (k, €)-extractor, then it has low congestion:
for any B C L of size |B| ~ 2%, most x € B share most of their neighbors with
only O(1/e-2°) other nodes in B.

By the probabilistic method: There are extractors whith entropy loss
s = O(log(1/¢€)) and log-left degree d = O(log n/e).

[Guruswami, Umans, Vadhan, 2009] Poly-time extractors with entropy loss
s = O(log(1/e€)) and log-left degree d = O(log? n/e).

So for 1/e = poly(n), we get our GOAL.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 24 / 40

Extractors have low congestion

DEF: E : {0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2% and for any A C {0,1}™, |Prob(E(Ug, Us) € A) — Prob(A)| < e.
The entropy loss is s = k+d — m.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 25 / 40

Extractors have low congestion

DEF: E : {0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2% and for any A C {0,1}™, |Prob(E(Ug, Us) € A) — Prob(A)| < e.
The entropy loss is s = k+d — m.

Lemma

Let E be a (k,€)-extractor, B C L, |B| = 12k

Then all x € B, except at most 2%, share (1 — 2€) of N(x) with at most 25(1)?
other nodes in B.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 25 / 40

Extractors have low congestion

DEF: E : {0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2% and for any A C {0,1}™, |Prob(E(Ug, Us) € A) — Prob(A)| < e.
The entropy loss is s = k+d — m.

Lemma

Let E be a (k,€)-extractor, B C L, |B| = 12k
Then all x € B, except at most 2%, share (1 — 2€) of N(x) with at most 25(1)?
other nodes in B.

PROOF. Restrict left side to B. Avg-right-degree = I“‘;‘,fd = % - 2%,

Take A - the set of right nodes with degg > (2°(1/€)) - (1/€). Then |A|/|R| < e.

Take B’ the nodes in B that do not have the property, i.e., they have > 2¢
fraction of neighbors in A.

IProb(E(Ugr, Uy) € A) — |Al/|R]| > |2¢ — €| = e.
So |B/| < 2K,

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 25 / 40

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing
them with no other nodes.

y is shared by x with x2, ..., Xpoly(n)

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 26 / 40

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing

them with no other nodes.

Let x1, X0, ..., Xpoly(n) D€ N-bit strings.

Consider py,..., pt the first T prime
numbers, where T = (1/§) - n - poly(n).

For every x;, for (1 — 0) of the T prime
numbers, (x; mod p) is unique in
(x1 mod p, ..., xT mod p). X

Marius Zimand (Towson University) Poly. Time Kolmogorov

y is shared by x with x, .

-+ 3y Xpoly(n)

2015

26 / 40

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing

them with no other nodes.

Let x1, X0, ..., Xpoly(n) D€ N-bit strings.

Consider py,..., pt the first T prime
numbers, where T = (1/§) - n - poly(n).

For every x;, for (1 — 0) of the T prime
numbers, (x; mod p) is unique in
(x1 mod p, ..., xT mod p). X

y is shared by x with x2, ..., Xpoly(n)

(.y7X mOd P1, pl)
y/(y,x mod ps, p2)

In this way, by "splitting” each edge into
T new edges we reach our GOAL.

Marius Zimand (Towson University) Poly. Time Kolmogorov

(}/7 x mod PT, PT

2015 26 /40

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing

them with no other nodes.
Let x1, X0, ..., Xpoly(n) D€ N-bit strings.

Consider py,..., pt the first T prime
numbers, where T = (1/§) - n - poly(n).

For every x;, for (1 — 0) of the T prime
numbers, (x; mod p) is unique in

y is shared by x with x2, ..., Xpoly(n)

(.y7X mod P1, pl)

y/(y,x mod ps, p2)

(x1 mod p, ..., xT mod p). X

In this way, by "splitting” each edge into
T new edges we reach our GOAL.

Cost: overhead of O(log n) to the right
nodes and the left degree increases by a
factor of T = poly(n) .

Marius Zimand (Towson University) Poly. Time Kolmogorov

(}/7 x mod PT, PT

2015 26 /40

Polynomial time Coding Theorem

Theorem (Antunes, Fortnow)

Let us assume complexity assumption H holds.
Let u be a P-samplable distribution.

There exists a polynomial p such that for every x, CP(x) < —log u(x) + O(log n).

Marius Zimand (Towson University) Poly. Time Kolmogorov

2015

27 / 40

Polynomial time Coding Theorem

Theorem (Antunes, Fortnow)

Let us assume complexity assumption H holds.
Let u be a P-samplable distribution.

There exists a polynomial p such that for every x, CP(x) < —log u(x) + O(log n).

Assumption H

3f € E which cannot be computed in space 2°(").

Marius Zimand (Towson University) Poly. Time Kolmogorov

2015

27 / 40

Polynomial time Coding Theorem

Theorem (Antunes, Fortnow)

Let us assume complexity assumption H holds.
Let u be a P-samplable distribution.

There exists a polynomial p such that for every x, CP(x) < —log u(x) + O(log n).

Assumption H

3f € E which cannot be computed in space 2°(").

E = UcsoDTIME[2¢"]

Marius Zimand (Towson University) Poly. Time Kolmogorov

2015

27 / 40

Assumption H implies pseudo-random generators that fool
PSPACE predicates

[Nisan-Wigderson'94, Klivans - van Melkebeek'02, Miltersen'01]

If H is true, then there exists a pseudo-random generator g that fools any
predicate computable in PSPACE.

There exists g : {0,1}'%6" — {0,1}" such that for any T computable in PSPACE

|Prob[T(g(Us))] — Prob[T(Uy)]| < e.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 28 / 40

Theorem [Antunes, Fortnow] Assume H holds. Let p be a P-samplable distribution.
There exists a polynomial p such that for every x, CP(x) < —log p(x) + O(log n).

Proof (sketch):
o There is poly time F: {0,1}™ — {0,1}", n > m®(M) st

p(x) = [{w € {0, 1} [F(w) = x}|/2™.

o Pick maximal k such that p(x) > 2k—™.

Let T, ={w € {0,1}™ | F(w) = x}.

We need that some w € T, has CP(w) < m — k + O(log n).

Let HEAVY, = {x' | |X'| = n,|Tw| > 2K}. [HEAVY| < 2™/2F (because
the T, are disjoint).

Take £ = m — k + clog n, consider random H : {0,1}* — {0,1}™.

H is good if range(H) intersects every T, with x" in HEAVY .

o By coupon collecting, most H are good (if ¢ is large enough).

©

©

(+]

(+]

©

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 29 / 40

©

Checking “H is good” is in PSPACE. So there is poly time Gy
Gy - {0,1}Po(M _ f0, 1}IH]

so that for most v, Gi(v) is a good H.
Checking “Gy(v) is good” is in PSPACE. So there is poly time G,

©

G, : {0, 1}0(|Og(n)) — {0, 1}\\/\

so that for most v/, Gy(v') is a good v, G1(Gy(v')) is a good H.
o For some v/, range(G1(Gy(v'))) intersects T.
So there is z such that Gi1(Gz(v'))(z) = w and F(w) = x.
So CP(x) < |z|+|V/| = m—k+ clogn+ O(log n) < — log(u(x)) + O(log n).

©

(+]

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 30 / 40

Kolmogorov complexity version of the Slepian-Wolf Th.

Theorem (Z)

Let x,y be binary strings and s, t numbers such that
es+t>C(x,y)

os>C(x|y)

ot>C(y|x).

There exists strings p,q such that

(1) Ipl = s+ O(log? |x]), |q| = t + O(log(|x| + |y).
(2) C*°¥(p | x) = O(log’ |x]), C**¥(q | y) = O(log |yl)
(3) (p,q) is a program for (x, y).

Marius Zimand (Towson University) Poly. Time Kolmogorov

2015

31/ 40

On-line matching

Bipartite graphs satisfying 2-online matching.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 32/ 40

On-line matching

Bipartite graphs satisfying 2-online matching.

strings short programs

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 32 /40

On-line matching

Bipartite graphs satisfying 2-online matching.

strings short programs

e matching requests arrive one by one

e request x: match x € LEFT with a free node y € N(x),

e Promise: there are < 2K requests.

e Requirement: all requests should be satisfied online (before seeing the next
request).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

32/ 40

On-line matching

Bipartite graphs satisfying 2-online matching.

strings short programs

e matching requests arrive one by one

e request x: match x € LEFT with a free node y € N(x),

e Promise: there are < 2K requests.

e Requirement: all requests should be satisfied online (before seeing the next
request).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

32/ 40

On-line matching

Bipartite graphs satisfying 2-online matching.

strings short programs

e matching requests arrive one by one

e request x: match x € LEFT with a free node y € N(x),

e Promise: there are < 2k requests.

e Requirement: all requests should be satisfied online (before seeing the next
request).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

32/ 40

Proof overview

Let n = C(x). We can assume that |x| = n.
Let ny = C(x [y),n2 = C(y | x).
Let A= {(x',y") € {0, 1} x {0, 1} | C(x' [y') < m, C(y' | X') < ma}.
We show that there exist explicit bipartite graphs G;, G, with the following
property:
@ We enumerate A
@ Each enumerated (x’, y’) is matched on-line with some (p’, ¢’) such that
(x',p') edge in Gi and (y',q’) edge in G,.
@ In particular (x,y) is matched to (p, q), so (p, q) is a description of (x,y).
@ p and g have the desired lengths.
® Gi has left degree D; = 20008’ Ix)) 5o CPY(p | x) = O(log®|x|).
® G, has left degree D, = 2°0°eI¥) 5o CP°Y(q | y) = O(log |y|).

© © ©

©

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 33/ 40

Let iy = C(x | y),nm = C(y | x
Let A= {(x',y") € {0, 1} x {4 A} | C(x' | ') < mi, C(v' | ') < ma}.
We show that there exist explicitV bipartite graphs Gi, G, with the following
property:

@ We enumerate A

@ Each enumerated (x’, y’) is matched on-line with some (p’, ¢’) such that

(x',p') edge in Gi and (y',q’) edge in G,.

@ In particular (x,y) is matched to (p, q), so (p, q) is a description of (x,y).

@ p and g have the desired lengths.

® Gi has left degree D; = 20008’ Ix)) 5o CPY(p | x) = O(log®|x|).

® G, has left degree D, = 2°0°eI¥) 5o CP°Y(q | y) = O(log |y|).

©

©

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 33/ 40

Refined "rich owner” property

o We use bipartite graphs G = (L, R, E C L x R), where R = {0,1}* x {0,1}™.

o For m" < m, the m’-prefix of (y1,y2) € R is (y1,¥3)., where yj is the m'-prefix
of y».

o The m'-level of G, is G’ obtained from G by collapsing the right nodes that
have the same m’-prefix.

o G has the incremental (2%, §)-rich owner property if for any m’ < m, the
m’-level of G has the (2K=(m=™") §)-rich owner property.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 34 / 40

Combining [Raz, Reingold, Vadhan'99] and [Bauwens,Z'14], there exists
G1 = (L1, R1, E1 C Ly X Ry) incremental (2°,6) rich owner property, with
@ L ={0,1}M,
@ Ry = {0, 1}0(|og3(\X|/5)) x {0,1}*,
@ left degree = 2%, d; = O(log® |x|/0),
@ G is explicit: given left node x and i, we can produce the i-th neighbor of x
in poly time.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 35/ 40

Combining [Raz, Reingold, Vadhan'99] and [Bauwens,Z'14], there exists
G1 = (L1, R1, E1 C Ly X Ry) incremental (2°,6) rich owner property, with
@ Ly ={0,1}M,
@ Ry = {0, 1}0(|og3(\X|/5)) x {0,1}*,
@ left degree = 2%, d; = O(log® |x|/0),
@ G is explicit: given left node x and i, we can produce the i-th neighbor of x
in poly time.
Using [Teutsch'14], there exists

Gy = (Lo, Ry, Es C Ly x Ry) that satisfies 2t+<108(IxI+1y]) on-line matching
requests, with

@ L, ={0,1}W,

@ R, = {0,1}t+00ee(lx+lyD)+1

@ left degree = 2%, dy = O(log |y|),
@ G, is explicit.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 35/ 40

We build G = (L,R,E C L x R) = Gy X G in the obvious way:
o[= L1 X L2,

e R= Rl X R2,

(va)a (p7 q) € E iff [(X7 p) € El and (}/7 q) € E2

We view R organized into clusters:

e one cluster for each p € Ry

e each cluster is a copy of Ry.

Xreduced= keep the first s bits of x, and fill with (|x| — s) zeroes.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015

36 / 40

Matching process

o Enumerate
A={(x,y) € {0, 13 > {0, 13V | C(x | y') < m, C(y' | X') < o
o When (x',y’) is enumerated ...
o Step 1. Select at random the r-th neighbor of x/_4,..q in Gi; this is pe .

o Step 2. We say that y’ makes a request to cluster pys .. If y’ has not made a
request before to cluster p ,, take g,/ to be first unused node in the cluster

(if there is one).
(x’,y") is matched to (px.r, qy).

Claim
With probability 1 — 24§, (x,y) finds a match.

Ignoring some minor technical details, this ends the proof (as in the overview).

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 37 / 40

Proof of Claim (sketch)

© Xpeduced iS @ rich owner in Gy with respect to {x/,j,ccq | X' € {0, 1}*1}
(otherwise C(Xeducea) small, so C(x) small, contradiction).

o So at most 2"~° strings x’ can be matched to py, (namely, those x’ that
have the same reduced form as Xyeduced)-

o At most 2"7° - 2™ strings y’ make a request to cluster p, , (because if (x’,y’)
makes a request then C(y’ | x') < ny).

o s+t=>Clxy) = C(x)+ Cy | x) = Olog(|x] + ly])) =
n+ nz — O(log(|x| + |y[))-

o So the number of requests is at most 27— . 2m < 2t+0(og(Ix|+ly]),

o Since G, satisfies these many requests, the first request made by any y’ is
satisfied.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 38 / 40

Proof of Claim (sketch)-cont.

o So the first request (x’, y) is satisfied.

o We show that with probability 1 — 4, x’ = x. This implies that (x, y) finds a
match, and we're done.

©

Suppose x’ # x.
C(x | y) < ny (hypothesis) and C(x’ | y) < nm; (because (x,y) € A).

x,x" share py .; so they also share the n;-prefix of py . in the ni-level of Gi.

© ©

©

So, either x is a poor owner w.r.t. B = {u| C(u|y) < m}, but then
C(x | y) < n, FALSE,

o or x is a rich owner, and the node was chosen among those few neighbors
that are shared- this happens with probability at most §.

Marius Zimand (Towson University) Poly. Time Kolmogorov 2015 39 / 40

Thank you.

«O>» «Fr «E» < . .
"~ Marius Zimand (Towson University) ~ Poly.Time Kolmogorov 2015 40/40

	Intro
	Results
	Proofs
	End

