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What is this talk about

It will challenge the common perception that most objects in Kolmogorov
complexity are uncomputable.

In fact, not only are many important objects computable, they are efficiently

computable (i.e., computable in polynomial time, )
provided a few help bits are available, or a small error probability is allowed, or some reasonable complexity assumptions hold.

It is a survey talk.

Most results are not new; a few are new.
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Kolmogorov complexity: notation

U - optimal universal TM.

If U(p) = x , we say p is a program for x .

If U(p, y) = x , we say p is a program for x conditioned by y .

C (x) = min{|p| | p program for x}.
C (x | y) = min{|p| | p program for x conditioned by y}.

|x | = length of x ; in general we denote |x | by n.
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Kolmogorov complexity: uncomputability results

1 C (x) - canonical example of an uncomputable function.

2 Finding a shortest program for x: also uncomputable.

3 No algorithm enumerates more than finitely many strings with high
complexity.

4 Can we prove all statements “C (x) ≥ k?” NO.

5 Can we effectively label k-tuples of strings (x1, . . . , xk) with
{Random,Non− Random}k , so that at least one label is correct for each
k-tuplet? NO, for every k (Teutsch, Z., 2014).

6 No unbounded, computable function is a lower bound for Kolmogorov
complexity (Zvonkin, Levin).

7 We want to compute a list of integers containing C (x). Any such computable
list must have size Ω(|x |) for infinitely many x . (Beigel, Buhrman, Fejer,
Fortnow, Grabowski, Longpré, Muchnik, Stephan, Torenvliet, 2006).
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Fortnow, Grabowski, Longpré, Muchnik, Stephan, Torenvliet, 2006).

Marius Zimand (Towson University) Poly.Time Kolmogorov 2015 4 / 40



Kolmogorov complexity: uncomputability results

1 C (x) - canonical example of an uncomputable function.

2 Finding a shortest program for x: also uncomputable.

3 No algorithm enumerates more than finitely many strings with high
complexity.

4 Can we prove all statements “C (x) ≥ k?” NO.

5 Can we effectively label k-tuples of strings (x1, . . . , xk) with
{Random,Non− Random}k , so that at least one label is correct for each
k-tuplet? NO, for every k (Teutsch, Z., 2014).

6 No unbounded, computable function is a lower bound for Kolmogorov
complexity (Zvonkin, Levin).

7 We want to compute a list of integers containing C (x). Any such computable
list must have size Ω(|x |) for infinitely many x . (Beigel, Buhrman, Fejer,
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Computing short programs

Given x and C (x), it is possible to compute a shortest program for x .

But the computation time is larger than any computable function.

In fact, for any computable function t(n) if an algorithm on input (x ,C (x))
computes in time t(n) a program p for x , then |p| ≥ C (x) + Ω(n) for
infinitely many n. (Bauwens, Z. , 2014).

There is a probabilistic polynomial time algorithm that on input (x , `)
returns a string p of length ≤ `+ O(log2(n)), and if ` = C (x) then, with
probability 0.99, p is a program for x (Bauwens, Z. , 2014).

The above is a promise algorithm. If the promise ` = C (x) holds, then the
output has the coveted property (with high probability), if it does not hold,
then no guarantee.
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Computing short conditional programs

On input (x , y ,C (x | y)) it is possible to compute a program p of x
conditioned by y of length |p| = C (x | y).

(Muchnik’s Theorem, 2002): On input (x ,y ,C (x | y)) and O(log n) help bits,
one can compute a string p of length C (x | y) + O(log n) such that (p, y) is
a program for x .

(Musatov, Romashchenko, Shen, 2011): Different proof for Muchnik’s Th.
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Muchnik’s Theorem

Theorem (Muchnik’s Theorem)

For every x , y of complexity at most n, there exists p such that
• (p, y) is a program for x .
• C (p | x) = O(log n),
• |p| = C (x | y) + O(log n),

overhead

help bits
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Muchnik’s Theorem in polynomial time

(Bauwens, Makhlin, Vereshchagin, Z., 2013) On input x one can
compute in polynomial time a list containing a string p of length
C (x | y) + O(log n) such that (p, y) is a program for x .

(Teutsch, 2014) .... C (x | y)+ O(log n)O(1).... list size = n7+ε.

(Z., 2014) .... C (x | y) + O(1).... list size = n6+ε.

Is it possible that list size = 1? Yes, if a promise condition holds and if we
allow some small error probability.

Promise algorithms: The input must satisfy some promise. If it doesn’t, then
the algorithm does not guarantee anything (but still halts).

(Bauwens, Z., 2014) On input x , ` one can compute in probabilistic
polynomial time a string p of length `+ (log2 n) and if the promise
` = C (x | y) holds, then, with probability 0.99, (p, y) is a program for x .
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Slepian-Wolf Theorem

X Y

E1 E2

D

X ,Y

(X1,Y1), . . . , (Xn,Yn), n i.i.d. random
variables, {0, 1}-valued, with joint
distribution p(x , y).
X = (X1, . . . ,Xn), Y = (Y1, . . . ,Yn).
E1 : {0, 1}n → {0, 1}r1n,
E2 : {0, 1}n → {0, 1}r2n.
Rates r1, r2 are achievable if with high
probability D(E1(X ),E2(Y )) = (X ,Y ).

Question: What rates are achievable?

Clearly it is necessary that r1 + r2 ≥ H(Xi ,Yi ), r1 ≥ H(Xi | Yi ), r2 ≥ H(Yi | Xi ).

Theorem (Slepian-Wolf)

Any pair (r1, r2) satisfying the above inequalities is achievable.
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Kolmogorov complexity versions of the Slepian-Wolf
Theorem - (1)

x y

E1 E2

D

x , y

x , y binary strings
E1 : {0, 1}∗ → {0, 1}∗,
E2 : {0, 1}∗ → {0, 1}∗.
Decoding task: D(E1(x),E2(y)) = (x , y).

Question: What rates s, t ((i.e., lengths of E1(x),E2(y)) are achievable?

Clearly it is necessary that s + t ≥ C (x , y), s ≥ C (x | y), t ≥ C (y | x).

Theorem (Muchnik Theorem)

s = C (x | y) + O(log n), t = C (y) is achievable (provided E1,E2 can use O(log n)
help bits).
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Kolmogorov complexity versions of the Slepian-Wolf
Theorem -(2)

x y

E1 E2

D

x , y

x , y binary strings
E1 : {0, 1}∗ → {0, 1}∗,
E2 : {0, 1}∗ → {0, 1}∗.
Decoding task: D(E1(x),E2(y)) = (x , y).

Question: What rates s, t (i.e., lengths of
E1(x),E2(y)) are achievable?

[Teutsch 2014, ]
s = C (x | y) + O(1), t = C (y) are achievable with polynomial time E1 and E2

(provided E1,E2 can use O(log n) help bits).

[Bauwens, Z., 2014, ] s = C (x | y) + O(log2 n), t = C (y) are achievable
with probabilistic polynomial time E1 and E2 (provided E1 knows C (x | y), E2

knows C (y)).
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Kolmogorov complexity versions of the Slepian-Wolf
Theorem -(3)

x y

E1 E2

D

x , y

x , y binary strings
E1 : {0, 1}∗ → {0, 1}∗,
E2 : {0, 1}∗ → {0, 1}∗.
Decoding task: D(E1(x),E2(y)) = (x , y).

Question: What rates s, t (i.e., lengths of
E1(x),E2(y)) are achievable?

[Z. 2015, ]

Let s, t be such that s ≥ C (x | y) + O(log3 n), t ≥ C (y | x) + O(log n), and
s + t ≥ C (x , y).
|E1(x)| = s, |E2(y)| = t is achievable with polynomial time E1 and E2

(provided E1 can use O(log3 n) help bits, and E2 can use O(log n) help bits).

Let s, t be such that s ≥ C (x | y) + O(log3 n), t ≥ C (y | x) + O(log3 n), and
s + t ≥ C (x , y).
|E1(x)| = s, |E2(y)| = t is achievable with probabilistic polynomial time E1

and E2 (provided that E1 knows C (x),C (x | y), E2 knows C (y | x)).
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x , y binary strings
E1 : {0, 1}∗ → {0, 1}∗,
E2 : {0, 1}∗ → {0, 1}∗.
Decoding task: D(E1(x),E2(y)) = (x , y).

Question: What rates s, t (i.e., lengths of
E1(x),E2(y)) are achievable?

[Z. 2015, ] Roughly any s, t with s + t ≥ C (x , y), s ≥ C (x | y), t ≥ C (y | x)
are achievable (if a few help bits are available, or some promise conditions hold).
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Kolmogorov complexity versions of the Slepian-Wolf
Theorem -(3)
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Coding Theorems

Theorem (Shannon Source Coding Theorem)

Let X be a random variable with finite support.
Then there is a way to code the support of X such that
E [|code(X )|] ≤ H(X ) + 1.

(H is Shannon entropy; H(X ) = E [− log p(X )].
So, E [|code(X )|] ≤ E [− log p(X )] + 1).

Theorem (Levin, Chaitin)

Let µ be a left c.e. semi-measure.
Then for all x , K (x) ≤ − logµ(x) + O(1) .
(K is the prefix-free Kolmogorov complexity.)

Is there a polynomial-time Coding Theorem?
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Polynomial-time Coding Theorem

• A probability distribution is P-samplable if there exists a polynomial time (family
of) computable function F : {0, 1}m → {0, 1}n, with n ≥ mΩ(1), such that

µ(x) =
|{w ∈ {0, 1}m | F (w) = x}|

2m
.

Theorem (Antunes-Fortnow, 2009, )

Assume assumption H.
If µ is P-samplable, there exists a polynomial p, such that for all x ,
C p(x) ≤ − log(µ(x)) + O(log n).
(C p(·) is the Kolm. complexity with time bound p.)

Assumption H: ∃f ∈ E which cannot be computed in space 2o(n).

E = ∪c>0DTIME[2cn]

Marius Zimand (Towson University) Poly.Time Kolmogorov 2015 14 / 40



Polynomial-time Coding Theorem

• A probability distribution is P-samplable if there exists a polynomial time (family
of) computable function F : {0, 1}m → {0, 1}n, with n ≥ mΩ(1), such that

µ(x) =
|{w ∈ {0, 1}m | F (w) = x}|

2m
.

Theorem (Antunes-Fortnow, 2009, )

Assume assumption H.
If µ is P-samplable, there exists a polynomial p, such that for all x ,
C p(x) ≤ − log(µ(x)) + O(log n).
(C p(·) is the Kolm. complexity with time bound p.)

Assumption H: ∃f ∈ E which cannot be computed in space 2o(n).

E = ∪c>0DTIME[2cn]

Marius Zimand (Towson University) Poly.Time Kolmogorov 2015 14 / 40



Polynomial-time Coding Theorem

• A probability distribution is P-samplable if there exists a polynomial time (family
of) computable function F : {0, 1}m → {0, 1}n, with n ≥ mΩ(1), such that

µ(x) =
|{w ∈ {0, 1}m | F (w) = x}|

2m
.

Theorem (Antunes-Fortnow, 2009, )

Assume assumption H.
If µ is P-samplable, there exists a polynomial p, such that for all x ,
C p(x) ≤ − log(µ(x)) + O(log n).
(C p(·) is the Kolm. complexity with time bound p.)

Assumption H: ∃f ∈ E which cannot be computed in space 2o(n).

E = ∪c>0DTIME[2cn]

Marius Zimand (Towson University) Poly.Time Kolmogorov 2015 14 / 40



Some proofs...

The typical route:

1 Find an appropriate combinatorial object for the job.

2 Show that it exists using the probabilistic method.

3 Construct it in polynomial time using tools from the theory of pseudo
randomness:

expanders, extractors, dispersers, pseudo-random generators.
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Example of a combinatorial object

Key tool: bipartite graphs G = (L,R,E ⊆ L× R) with the rich owner property:

For any B ⊆ L of size |B| ≈ K , most x in B own most of their neighbors (these
neighbors are not shared with any other node from B).

• x ∈ B owns y ∈ N(x) w.r.t. B if N(y) ∩ B = {x}.

• x ∈ B is a rich owner if x owns (1− δ) of its neighbors w.r.t. B.

• G = (L,R,E ⊆ L× R) has the (K , δ)-rich owner property if
for all B with |B| ≤ K , (1− δ)K of the elements in B are rich owners w.r.t. B.
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Bipartite graph G

x is a rich owner
w.r.t B
if x owns (1− δ) of
N(x)

G has the (K , δ)
rich owner property:
∀B ⊆ L, of size at
most K ,
all nodes in B
except at most δ · K
are rich owners
w.r.t. B

x

N(x)

x ’s neighborhood

x

N(x)B
x

N(x)B

rich owners

poor owners
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Theorem (Bauwens, Z’14)

There exists a poly time computable (uniformly in n, k and 1/δ ) graph with the rich
owner property for parameters (2k , δ) with:
• L = {0, 1}n

• R = {0, 1}k+O(log2(n/δ))

• D(left degree) = 2O(log2(n/δ)).

x

N(x)B

∀B, |B| ≤ 2k
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Short programs in probabilistic poly. time

Theorem (Bauwens, Z., 2014)

There exists a probabilistic poly. time algorithm A such that
• On input (x , δ) and promise parameter k , A outputs p,
• |p| = k + log2(|x |/δ),
• If the promise condition k = C (x) holds, then,
with probability (1− δ), p is a program for x .
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Lemma
There exists a poly-time algorithm A that
Input: x ∈ {0, 1}n, k ∈ N, δ > 0

Output: list of size 2log2(n/δ), each element of length k + O(log2(n/δ))
If k = C (x) then (1− δ) of the elements are programs for x .

(each element of the list printed in poly time).

The theorem follows immediately by taking p to be a random element from the
list A(x , k, δ).
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Theorem [Bauwens, Z’14] There
exists a poly.time computable
(uniformly in n, k and 1/δ ) graph
with the rich owner property for
parameters (2k , δ) with:
• L = {0, 1}n

• R = {0, 1}k+O(log2(n/δ))

• D(left degree) = 2O(log2(n/δ)).

x p

N(x)
B

∀B, |B| ≤ 2k

We obtain our lists:
• List for x : N(x)
• Any p ∈ N(x) owned by x w.r.t. B = {x ′ | C (x ′) ≤ k} is a program for x .

How to construct x from p: Enumerate B till we find an element that owns p.
This is x .

• So if x is a rich owner, (1− δ) of his neighbors are programs for it.

• What if x is a poor owner? There are few poor owners, so x has complexity < k.
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Building graphs with the rich owner property

• Step 1: (1− δ) of x ∈ B partially own (1− δ) of its neighbors.

shared with only poly(n) nodes

• Step 2: (1− δ) of x ∈ B partially own (1− δ) of its neighbors.

Step 1 is done with extractors that have small entropy loss.

Step 2 is done by hashing.
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Extractors

E : {0, 1}n × {0, 1}d → {0, 1}m is a (k , ε)-extractor if for any B ⊆ {0, 1}n of size
|B| ≥ 2k and for any A ⊆ {0, 1}m,

|Prob(E (UB ,Ud ) ∈ A)− Prob(Um ∈ A)| ≤ ε,

uniform distr. on B uniform distr. on {0, 1}d

uniform distr. on {0, 1}m

or, in other words, ∣∣∣∣ |E (B,A)|
|B| · 2d

− |A|
2m

∣∣∣∣ ≤ ε.
The entropy loss is s = k + d −m.
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Step 1

GOAL : ∀B ⊆ L with |B| ≈ K , most nodes in B share most of their
neighbors with only poly(n) other nodes from B.

We can view an extractor E as a bipartite graph GE with L = {0, 1}n,R = {0, 1}m
and left-degree D = 2d .

If E is a (k , ε)-extractor, then it has low congestion:
for any B ⊆ L of size |B| ≈ 2k , most x ∈ B share most of their neighbors with
only O(1/ε · 2s) other nodes in B.

proof on next slide

By the probabilistic method: There are extractors whith entropy loss
s = O(log(1/ε)) and log-left degree d = O(log n/ε).

[Guruswami, Umans, Vadhan, 2009] Poly-time extractors with entropy loss
s = O(log(1/ε)) and log-left degree d = O(log2 n/ε).

So for 1/ε = poly(n), we get our GOAL.
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Extractors have low congestion

DEF: E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for any B ⊆ {0, 1}n of size
|B| ≥ 2k and for any A ⊆ {0, 1}m, |Prob(E(UB ,Ud) ∈ A)− Prob(A)| ≤ ε.
The entropy loss is s = k + d −m.

Lemma

Let E be a (k, ε)-extractor, B ⊆ L, |B| = 1
ε2k .

Then all x ∈ B, except at most 2k , share (1− 2ε) of N(x) with at most 2s( 1
ε )2

other nodes in B.

PROOF. Restrict left side to B. Avg-right-degree = |B|2d

2m = 1
ε · 2

s .

Take A - the set of right nodes with degB ≥ (2s(1/ε)) · (1/ε). Then |A|/|R| ≤ ε.
Take B ′ the nodes in B that do not have the property, i.e., they have > 2ε
fraction of neighbors in A.

|Prob(E (UB′ ,Ud) ∈ A)− |A|/|R|| > |2ε− ε| = ε.

So |B ′| ≤ 2k .
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PROOF. Restrict left side to B. Avg-right-degree = |B|2d

2m = 1
ε · 2

s .

Take A - the set of right nodes with degB ≥ (2s(1/ε)) · (1/ε). Then |A|/|R| ≤ ε.
Take B ′ the nodes in B that do not have the property, i.e., they have > 2ε
fraction of neighbors in A.

|Prob(E (UB′ ,Ud) ∈ A)− |A|/|R|| > |2ε− ε| = ε.

So |B ′| ≤ 2k .
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Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing
them with no other nodes.

Let x1, x2, . . . , xpoly(n) be n-bit strings.

Consider p1, . . . , pT the first T prime
numbers, where T = (1/δ) · n · poly(n).

For every xi , for (1− δ) of the T prime
numbers, (xi mod p) is unique in
(x1 mod p, . . . , xT mod p).

In this way, by ”splitting” each edge into
T new edges we reach our GOAL.

Cost: overhead of O(log n) to the right
nodes and the left degree increases by a
factor of T = poly(n) .

x y

y is shared by x with x2, . . . , xpoly(n)

x y

y is shared by x with x2, . . . , xpoly(n)

...

(y , x mod p1, p1)
(y , x mod p2, p2)

(y , x mod pT , pT )
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Polynomial time Coding Theorem

Theorem (Antunes, Fortnow)

Let us assume complexity assumption H holds.
Let µ be a P-samplable distribution.
There exists a polynomial p such that for every x , C p(x) ≤ − logµ(x) + O(log n).

Assumption H

∃f ∈ E which cannot be computed in space 2o(n).

E = ∪c>0DTIME[2cn]
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Assumption H implies pseudo-random generators that fool
PSPACE predicates

[Nisan-Wigderson’94, Klivans - van Melkebeek’02, Miltersen’01]

If H is true, then there exists a pseudo-random generator g that fools any
predicate computable in PSPACE.

There exists g : {0, 1}c log n → {0, 1}n such that for any T computable in PSPACE∣∣Prob[T (g(Us))]− ProbR [T (Un)]
∣∣ < ε.
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Theorem [Antunes, Fortnow] Assume H holds. Let µ be a P-samplable distribution.

There exists a polynomial p such that for every x , C p(x) ≤ − logµ(x) + O(log n).

Proof (sketch):

There is poly time F : {0, 1}m → {0, 1}n, n ≥ mΩ(1), s.t.

µ(x) = |{w ∈ {0, 1}m | F (w) = x}|/2m.

Pick maximal k such that µ(x) ≥ 2k−m.

Let Tx = {w ∈ {0, 1}m | F (w) = x}.
We need that some w ∈ Tx has C p(w) ≤ m − k + O(log n).

Let HEAVYk = {x ′ | |x ′| = n, |Tx′ | ≥ 2k}. |HEAVYk | ≤ 2m/2k (because
the Tx′ are disjoint).

Take ` = m − k + c log n, consider random H : {0, 1}` → {0, 1}m.

H is good if range(H) intersects every Tx′ with x ′ in HEAVYk .

By coupon collecting, most H are good (if c is large enough).
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Checking “H is good” is in PSPACE. So there is poly time G1

G1 : {0, 1}poly(n) → {0, 1}|H|

so that for most v , G1(v) is a good H.

Checking “G1(v) is good” is in PSPACE. So there is poly time G2

G2 : {0, 1}O(log(n)) → {0, 1}|v |

so that for most v ′, G2(v ′) is a good v , G1(G2(v ′)) is a good H.

For some v ′, range(G1(G2(v ′))) intersects Tx .

So there is z such that G1(G2(v ′))(z) = w and F (w) = x .

So C p(x) ≤ |z |+ |v ′| = m− k + c log n +O(log n) ≤ − log(µ(x)) +O(log n).
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Kolmogorov complexity version of the Slepian-Wolf Th.

Theorem (Z)

Let x , y be binary strings and s, t numbers such that
• s + t ≥ C (x , y)
• s ≥ C (x | y)
• t ≥ C (y | x).
There exists strings p, q such that

(1) |p| = s + O(log3 |x |), |q| = t + O(log(|x |+ |y |).

(2) Cpoly(p | x) = O(log3 |x |),Cpoly(q | y) = O(log |y |)
(3) (p, q) is a program for (x , y).
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On-line matching

Bipartite graphs satisfying 2k -online matching.

short programsstrings

x

short programsstrings short programsstrings

y1

x1

short programsstrings

y1

x1 y2

x2

• matching requests arrive one by one
• request x : match x ∈ LEFT with a free node y ∈ N(x),
• Promise: there are ≤ 2k requests.
• Requirement: all requests should be satisfied online (before seeing the next
request).
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Proof overview

Let n = C (x). We can assume that |x | = n.

Let n1 = C (x | y), n2 = C (y | x).

Let A = {(x ′, y ′) ∈ {0, 1}|x| × {0, 1}|y | | C (x ′ | y ′) ≤ n1,C (y ′ | x ′) ≤ n2}.
We show that there exist explicit bipartite graphs G1,G2 with the following
property:

1 We enumerate A
2 Each enumerated (x ′, y ′) is matched on-line with some (p′, q′) such that

(x ′, p′) edge in G1 and (y ′, q′) edge in G2.
3 In particular (x , y) is matched to (p, q), so (p, q) is a description of (x , y).
4 p and q have the desired lengths.
5 G1 has left degree D1 = 2O(log3 |x|), so Cpoly(p | x) = O(log3 |x |).
6 G2 has left degree D2 = 2O(log |y|), so Cpoly(q | y) = O(log |y |).

right neighbor is computed in poly time
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Refined ”rich owner” property

We use bipartite graphs G = (L,R,E ⊆ L×R), where R = {0, 1}`×{0, 1}m.

For m′ < m, the m′-prefix of (y1, y2) ∈ R is (y1, y
′
2), where y ′2 is the m′-prefix

of y2.

The m′-level of G , is G ′ obtained from G by collapsing the right nodes that
have the same m′-prefix.

G has the incremental (2k , δ)-rich owner property if for any m′ < m, the
m′-level of G has the (2k−(m−m′), δ)-rich owner property.
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Combining [Raz, Reingold, Vadhan’99] and [Bauwens,Z’14], there exists

G1 = (L1,R1,E1 ⊆ L1 × R1) incremental (2s , δ) rich owner property, with

1 L1 = {0, 1}|x|,
2 R1 = {0, 1}O(log3(|x|/δ)) × {0, 1}s ,

3 left degree = 2d1 , d1 = O(log3 |x |/δ),

4 G1 is explicit: given left node x and i , we can produce the i-th neighbor of x
in poly time.

Using [Teutsch’14], there exists

G2 = (L2,R2,E2 ⊆ L2 × R2) that satisfies 2t+c log(|x|+|y |) on-line matching
requests, with

1 L2 = {0, 1}|y |,
2 R2 = {0, 1}t+O(log(|x|+|y |))+1,

3 left degree = 2d2 , d2 = O(log |y |),

4 G2 is explicit.
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We build G = (L,R,E ⊆ L× R) = G1 × G2 in the obvious way:
• L = L1 × L2,
• R = R1 × R2,
(x , y), (p, q) ∈ E iff [(x , p) ∈ E1 and (y , q) ∈ E2

We view R organized into clusters:
• one cluster for each p ∈ R1

• each cluster is a copy of R2.

xreduced= keep the first s bits of x , and fill with (|x | − s) zeroes.
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Matching process

Enumerate
A = {(x ′, y ′) ∈ {0, 1}|x| × {0, 1}|y | | C (x ′ | y ′) ≤ n1,C (y ′ | x ′) ≤ n2.

When (x ′, y ′) is enumerated ...

Step 1. Select at random the r -th neighbor of x ′reduced in G1; this is px′,r .

Step 2. We say that y ′ makes a request to cluster px′,r . If y ′ has not made a
request before to cluster px′,r , take qy ′ to be first unused node in the cluster
(if there is one).
(x ′, y ′) is matched to (px′,r , qy ′).

Claim

With probability 1− 2δ, (x , y) finds a match.

Ignoring some minor technical details, this ends the proof (as in the overview).
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Proof of Claim (sketch)

xreduced is a rich owner in G1 with respect to {x ′reduced | x ′ ∈ {0, 1}|x|}
(otherwise C (xreduced) small, so C (x) small, contradiction).

So at most 2n−s strings x ′ can be matched to px,r (namely, those x ′ that
have the same reduced form as xreduced).

At most 2n−s · 2n2 strings y ′ make a request to cluster px,r (because if (x ′, y ′)
makes a request then C (y ′ | x ′) ≤ n2).

s + t ≥ C (x , y) ≥ C (x) + C (y | x)− O(log(|x |+ |y |)) =
n + n2 − O(log(|x |+ |y |)).

So the number of requests is at most 2n−s · 2n2 ≤ 2t+O(log(|x|+|y |).

Since G2 satisfies these many requests, the first request made by any y ′ is
satisfied.
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Proof of Claim (sketch)-cont.

So the first request (x ′, y) is satisfied.

We show that with probability 1− δ, x ′ = x . This implies that (x , y) finds a
match, and we’re done.

Suppose x ′ 6= x .

C (x | y) ≤ n1 (hypothesis) and C (x ′ | y) ≤ n1 (because (x ′, y) ∈ A).

x , x ′ share px,r ; so they also share the n1-prefix of px′,r in the n1-level of G1.

So, either x is a poor owner w.r.t. B = {u | C (u | y) ≤ n1}, but then
C (x | y) ≤ n1, FALSE,

or x is a rich owner, and the node was chosen among those few neighbors
that are shared- this happens with probability at most δ.
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Thank you.
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