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Intro

Distributed compression vs. centralized compression

Alice and Bob have correlated strings x, and respectively y, which they want to
compress.

o Scenario 1 (Centralized compression): They collaborate and compress
together.

o Scenario 2 (Distributed compression): They compress separately.

Questions:
o What are the possible compression rates in the two scenarios?

o Is there are a difference between the two scenarios?
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Alice and Bob have correlated strings x, and respectively y, which they want to
compress.

o Scenario 1 (Centralized compression): They collaborate and compress
together.

o Scenario 2 (Distributed compression): They compress separately.

Questions:
o What are the possible compression rates in the two scenarios?

o Is there are a difference between the two scenarios?

Answer: For quite general types of correlation, distributed compression can be on
a par with centralized compression, provided the parties know how the data is
correlated.
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Intro
Modeling the correlation of x and y
o Statistical correlation:

x and y are realizations of random variables X and Y/

Their correlation is H(X) 4+ H(Y) — H(X, Y), where
H is Shannon entropy.
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Intro
Modeling the correlation of x and y
o Statistical correlation:

x and y are realizations of random variables X and Y

Their correlation is H(X) 4+ H(Y) — H(X, Y), where
H is Shannon entropy.

o Algorithmical correlation:

Correlation of x and y: C(x) + C(y) — C(x,y), where
C is Kolmogorov complexity.
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Information Theory view

o The n-bit strings x and y are realizations of r.v.'s X and Y.
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Information Theory view

o The n-bit strings x and y are realizations of r.v.’s X and Y.

o X and Y are a 2-DMS (discrete memoryless source): n independent drawings
from (X1, Y1), a joint distribution on bits .

o TASK: Alice uses compression function £; : {0,1}" — {1,2,... 2R},
Bob uses compression function £, : {0,1}" — {1,2,... 2"}
GOAL: (X, Y) can be reconstructed from the two encodings:

There exists D such that with high probability: D(E1(X), E2(Y)) = (X, Y).

o QUESTION: What compression rates R;, R, can satisfy the task?

o From Shannon Source Coding Theorem, it is necessary that

Ri+R > H(Xl,Yl)
Ri > H(Xi | Y1)
Ry > H(Y1| Xy).
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Slepian-Wolf Theorem

It is necessary that

R+ Ry > H(X1, Y1), R > H(X1 | Y1), Re > H(Y1 | X1).

Theorem (Slepian-Wolf)

Any Ry, Ry satisfying strictly the above inequalities are sufficient for the task.
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Intro

Slepian-Wolf Theorem

It is necessary that

R+ Ry > H(X1, Y1), R > H(X1 | Y1), Re > H(Y1 | X1).

Theorem (Slepian-Wolf)
Any Ry, R, satisfying strictly the above inequalities are sufficient for the task. J

o The theorem holds for any constant number of sources (not just two sources).

o The decompression procedure knows H( Xy, X2), H(X1), H(Xz2) — the
information profile of the sources.

o The type of correlation is rather simple, because of the memoryless property.
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Algorithmic correlation: Motivating story

Zack.

o Alice knows a line £; Bob knows a point P € ¢; They want to send ¢ and P to
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Intro

Algorithmic correlation: Motivating story

o Alice knows a line £; Bob knows a point P € ¢; They want to send ¢ and P to

Zack.
/
4

o £ :2n bits of information (intercept, slope in GF[2"]).

o P :2n bits of information (the 2 coord. in GF[2"]).

o Total information in (¢, P) = 3n bits; mutual information of £ and P = n
bits.

o QUESTION: Can Alice send 2n bits, and Bob n bits?

Ans: Yes, of course. But is it just because of the simple geometric relation
between ¢ and P?

o QUESTION: Can Alice send 1.5n bits, and Bob 1.5n bits? Can Alice send
1.74n bits, and Bob 1.26n bits?
Ans: 777
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Algorithmic correlation: Kolmogorov complexity
o Kolmogorov complexity:

C(x) = length of a shortest program that produces x.

«O> «F>r «=r» «E» Q>



Intro

Algorithmic correlation: Kolmogorov complexity

o Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

o Alice knows x; Bob knows y; They want to send x, y to Zack;

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016

7/45



Intro

Algorithmic correlation: Kolmogorov complexity

o Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

o Alice knows x; Bob knows y; They want to send x, y to Zack;

o Assumptions:

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016

7/45



Intro

Algorithmic correlation: Kolmogorov complexity

o Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

o Alice knows x; Bob knows y; They want to send x, y to Zack;

o Assumptions:
o C(x) = 2n; x has 2n bits of information.

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016

7/45



Intro

Algorithmic correlation: Kolmogorov complexity

o Kolmogorov complexity:

C(x) = length of a shortest program that produces x.
o Alice knows x; Bob knows y; They want to send x, y to Zack;
o Assumptions:

o C(x) = 2n; x has 2n bits of information.
o C(y) = 2n; y has 2n bits of information.

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016

7/45



Intro

Algorithmic correlation: Kolmogorov complexity

o Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

o Alice knows x; Bob knows y; They want to send x, y to Zack;
o Assumptions:
o C(x) = 2n; x has 2n bits of information.

o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016

7/45



Intro

Algorithmic correlation: Kolmogorov complexity

o Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

o Alice knows x; Bob knows y; They want to send x, y to Zack;
o Assumptions:
o C(x) = 2n; x has 2n bits of information.

o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016

7/45



Intro

Algorithmic correlation: Kolmogorov complexity

o Kolmogorov complexity:
C(x) = length of a shortest program that produces x.
o Alice knows x; Bob knows y; They want to send x, y to Zack;
o Assumptions:
o C(x) = 2n; x has 2n bits of information.

o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

o QUESTION: How many bits do Alice and Bob need to send?

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016

7/45



Intro

Algorithmic correlation: Kolmogorov complexity

©

Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

Alice knows x; Bob knows y; They want to send x, y to Zack;

©

©

Assumptions:

o C(x) = 2n; x has 2n bits of information.
o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

QUESTION: How many bits do Alice and Bob need to send?

o Each one has to send at least n bits, and together at least 3n bits.

©

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016

7/45



Intro

Algorithmic correlation: Kolmogorov complexity

©

Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

Alice knows x; Bob knows y; They want to send x, y to Zack;

©

©

Assumptions:

o C(x) = 2n; x has 2n bits of information.
o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

QUESTION: How many bits do Alice and Bob need to send?

o Each one has to send at least n bits, and together at least 3n bits.
o Can Alice send 2n bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)

©

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 7 /45



Intro

Algorithmic correlation: Kolmogorov complexity

©

Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

Alice knows x; Bob knows y; They want to send x, y to Zack;

©

©

Assumptions:
o C(x) = 2n; x has 2n bits of information.
o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

QUESTION: How many bits do Alice and Bob need to send?
o Each one has to send at least n bits, and together at least 3n bits.
o Can Alice send 2n bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
o Can Alice send 1.5n bits, and Bob 1.5n bits?

©

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 7 /45



Intro

Algorithmic correlation: Kolmogorov complexity

©

Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

©

Alice knows x; Bob knows y; They want to send x, y to Zack;

©

Assumptions:
o C(x) = 2n; x has 2n bits of information.
o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

QUESTION: How many bits do Alice and Bob need to send?

Each one has to send at least n bits, and together at least 3n bits.

Can Alice send 2n bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
Can Alice send 1.5n bits, and Bob 1.5n bits?

Can Alice send 1.74n bits, and Bob 1.26 bits?

©

© 06 0 o

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 7 /45



Intro

Algorithmic correlation: Kolmogorov complexity

©

Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

©

Alice knows x; Bob knows y; They want to send x, y to Zack;

©

Assumptions:
o C(x) = 2n; x has 2n bits of information.
o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

QUESTION: How many bits do Alice and Bob need to send?

Each one has to send at least n bits, and together at least 3n bits.

Can Alice send 2n bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
Can Alice send 1.5n bits, and Bob 1.5n bits?

Can Alice send 1.74n bits, and Bob 1.26 bits?

©

© 06 0 o

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 7 /45



Intro

Algorithmic correlation: Kolmogorov complexity

©

Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

©

Alice knows x; Bob knows y; They want to send x, y to Zack;

©

Assumptions:
o C(x) = 2n; x has 2n bits of information.
o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

©

QUESTION: How many bits do Alice and Bob need to send?

Each one has to send at least n bits, and together at least 3n bits.

Can Alice send 2n bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
Can Alice send 1.5n bits, and Bob 1.5n bits?

Can Alice send 1.74n bits, and Bob 1.26 bits?

ANSWER: VYes, if Zack knows the complexity profile of x and y (and if we
ignore logarithmic overhead).

© 06 0 o

©

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 7 /45



Intro

Algorithmic correlation: Kolmogorov complexity

©

Kolmogorov complexity:
C(x) = length of a shortest program that produces x.

©

Alice knows x; Bob knows y; They want to send x, y to Zack;

©

Assumptions:

o C(x) = 2n; x has 2n bits of information.
o C(y) = 2n; y has 2n bits of information.
o C(x,y) = 3n bits; so, the mutual information of x and y is n bits.

QUESTION: How many bits do Alice and Bob need to send?

Each one has to send at least n bits, and together at least 3n bits.

Can Alice send 2n bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
Can Alice send 1.5n bits, and Bob 1.5n bits?

Can Alice send 1.74n bits, and Bob 1.26 bits?

ANSWER: VYes, if Zack knows the complexity profile of x and y (and if we
ignore logarithmic overhead).

© ©
© © 0 ©

©

The main focus of this talk is to explain this answer.
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Results

Muchnik's Theorem (1)

©

Alice has x, Bob has y.
o There is a string p of length C(x | y) such that (p,y) is a program for x.

©

p can be found from x, y with log n help bits.
o Can Alice alone compute p?

©

In absolute terms, the answer is NO.

o Muchnik’s Theorem. Using a few help bits and with a small overhead in
the length, the answer is YES.
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Results

Muchnik's Theorem (2)

Theorem (Muchnik’'s Theorem)

For every x, y of complexity at most n, there exists p such that
® |p| = C(x|y)+ O(logn).

e C(p| x) = O(log n)

e C(x| p,y) = O(log n)

o =
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Results

Muchnik's Theorem (2)

Theorem (Muchnik’s

For every x, y of conplexity at most n, there exists p such that
o |p| = C(x|y)+ P(logn).

e C(p| x) = O(log n)

e C(x| p,y) = O(log_n)

o =
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Results

Polynomial-time version of Muchnik's Th.

Theorem (Bauwens, Makhlin, Vereshchagin, Z., 2013)

For every x, y of complexity at most n, there exists p such that
e |p| = C(x| y) + O(log n).

o C™Y(p | x) = O(logn)

e C(x| p,y) = O(log n)

Theorem (Teutsch, 2014)

For every x, y of complexity at most n, there exists p such that
o |p| = C(x|y)+ O(1).

e C*¥(p| x) = O(log n)

e (p,y) is a program for x.
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Results

Asymmetric Slepian-Wolf with help bits

o Alice knows x; Bob knows y. Suppose C(x) = 2n, C(y) = 2n, C(x,y) = 3n.
o QUESTION: Can Alice communicate x to Bob by sending him n bits?

o Muchnik's Theorem: Since C(x | y) = n, Alice, using only O(log n) help bits,
can compute in polynomial time a string p of length = n, such that Bob can
reconstruct x from (p, y).
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Results

Kolmogorov complexity version of the Slepian-Wolf Th.
with help bits

Theorem (Romashchenko, 2005)

Let x,y be n-bit strings and s,t numbers such that
es+t>C(x,y)

es>C(x|y)

ot>C(y|x).

There exists strings p, q such that

(1) |p| = s+ O(logn), |g| = t + O(log n).

(2) C(p | x) = O(log n), C(q | y) = O(log n)

(3) (p,q) is a program for (x,y).

Note: Romashchenko's theorem holds for an arbitrary constant number of sources.
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Results

o Alice knows x; Bob knows y. Suppose C(x) = 2n, C(y) = 2n, C(x,y) = 3n.

o QUESTION: Can Alice and Bob communicate x, y to Zack, each one sending
3n/2 bits (or 1.74n, respectively 1.26n)?

o Romashchenko's theorem: YES (modulo the O(log n) overhead), provided
they have a few help bits.
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Results

(+]

QUESTION: Can we get rid of the help bits?

o Effective compression at minimum description length is impossible, so the
compression/decompression procedures must have some additional
information.

o But maybe we can replace the arbitrary help bits with some meaningful
information which is more likely to be available in applications.

o Recall the example when Alice knows the line ¢ and Bob knows a point P. It
may be that Alice, Bob and Zack know that the data is correlated in this
way: P € £. Can they take advantage of this?
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Results
An easier problem: single source compression

o Alice knows x and C(x); then she can find a shortest program for x by exhaustive
search.

@ The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)

Let t(n) be a computable function. If an algorithm on input (x, C(x)) computes in time
t(n) a program p for x, then |p| = C(x) + Q(n) (where n = |x|).
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Results
An easier problem: single source compression

o Alice knows x and C(x); then she can find a shortest program for x by exhaustive
search.

@ The running time is larger than any computable function.
Theorem (Bauwens, Z., 2014)

Let t(n) be a computable function. If an algorithm on input (x, C(x)) computes in time
t(n) a program p for x, then |p| = C(x) + Q(n) (where n = |x|).

Theorem (Bauwens, Z., 2014)

There exists algorithms E and D such that E runs in probabilistic poly. time and for all
n-bit strings x, for all e > 0,
@ E on input x, C(x) and 1/¢, outputs a string p of length < C(x) + log®(n/e),

@ D on input p, C(x) outputs x with probability 1 — €.

@ So, finding a short program for x, given x and C(x), can be done in probabilistic
poly. time, but any deterministic algorithm takes time larger than any computable
function.

o The decompressor D cannot run in polynomial time, when compression is done at

minimum description length (or close to it).
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Results

Kolmogorov complexity version of the Slepian-Wolf Th.

asymmetric version

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that
e On input (x,€) and “promise” parameter k, A outputs p,
o |p| = k + O(log?(|x|/e)),

e If the “promise” k = C(x | y) holds, then,

with probability (1 — €), (p,y) is a program for x.
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Results

Kolmogorov complexity version of the Slepian-Wolf Th. -
asymmetric version

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that
e On input (x,€) and “promise” parameter k, A outputs p,
o |p| = k + O(log?(|x|/e)),

e If the “promise” k = C(x | y) holds, then,

with probability (1 — €), (p,y) is a program for x.

o Alice has x, Bob has y; they want to send x, y to Zack.
o Suppose: C(x) =2n,C(y) =2n,C(x,y) = 3n.

o Bob can send y, and Alice can compress x to p of length n+ Iog2 n, provided
she knows C(x | y).
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Results

Kolmogorov complexity version of the Slepian-Wolf
Theorem- 2 sources

Theorem (Z., 2015)

There exist probabilistic poly.-time algorithms E;, E; and algorithm D such that
for all integers ny, n, and n-bit strings xi, x2,

ifny+n > C(x1,x2), n1 > C(xq | x2), n2 > C(x2 | x1),
then
o E; on input (x;, n;) outputs a string p; of length n; + O(Iog3 n), fori=1,2,

o D on input (p1, p2) and the complexity profile of (x1, x2) outputs (x1,x2) with
probability 1 — 1/n.

(The complexity profile of (x1, x2) is the tuple (C(x1), C(x2), C(x1,x2)))-
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Results

Kolmogorov complexity version of the Slepian-Wolf
Theorem- ¢ sources

o The case of ¢ senders: sender i has string x;, i € [{].
o If V={i,...,i}, we denote xy = (xi,...,Xi)-

o The complexity profile of (x1,...,x¢) is the set of integers {C(xy) | V C [{]}.

Theorem (Z., 2015)

There exist probabilistic poly.-time algorithms Ei, ..., E;, algorithm D and a
function a(n) = log®Y(n), such that for all integers ny, ..., n; and n-bit strings
X1y.00 49Xy,

if Y icy ni = Clxv | xg-v), forall vV C [{],

then

o E; on input (x;, n;) outputs a string p; of length n; + «(n), for i € [¢],

o D on input (p1,...,pe) and the complexity profile of (xi,...,xp) outputs
(x1,...,x¢) with probability 1 — 1/n.
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Results

On the promise conditions

o [Real Theorem] There exists a poly-time probabilistic algorithm A that on
input (x, k) returns a string p of length k + poly(log |x|) such that
if C(x|y) =k, then with high probability (p, y) is a program for x.

o The promise condition:

Alice knows k = C(x | y).
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o Can it be relaxed to
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Results

On the promise conditions

(+]

[Real Theorem] There exists a poly-time probabilistic algorithm A that on
input (x, k) returns a string p of length k + poly(log |x|) such that

if C(x|y) =k, then with high probability (p, y) is a program for x.

o The promise condition:

Alice knows k = C(x | y).

o Can it be relaxed to
Alice knows k > C(x | y)?

o [Dream Theorem ???] --- if C(x|y) <k ---.

o Dream Theorem open.
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Results

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.

Let g be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a
string p of length k + O(log|x|/€) such that if C9(x | y)<k, then, with
probability 1 — €, (p,y) is a program for x.

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 20/ 45



Results

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.

Let g be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a
string p of length k + O(log|x|/€) such that if C9(x | y)<k, then, with
probability 1 — €, (p,y) is a program for x.

Assumption H

3f € E which cannot be computed in space 2°(").
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Results

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.

Let g be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a
string p of length k + O(log|x|/€) such that if C9(x | y)<k, then, with
probability 1 — €, (p,y) is a program for x.

Assumption H

3f € E which cannot be computed in space 2°(").

E = UcsoDTIME[2¢"]
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Proofs

First proof

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that
e On input (x, ) and promise parameter k, A outputs p,

o Ipl = k + log?(|x|/3),

e If the promise condition k = C(x | y) holds, then,

with probability (1 — 0), (p,y) is a program for x.
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Proofs

First proof

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that
e On input (x, ) and promise parameter k, A outputs p,

o Ipl = k + log?(|x|/3),

e If the promise condition k = C(x | y) holds, then,

with probability (1 — 0), (p,y) is a program for x.

To keep the notation simple, | will assume that y is the empty string, and | will

drop y.
Essentially the same proof works for arbitrary y.
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Proofs

Combinatorial object

Key tool: bipartite graphs G = (L, R, E C L x R) with the rich owner property:

For any B C L of size |B| = K, most x in B own most of their neighbors (these
neighbors are not shared with any other node from B).
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Proofs

Combinatorial object

Key tool: bipartite graphs G = (L, R, E C L x R) with the rich owner property:

For any B C L of size |B| = K, most x in B own most of their neighbors (these
neighbors are not shared with any other node from B).

e x € Bownsy € N(x) w.rt. Bif N(y)n B = {x}.
e x € B is a rich owner if x owns (1 — §) of its neighbors w.r.t. B.

e G=(L,R,E CLXR) has the (K, d)-rich owner property if
for all B with |B| < K, (1 — §)K of the elements in B are rich owners w.r.t. B.
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Bipartite graph G

x's neighbors
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Bipartite graph G

X is a rich owner
w.rt B

if x owns (1 —§) of
N(x)

«O» «Fr « =>»




Proofs

Bipartite graph G

X is a rich owner
w.rt B

if x owns (1 — 4) of
N(x)

G has the (K, )
rich owner property:
VB C L, of size at
most K,

all nodes in B
except at most § - K
are rich owners
w.rt. B
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Proofs

X is a rich owner
w.rt B

if x owns (1 — 4) of
N(x)

G has the (K, )
rich owner property:
VB C L, of size at
most K,

all nodes in B
except at most § - K
are rich owners
w.rt. B

poor owners
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Proofs

Theorem (Bauwens, Z'14)

There exists a computable (uniformly in n,k and 1/6 ) graph with the rich owner
property for parameters (2%, ) with:

o [ ={0,1}"

e R — {07 1}k+0(|og(n/5))

e D(left degree) = poly(n/d)

Similar for poly-time G, except overhead in R is O(log®(n/6)) and D = 20og(n/3))

VB, B[ < 2
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Proofs

e Any p € N(x) owned by x w.rt. B = {x"| C(x’) < k} is a program for x.

How to construct x from p: Enumerate B till we find an element that owns p.
This is x.
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Proofs

e Any p € N(x) owned by x w.rt. B = {x"| C(x’) < k} is a program for x.

How to construct x from p: Enumerate B till we find an element that owns p.

This is x.
e So if x is a rich owner, (1 — §) of his neighbors are programs for it.

e What if x is a poor owner? There are few poor owners, so x has complexity
< k.
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Proofs

e Any p € N(x) owned by x w.rt. B = {x"| C(x’) < k} is a program for x.

How to construct x from p: Enumerate B till we find an element that owns p.

This is x.
e So if x is a rich owner, (1 — §) of his neighbors are programs for it.

e What if x is a poor owner? There are few poor owners, so x has complexity
< k.

e So if C(x) = k, we compress x by picking at random one of its neighbors.

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016
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.
Building graphs with the rich owner property

e Step 1: (1 —0) of x € B partially own (1 — §) of its neighbors.
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Proofs

Building graphs with the rich owner property

shared with only poly(n) nodes

e Step 1: (1 —0) of x € B partially own (1 — §) of its neighbors.
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Proofs

Building graphs with the rich owner property

shared with only poly(n) nodes

e Step 1: (1 —0) of x € B partially own (1 — §) of its neighbors.

e Step 2: (1 —¢) of x € B partially own (1 — §) of its neighbors.
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Proofs

Building graphs with the rich owner property

shared with only poly(n) nodes

e Step 1: (1 —0) of x € B partially own (1 — §) of its neighbors.

e Step 2: (1 —¢) of x € B partially own (1 — §) of its neighbors.

Step 1 is done with extractors that have small entropy loss.

Step 2 is done by hashing.

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016
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Proofs

Extractors

E:{0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2% and for any A C {0,1}™,

|[Prob(E(Ug , Uy ) € A) — Prob(Up,, € A)| <,
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Proofs

Extractors

uniform distr. on {0,1}"

E:{0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor
|B| > 2% and for any A C {0,1}™,

for any B C {0,1}" of size

|[Prob(E(Ug , Ug) € A) — Prob(Up € A)| <,

uniform distr. on B uniform distr. on {0, 1}¢
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Proofs

Extractors

E:{0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2% and for any A C {0,1}™,

|[Prob(E(Ug , Uy ) € A) — Prob(Up,, € A)| <,
or, in other words,
|E(B,A)|  |A|
|B| -2 2m
The entropy loss is s = k+d — m.
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Proofs

Step 1

GOAL : VB C L with |B| = K, most nodes in B share most of their
neighbors with only poly(n) other nodes from B.

We can view an extractor E as a bipartite graph Gg with L = {0,1}", R = {0,1}™
and left-degree D = 29.

If E is a (k, €)-extractor, then it has low congestion:
for any B C L of size |B| =~ 2k ‘most x € B share most of their neighbors with
only O(1/e-2°) other nodes in B.
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Proofs

Step 1

GOAL : VB C L with |B| = K, most nodes in B share most of their
neighbors with only poly(n) other nodes from B.

We can view an extractor E as a bipartite graph Gg with L = {0,1}", R = {0,1}™
and left-degree D = 29.

If E is a (k, €)-extractor, then it has low congestion: proof on next slide
for any B C L of size |B| =~ 2k most x € B share most of their nergnoors wi

only O(1/e-2°) other nodes in B.
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Proofs

Step 1

GOAL : VB C L with |B| = K, most nodes in B share most of their
neighbors with only poly(n) other nodes from B.

We can view an extractor E as a bipartite graph Gg with L = {0,1}", R = {0,1}™
and left-degree D = 29.

If E is a (k, €)-extractor, then it has low congestion:
for any B C L of size |B| =~ 2k ‘most x € B share most of their neighbors with
only O(1/e-2°) other nodes in B.

By the probabilistic method: There are extractors whith entropy loss
s = O(log(1/e€)) and log-left degree d = O(log n/e).

[Guruswami, Umans, Vadhan, 2009] Poly-time extractors with entropy loss
s = O(log(1/e€)) and log-left degree d = O(log? n/e).

So for 1/e = poly(n), we get our GOAL.
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Proofs

Extractors have low congestion

DEF: E: {0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2% and for any A C {0,1}™, |Prob(E(Ug, Uy) € A) — Prob(A)| < e.
The entropy loss is s = k+d — m.
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Proofs

Extractors have low congestion

DEF: E: {0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2% and for any A C {0,1}™, |Prob(E(Ug, Uy) € A) — Prob(A)| < e.
The entropy loss is s = k+d — m.

Lemma

Let E be a (k,¢)-extractor, B C L, |B| = 12*.

Then all x € B, except at most 2%, share (1 — 2¢) of N(x) with at most 25(1)?
other nodes in B.
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Proofs

Extractors have low congestion

DEF: E: {0,1}" x {0,1}¢ — {0,1}™ is a (k, €)-extractor if for any B C {0,1}" of size
|B| > 2% and for any A C {0,1}™, |Prob(E(Ug, Uy) € A) — Prob(A)| < e.
The entropy loss is s = k+d — m.

Lemma
B| = L2k,

Let E be a (k, ¢)-extractor, B C L, .
Then all x € B, except at most 2%, share (1 — 2€) of N(x) with at most 25(1)?
other nodes in B.

PROOF. Restrict left side to B. Avg-right-degree = 152 — 1 .25

€

Take A - the set of right nodes with degg > (2°(1/€)) - (1/¢). Then |A|/|R| <e.

Take B’ the nodes in B that do not have the property, i.e., they have > 2¢
fraction of neighbors in A.

|[Prob(E(Ug/, Ug) € A) — |A|/|R]|| > |2¢ — €| = €.
So |B'| < 2k.
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Proofs

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing
them with no other nodes.

y is shared by x with x2, ..., Xpoly(n)
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Proofs

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing
them with no other nodes.

Let x1, X2, - - -, Xpoly(n) b€ n-bit strings.

Consider py, ..., pt the first T prime
numbers, where T = (1/9) - n- poly(n).

y is shared by x with x2, ..., Xpoly(n)

For every x;, for (1 — 4) of the T prime
numbers, (x; mod p) is unique in
(x1 mod p,...,xT mod p). x Y

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 32 /45



Proofs

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing
them with no other nodes.

Let x1, X2, - - -, Xpoly(n) b€ n-bit strings.

Consider py, ..., pt the first T prime
numbers, where T = (1/9) - n- poly(n). ) .
y is shared by x with x,,.

] -+ s Xpoly(n)

For every x;, for (1 — 4) of the T prime

numbers, (x; mod p) is unique in (y,x mod p1, p1)

(x1 mod p,...,xT mod p). X y/(y,x mod p2, p2)

In this way, by "splitting” each edge into

T new edges we reach our GOAL. (v, x mod pr, pr
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Proofs

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing

them with no other nodes.
Let x1, X2, - - -, Xpoly(n) b€ n-bit strings.

Consider py, ..., pt the first T prime
numbers, where T = (1/9) - n- poly(n).

For every x;, for (1 — 4) of the T prime
numbers, (x; mod p) is unique in

y is shared by x with x2, ..., Xpoly(n)

(y,x mod py, p1)

(x1 mod p,...,xT mod p). X

In this way, by "splitting” each edge into
T new edges we reach our GOAL.

Cost: overhead of O(log n) to the right
nodes and the left degree increases by a
factor of T = poly(n) .
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Proofs

2-nd proof: Kolmogorov complexity version of the
Slepian-Wolf Theorem- 2 sources

Theorem (Z,2015)

There exist probabilistic poly.-time algorithms E;, E; and algorithm D such that
for all integers ny, n, and n-bit strings xi, x2,

ifny+n > C(x1,x2), n1 > C(xq | x2), n2 > C(x2 | x1),
then
o E; on input (x;, n;) outputs a string p; of length n; + O(Iog3 n), fori=1,2,

o D on input (p1, p2) and the complexity profile of (x1, x2) outputs (x1,x2) with
probability 1 — 1/n.

(The complexity profile of (x1, x2) is the tuple (C(x1), C(x2), C(x1,x2)))-
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Proofs

Graphs with the rich owner property - extended version

Bipartite graph G, with left
degree D; parameters k, §;

x's neighbors
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Graphs with the rich owner property - extended version

Bipartite graph G, with left
degree D; parameters k, §;

X is a rich owner w.r.t B if

small regime case: |B| < 2*
x owns (1 —§) of N(x)

large regime case: |B| > 2k
at least fraction (1 — 0) of

y € N(x) have

degg(y) < (2/62)|B|D/2*
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degree D; parameters k, §;

X is a rich owner w.r.t B if

small regime case: |B| < 2*
x owns (1 —§) of N(x)

large regime case: |B| > 2k
at least fraction (1 — ) of

y € N(x) have

degg(y) < (2/62)|B|D/2*

G has the (k,d) rich owner
property:

VB C L,

all nodes in B except at most
0 - |B| are rich owners w.r.t. B
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Proofs

Graphs with the rich owner property - extended version

Bipartite graph G, with left
degree D; parameters k, §;

X is a rich owner w.r.t B if

small regime case: |B| < 2*
x owns (1 —§) of N(x)

large regime case: |B| > 2k
at least fraction (1 — ) of

y € N(x) have

degg(y) < (2/62)|B|D/2*

G has the (k,d) rich owner
property:

VB C L,

all nodes in B except at most
0 - |B| are rich owners w.r.t. B

poor owners
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Proofs

Theorem

There exists a poly.-time computable (uniformly in n, k and 1/6 ) graph with the rich
owner property for parameters (k, &) with:

o [ ={0,1}"

o R = {0, 1}+0008(0/5)

o D(left degree) = 20(log*(n/5))
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Proofs

Proof sketch

o Alice has x;, Bob has x;.
o They want to compress to lengths n; + O(log>(n/d)), resp.
ny + O(log?(n/9)).
o Hypothesis: n; > C(xy | x2),n > C(x2 | x1), m + m > C(x1, x2).

o Alice uses Gy, graph with the (ny,0) rich owner property. She compresses by
choosing p1, a random neighbor of x; in Gj.

o Bob uses Gy, graph with the (ny,d) rich owner property. He compresses by
choosing p», a random neighbor of x; in G,.

o Receiver reconstructs xi, xo from py, ps.
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Proofs

Reconstruction of xi, x, from py, po

Case 1: C(x2) < na.

Let B = {x| C(x) < C(x2)}.

o |B| < 2€(e) < 2m So B is in the small regime in G,.

o Claim: x; can be reconstructed from p;, by the following argument.

o |set of poor owners| < §|B|. So, poor owners have complexity < C(x2).
o So, x2 is a rich owner; with prob. 1 — 4§, x2 owns p, with respect to B.
o x» can be reconstructed from py, by enumerating B till we see a neighbor of p».

Next, let B = {x; | C(x{ | x2) < C(x1 | x2)}.
|B| < 2Cale) < 2m So B s in the small regime in G;.

Using argument, x; can be reconstructed from p;.

©

©

©

(+]
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Proofs

Reconstruction of xi, xo from py, po — (2)

Case 2: C(x2) > m.
o Claim 1. C(py) =* ny (* means that we ignore polylog terms).
o Pf. Let B={x| C(x) < C(x2)}. B is in the large regime in G,.
o With prob. 1 —§, x> shares p, with at most
(2/6%)|B|D /2™ = 2C(e)=mtpolylogn gther nodes in B.
o xp can be reconstructed from p, and its rank among p»'s neighbors in B.
0 So, C(x2) <* C(p2) + (C(x2) — m2).
o So, C(p2) >* ny. Since |pa| =" na, we get C(p2) =

* ny.
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Proofs

Reconstruction of xi, xo from py, po — (3)

©

Claim 2. Given pp,x; and C(xz | x1), receiver can reconstruct x;

(+]

Pf. B={x5| C(x5 | x1) < C(x2 | x1)} is in the small regime case, and we
can use the argument.

So, C(x2,x1) <* C(p2,x1).

But C(p2,x1) <* C(x2,x1) (because p» can be obtained from x, and its rank
among xx's neighbors).

o So, C(x2,x1) =* C(p2,x1).
o So, C(x1 | p2) =* C(x1, p2) — C(p2) =" C(x1,x2) — ma.

©

©
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Proofs

Reconstruction of xi, xo from py, po — (4)

©

Claim 3. x; can be reconstructed from p; and p. (So, by Claim 2, x, can
also be reconstructed, and we are done.)

Pf. B = {X{ | C(X{ | p2) S C(Xl,Xz) — I'I2}.
x1 € B, by the previous equality.

©

(+]

©

Since C(x1,x2) — np < (n1 4 np) — ny = ny, B is in the small regime case.

©

Conclusion follows by argument.
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Proofs

Third proof.

Theorem (Z)

Let us assume complexity assumption H holds.

Let g be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a
string p of length k + O(log|x|/d) such that if C(x | y)<k, then, with
probability 1 — &, (p, y) is a program for x.
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Proofs

Third proof.

Theorem (Z)

Let us assume complexity assumption H holds.

Let g be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a
string p of length k + O(log|x|/d) such that if C(x | y)<k, then, with
probability 1 — &, (p, y) is a program for x.

Assumption H

3f € E which cannot be computed in space 2°(").

E = UcsoDTIME[2¢"]
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Proofs

Assumption H implies pseudo-random generators that fool
PSPACE predicates

[Nisan-Wigderson'94, Klivans - van Melkebeek'02, Miltersen'01]

If H is true, then there exists a pseudo-random generator g that fools any
predicate computable in PSPACE with polynomial advice.

There exists g : {0,1}€'%6" — {0,1}" such that for any T computable in PSPACE
with poly advice,
|Prob[T(g(Us))] — Prob[T(U,)]| < e.

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 42 /45



Proofs

Proof - (2)

©

Let R be a random binary matrix with m = k + 1/§ rows and |x| columns.
We say R isolates x if for all x' # x in {x" | C9(x’ | y) < k}, Rx # RX'.
For x’ # x, Probg[Rx’ # Rx] =2~™.

Probg[R does not isolate x] < 2k .27m = §.

If R isolates x, Alice can send to Bob p = Rx, and p has length k 4+ 1/4.
But Bob also needs to know R, which is longer than x...

©

©

©
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Proofs

Proof - (2)

o Let R be a random binary matrix with m = k 4+ 1/6 rows and |x| columns.
We say R isolates x if for all x' # x in {x" | C9(x’ | y) < k}, Rx # RX'.
For x’ # x, Probg[Rx’ # Rx] =2~™.

Probg[R does not isolate x] < 2k .27m = §.

If R isolates x, Alice can send to Bob p = Rx, and p has length k 4+ 1/4.
But Bob also needs to know R, which is longer than x...

© © o o

© ©

Consider predicate T ,(R) = true iff R isolates x.

T,y is in PSPACE with poly advice and is satisfied by a fraction of (1 — §) of
the R's.

o Using a prg. g that fools T, ,, |Probs[ Ty, (g(s))] — Probgr[T.,(R)]| < 6.
o So, with probability 1 — 24, g(s) isolates x.

©

o With probability 1 — 2§, p = (s, g(s) - x) is a program for x of length
k 4+ O(log|x]), QED.
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Finale

Final remarks

©

Slepian-Wolf Th: Distributed compression can be as good as centralized
compression for memoryless sources (independent drawings from a joint
distribution).

o Kolm. complexity version of the Slepian-Wolf Th: Distributed compression
can be essentially as good as centralized compression for algorithmically
correlated sources.

o ... provided the senders and the receiver know the information/complexity
profile of the data.

o Network Information Theory: well-established, dynamic.

o Algorithmic Information Theory: only sporadic studies at this moment.
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Thank you.
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