Distributed compression -
 The algorithmic-information-theoretical view

Marius Zimand
Towson University

Institut Henri Poincaré - Feb. 2, 2016

Distributed compression vs. centralized compression

Alice and Bob have correlated strings x, and respectively y, which they want to compress.

- Scenario 1 (Centralized compression): They collaborate and compress together.
- Scenario 2 (Distributed compression): They compress separately.

Questions:

- What are the possible compression rates in the two scenarios?
- Is there are a difference between the two scenarios?

Distributed compression vs. centralized compression

Alice and Bob have correlated strings x, and respectively y, which they want to compress.

- Scenario 1 (Centralized compression): They collaborate and compress together.
- Scenario 2 (Distributed compression): They compress separately.

Questions:

- What are the possible compression rates in the two scenarios?
- Is there are a difference between the two scenarios?

Answer: For quite general types of correlation, distributed compression can be on a par with centralized compression, provided the parties know how the data is correlated.

Modeling the correlation of x and y

- Statistical correlation:
x and y are realizations of random variables X and Y; Their correlation is $H(X)+H(Y)-H(X, Y)$, where H is Shannon entropy.

Modeling the correlation of x and y

- Statistical correlation:
x and y are realizations of random variables X and Y; Their correlation is $H(X)+H(Y)-H(X, Y)$, where H is Shannon entropy.

- Algorithmical correlation:

Correlation of x and $y: C(x)+C(y)-C(x, y)$, where C is Kolmogorov complexity.

Information Theory view

- The n-bit strings x and y are realizations of r.v.'s X and Y.

Information Theory view

- The n-bit strings x and y are realizations of r.v.'s X and Y.
- X and Y are a 2-DMS (discrete memoryless source): n independent drawings from (X_{1}, Y_{1}), a joint distribution on bits .

Information Theory view

- The n-bit strings x and y are realizations of r.v.'s X and Y.
- X and Y are a 2-DMS (discrete memoryless source): n independent drawings from (X_{1}, Y_{1}), a joint distribution on bits .
- TASK: Alice uses compression function $E_{1}:\{0,1\}^{n} \rightarrow\left\{1,2, \ldots, 2^{n R_{1}}\right\}$. Bob uses compression function $E_{2}:\{0,1\}^{n} \rightarrow\left\{1,2, \ldots, 2^{n R_{2}}\right\}$. GOAL: (X, Y) can be reconstructed from the two encodings:
There exists D such that with high probability: $D\left(E_{1}(X), E_{2}(Y)\right)=(X, Y)$.

Information Theory view

- The n-bit strings x and y are realizations of r.v.'s X and Y.
- X and Y are a 2-DMS (discrete memoryless source): n independent drawings from (X_{1}, Y_{1}), a joint distribution on bits .
- TASK: Alice uses compression function $E_{1}:\{0,1\}^{n} \rightarrow\left\{1,2, \ldots, 2^{n R_{1}}\right\}$. Bob uses compression function $E_{2}:\{0,1\}^{n} \rightarrow\left\{1,2, \ldots, 2^{n R_{2}}\right\}$. GOAL: (X, Y) can be reconstructed from the two encodings:
There exists D such that with high probability: $D\left(E_{1}(X), E_{2}(Y)\right)=(X, Y)$.
- QUESTION: What compression rates R_{1}, R_{2} can satisfy the task?

Information Theory view

- The n-bit strings x and y are realizations of r.v.'s X and Y.
- X and Y are a 2-DMS (discrete memoryless source): n independent drawings from $\left(X_{1}, Y_{1}\right)$, a joint distribution on bits .
- TASK: Alice uses compression function $E_{1}:\{0,1\}^{n} \rightarrow\left\{1,2, \ldots, 2^{n R_{1}}\right\}$. Bob uses compression function $E_{2}:\{0,1\}^{n} \rightarrow\left\{1,2, \ldots, 2^{n R_{2}}\right\}$. GOAL: (X, Y) can be reconstructed from the two encodings:
There exists D such that with high probability: $D\left(E_{1}(X), E_{2}(Y)\right)=(X, Y)$.
- QUESTION: What compression rates R_{1}, R_{2} can satisfy the task?
- From Shannon Source Coding Theorem, it is necessary that

$$
\begin{aligned}
R_{1}+R_{2} & \geq H\left(X_{1}, Y_{1}\right) \\
R_{1} & \geq H\left(X_{1} \mid Y_{1}\right) \\
R_{2} & \geq H\left(Y_{1} \mid X_{1}\right) .
\end{aligned}
$$

Slepian-Wolf Theorem

It is necessary that

$$
R_{1}+R_{2} \geq H\left(X_{1}, Y_{1}\right), R_{1} \geq H\left(X_{1} \mid Y_{1}\right), R_{2} \geq H\left(Y_{1} \mid X_{1}\right) .
$$

Theorem (Slepian-Wolf)
Any R_{1}, R_{2} satisfying strictly the above inequalities are sufficient for the task.

Slepian-Wolf Theorem

It is necessary that

$$
R_{1}+R_{2} \geq H\left(X_{1}, Y_{1}\right), R_{1} \geq H\left(X_{1} \mid Y_{1}\right), R_{2} \geq H\left(Y_{1} \mid X_{1}\right) .
$$

Theorem (Slepian-Wolf)

Any R_{1}, R_{2} satisfying strictly the above inequalities are sufficient for the task.

- The theorem holds for any constant number of sources (not just two sources).
- The decompression procedure knows $H\left(X_{1}, X_{2}\right), H\left(X_{1}\right), H\left(X_{2}\right)$ - the information profile of the sources.
- The type of correlation is rather simple, because of the memoryless property.

Algorithmic correlation: Motivating story

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

Algorithmic correlation: Motivating story

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- $\ell: 2 n$ bits of information (intercept, slope in GF[2n]).

Algorithmic correlation: Motivating story

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- $\ell: 2 n$ bits of information (intercept, slope in GF[2n]).
- $P: 2 n$ bits of information (the 2 coord. in GF[$\left.2^{n}\right]$).

Algorithmic correlation: Motivating story

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- $\ell: 2 n$ bits of information (intercept, slope in GF[2n]).
- $P: 2 n$ bits of information (the 2 coord. in GF[$\left.2^{n}\right]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information of ℓ and $P=n$ bits.

Algorithmic correlation: Motivating story

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- $\ell: 2 n$ bits of information (intercept, slope in GF[2n]).
- $P: 2 n$ bits of information (the 2 coord. in GF[$\left.2^{n}\right]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information of ℓ and $P=n$ bits.
- QUESTION: Can Alice send $2 n$ bits, and Bob n bits?

Ans: Yes, of course. But is it just because of the simple geometric relation between ℓ and P ?

Algorithmic correlation: Motivating story

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- $\ell: 2 n$ bits of information (intercept, slope in GF[2n]).
- $P: 2 n$ bits of information (the 2 coord. in GF[$\left.2^{n}\right]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information of ℓ and $P=n$ bits.
- QUESTION: Can Alice send $2 n$ bits, and Bob n bits?

Ans: Yes, of course. But is it just because of the simple geometric relation between ℓ and P ?

- QUESTION: Can Alice send $1.5 n$ bits, and Bob $1.5 n$ bits? Can Alice send $1.74 n$ bits, and Bob $1.26 n$ bits?
Ans: ???

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity: $C(x)=$ length of a shortest program that produces x.

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity: $C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity: $C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity: $C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity: $C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
- Each one has to send at least n bits, and together at least $3 n$ bits.

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
- Each one has to send at least n bits, and together at least $3 n$ bits.
- Can Alice send $2 n$ bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
- Each one has to send at least n bits, and together at least $3 n$ bits.
- Can Alice send $2 n$ bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
- Can Alice send $1.5 n$ bits, and Bob $1.5 n$ bits?

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
- Each one has to send at least n bits, and together at least $3 n$ bits.
- Can Alice send $2 n$ bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
- Can Alice send $1.5 n$ bits, and Bob $1.5 n$ bits?
- Can Alice send $1.74 n$ bits, and Bob 1.26 bits?

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
- Each one has to send at least n bits, and together at least $3 n$ bits.
- Can Alice send $2 n$ bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
- Can Alice send $1.5 n$ bits, and Bob $1.5 n$ bits?
- Can Alice send $1.74 n$ bits, and Bob 1.26 bits?

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
- Each one has to send at least n bits, and together at least $3 n$ bits.
- Can Alice send $2 n$ bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
- Can Alice send $1.5 n$ bits, and Bob $1.5 n$ bits?
- Can Alice send $1.74 n$ bits, and Bob 1.26 bits?
- ANSWER: Yes, if Zack knows the complexity profile of x and y (and if we ignore logarithmic overhead).

Algorithmic correlation: Kolmogorov complexity

- Kolmogorov complexity:
$C(x)=$ length of a shortest program that produces x.
- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
- $C(x)=2 n ; x$ has $2 n$ bits of information.
- $C(y)=2 n ; y$ has $2 n$ bits of information.
- $C(x, y)=3 n$ bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
- Each one has to send at least n bits, and together at least $3 n$ bits.
- Can Alice send $2 n$ bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
- Can Alice send $1.5 n$ bits, and Bob $1.5 n$ bits?
- Can Alice send $1.74 n$ bits, and Bob 1.26 bits?
- ANSWER: Yes, if Zack knows the complexity profile of x and y (and if we ignore logarithmic overhead).
- The main focus of this talk is to explain this answer.

Muchnik's Theorem (1)

- Alice has x, Bob has y.
- There is a string p of length $C(x \mid y)$ such that (p, y) is a program for x.
- p can be found from x, y with $\log n$ help bits.
- Can Alice alone compute p ?
- In absolute terms, the answer is NO.
- Muchnik's Theorem. Using a few help bits and with a small overhead in the length, the answer is YES.

Muchnik's Theorem (2)

Theorem (Muchnik's Theorem)

For every x, y of complexity at most n, there exists p such that

- $|p|=C(x \mid y)+O(\log n)$.
- $C(p \mid x)=O(\log n)$
- $C(x \mid p, y)=O(\log n)$

Muchnik's Theorem (2)

Theorem (Muchnik's Theo m)
For every x, y of complexiky at most n, there exists p such that

- $|p|=C(x \mid y)+O(\log n)$.
- $C(p \mid x)=O(\log n)$
- $C(x \mid p, y)=O(\log n)$

Muchnik's Theorem (2)

For every x, y of co mplexity at most n, there exists p such that

- $|p|=C(x \mid y)+D(\log n)$.
- $C(p \mid x)=O(\log n)$
- $C(x \mid p, y)=O(\log n)$

Polynomial-time version of Muchnik's Th.

Theorem (Bauwens, Makhlin, Vereshchagin, Z., 2013)
For every x, y of complexity at most n, there exists p such that

- $|p|=C(x \mid y)+O(\log n)$.
- $C^{\text {poly }}(p \mid x)=O(\log n)$
- $C(x \mid p, y)=O(\log n)$

Theorem (Teutsch, 2014)

For every x, y of complexity at most n, there exists p such that

- $|p|=C(x \mid y)+O(1)$.
- $C^{\text {poly }}(p \mid x)=O(\log n)$
- (p, y) is a program for x.

Asymmetric Slepian-Wolf with help bits

- Alice knows x; Bob knows y. Suppose $C(x)=2 n, C(y)=2 n, C(x, y)=3 n$.
- QUESTION: Can Alice communicate x to Bob by sending him n bits?
- Muchnik's Theorem: Since $C(x \mid y) \approx n$, Alice, using only $O(\log n)$ help bits, can compute in polynomial time a string p of length $\approx n$, such that Bob can reconstruct x from (p, y).

Kolmogorov complexity version of the Slepian-Wolf Th. with help bits

Theorem (Romashchenko, 2005)
Let x, y be n-bit strings and s, t numbers such that

- $s+t \geq C(x, y)$
- $s \geq C(x \mid y)$
- $t \geq C(y \mid x)$.

There exists strings p, q such that
(1) $|p|=s+O(\log n),|q|=t+O(\log n)$.
(2) $C(p \mid x)=O(\log n), C(q \mid y)=O(\log n)$
(3) (p, q) is a program for (x, y).

Note: Romashchenko's theorem holds for an arbitrary constant number of sources.

- Alice knows x; Bob knows y. Suppose $C(x)=2 n, C(y)=2 n, C(x, y)=3 n$.
- QUESTION: Can Alice and Bob communicate x, y to Zack, each one sending $3 n / 2$ bits (or $1.74 n$, respectively $1.26 n$)?
- Romashchenko's theorem: YES (modulo the $O(\log n)$ overhead), provided they have a few help bits.
- QUESTION: Can we get rid of the help bits?
- Effective compression at minimum description length is impossible, so the compression/decompression procedures must have some additional information.
- But maybe we can replace the arbitrary help bits with some meaningful information which is more likely to be available in applications.
- Recall the example when Alice knows the line ℓ and Bob knows a point P. It may be that Alice, Bob and Zack know that the data is correlated in this way: $P \in \ell$. Can they take advantage of this?

An easier problem: single source compression

- Alice knows x and $C(x)$; then she can find a shortest program for x by exhaustive search.
- The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)

Let $t(n)$ be a computable function. If an algorithm on input $(x, C(x))$ computes in time $t(n)$ a program p for x, then $|p|=C(x)+\Omega(n)$ (where $n=|x|$).

An easier problem: single source compression

- Alice knows x and $C(x)$; then she can find a shortest program for x by exhaustive search.
- The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)
Let $t(n)$ be a computable function. If an algorithm on input $(x, C(x))$ computes in time $t(n)$ a program p for x, then $|p|=C(x)+\Omega(n)$ (where $n=|x|$).

Theorem (Bauwens, Z., 2014)

There exists algorithms E and D such that E runs in probabilistic poly. time and for all n-bit strings x, for all $\epsilon>0$,
(1) E on input $x, C(x)$ and $1 / \epsilon$, outputs a string p of length $\leq C(x)+\log ^{2}(n / \epsilon)$,
(2) D on input $p, C(x)$ outputs x with probability $1-\epsilon$.

- So, finding a short program for x, given x and $C(x)$, can be done in probabilistic poly. time, but any deterministic algorithm takes time larger than any computable function.
- The decompressor D cannot run in polynomial time, when compression is done at minimum description length (or close to it).

Kolmogorov complexity version of the Slepian-Wolf Th. asymmetric version

Theorem (Bauwens, Z, 2014)
There exists a probabilistic poly. time algorithm A such that

- On input (x, ϵ) and "promise" parameter k, A outputs p,
- $|p|=k+O\left(\log ^{2}(|x| / \epsilon)\right)$,
- If the "promise" $k=C(x \mid y)$ holds, then, with probability $(1-\epsilon),(p, y)$ is a program for x.

Kolmogorov complexity version of the Slepian-Wolf Th. asymmetric version

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that

- On input (x, ϵ) and "promise" parameter k, A outputs p,
- $|p|=k+O\left(\log ^{2}(|x| / \epsilon)\right)$,
- If the "promise" $k=C(x \mid y)$ holds, then, with probability $(1-\epsilon),(p, y)$ is a program for x.
- Alice has x, Bob has y; they want to send x, y to Zack.
- Suppose: $C(x)=2 n, C(y)=2 n, C(x, y)=3 n$.
- Bob can send y, and Alice can compress x to p of length $n+\log ^{2} n$, provided she knows $C(x \mid y)$.

Kolmogorov complexity version of the Slepian-Wolf Theorem- 2 sources

Theorem (Z., 2015)

There exist probabilistic poly.-time algorithms E_{1}, E_{2} and algorithm D such that for all integers n_{1}, n_{2} and n-bit strings x_{1}, x_{2}, if $n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right), n_{1} \geq C\left(x_{1} \mid x_{2}\right), n_{2} \geq C\left(x_{2} \mid x_{1}\right)$, then

- E_{i} on input $\left(x_{i}, n_{i}\right)$ outputs a string p_{i} of length $n_{i}+O\left(\log ^{3} n\right)$, for $i=1,2$,
- D on input (p_{1}, p_{2}) and the complexity profile of $\left(x_{1}, x_{2}\right)$ outputs $\left(x_{1}, x_{2}\right)$ with probability $1-1 / n$.
(The complexity profile of $\left(x_{1}, x_{2}\right)$ is the tuple $\left(C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)\right)$).

Kolmogorov complexity version of the Slepian-Wolf Theorem- ℓ sources

- The case of ℓ senders: sender i has string $x_{i}, i \in[\ell]$.
- If $V=\left\{i_{1}, \ldots, i_{k}\right\}$, we denote $x_{V}=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$.
- The complexity profile of $\left(x_{1}, \ldots, x_{\ell}\right)$ is the set of integers $\left\{C\left(x_{V}\right) \mid V \subseteq[\ell]\right\}$.

Theorem (Z., 2015)

There exist probabilistic poly.-time algorithms E_{1}, \ldots, E_{ℓ}, algorithm D and a function $\alpha(n)=\log ^{O_{\ell}(1)}(n)$, such that for all integers n_{1}, \ldots, n_{ℓ} and n-bit strings x_{1}, \ldots, x_{ℓ},
if $\sum_{i \in V} n_{i} \geq C\left(x_{V} \mid x_{[\ell]-V}\right)$, for all $V \subseteq[\ell]$, then

- E_{i} on input $\left(x_{i}, n_{i}\right)$ outputs a string p_{i} of length $n_{i}+\alpha(n)$, for $i \in[\ell]$,
- D on input $\left(p_{1}, \ldots, p_{\ell}\right)$ and the complexity profile of $\left(x_{1}, \ldots, x_{\ell}\right)$ outputs $\left(x_{1}, \ldots, x_{\ell}\right)$ with probability $1-1 / n$.

On the promise conditions

- [Real Theorem] There exists a poly-time probabilistic algorithm A that on input (x, k) returns a string p of length $k+\operatorname{poly}(\log |x|)$ such that if $C(x \mid y)=k$, then with high probability (p, y) is a program for x.
- The promise condition:

Alice knows $k=C(x \mid y)$.

On the promise conditions

- [Real Theorem] There exists a poly-time probabilistic algorithm A that on input (x, k) returns a string p of length $k+\operatorname{poly}(\log |x|)$ such that if $C(x \mid y)=k$, then with high probability (p, y) is a program for x.
- The promise condition:

Alice knows $k=C(x \mid y)$.

- Can it be relaxed to

Alice knows $k \geq C(x \mid y)$?

- [Dream Theorem ???] \cdots if $C(x \mid y) \leq k \cdots$.

On the promise conditions

- [Real Theorem] There exists a poly-time probabilistic algorithm A that on input (x, k) returns a string p of length $k+\operatorname{poly}(\log |x|)$ such that if $C(x \mid y)=k$, then with high probability (p, y) is a program for x.
- The promise condition:

Alice knows $k=C(x \mid y)$.

- Can it be relaxed to

Alice knows $k \geq C(x \mid y)$?

- [Dream Theorem ???] \cdots if $C(x \mid y) \leq k \cdots$.
- Dream Theorem open.

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.
Let q be some polynomial.
There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k+O(\log |x| / \epsilon)$ such that if $C^{q}(x \mid y) \leq k$, then, with probability $1-\epsilon,(p, y)$ is a program for x.

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.
Let q be some polynomial.
There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k+O(\log |x| / \epsilon)$ such that if $C^{q}(x \mid y) \leq k$, then, with probability $1-\epsilon,(p, y)$ is a program for x.

Assumption H

$\exists f \in \mathrm{E}$ which cannot be computed in space $2^{\circ(n)}$.

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.
Let q be some polynomial.
There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k+O(\log |x| / \epsilon)$ such that if $C^{q}(x \mid y) \leq k$, then, with probability $1-\epsilon,(p, y)$ is a program for x.

Assumption H

$\exists f \in$ E which cannot be computed in space $2^{\circ(n)}$.

$$
\mathrm{E}=\cup_{c>0} \mathrm{DTIME}\left[2^{c n}\right]
$$

Some proof sketches...

First proof

Theorem (Bauwens, Z, 2014)
There exists a probabilistic poly. time algorithm A such that

- On input (x, δ) and promise parameter k, A outputs p,
- $|p|=k+\log ^{2}(|x| / \delta)$,
- If the promise condition $k=C(x \mid y)$ holds, then, with probability $(1-\delta),(p, y)$ is a program for x.

First proof

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that

- On input (x, δ) and promise parameter k, A outputs p,
- $|p|=k+\log ^{2}(|x| / \delta)$,
- If the promise condition $k=C(x \mid y)$ holds, then, with probability $(1-\delta),(p, y)$ is a program for x.

To keep the notation simple, I will assume that y is the empty string, and I will drop y.
Essentially the same proof works for arbitrary y.

Combinatorial object

Key tool: bipartite graphs $G=(L, R, E \subseteq L \times R)$ with the rich owner property: For any $B \subseteq L$ of size $|B| \approx K$, most x in B own most of their neighbors (these neighbors are not shared with any other node from B).

Combinatorial object

Key tool: bipartite graphs $G=(L, R, E \subseteq L \times R)$ with the rich owner property:
For any $B \subseteq L$ of size $|B| \approx K$, most x in B own most of their neighbors (these neighbors are not shared with any other node from B).

- $x \in B$ owns $y \in N(x)$ w.r.t. B if $N(y) \cap B=\{x\}$.
- $x \in B$ is a rich owner if x owns $(1-\delta)$ of its neighbors w.r.t. B.
- $G=(L, R, E \subseteq L \times R)$ has the (K, δ)-rich owner property if for all B with $|B| \leq K,(1-\delta) K$ of the elements in B are rich owners w.r.t. B.

Bipartite graph G

Bipartite graph G

x is a rich owner
w.r.t B
if x owns $(1-\delta)$ of $N(x)$

Bipartite graph G

x is a rich owner
w.r.t B
if x owns $(1-\delta)$ of $N(x)$
G has the (K, δ) rich owner property: $\forall B \subseteq L$, of size at most K,
all nodes in B
except at most $\delta \cdot K$ are rich owners

w.r.t. B
x is a rich owner
w.r.t B
if x owns $(1-\delta)$ of $N(x)$
G has the (K, δ) rich owner property: $\forall B \subseteq L$, of size at most K,
all nodes in B except at most $\delta \cdot K$ are rich owners

w.r.t. B
x is a rich owner
w.r.t B
if x owns $(1-\delta)$ of $N(x)$
G has the (K, δ) rich owner property: $\forall B \subseteq L$, of size at most K,
all nodes in B except at most $\delta \cdot K$ are rich owners
w.r.t. B

Theorem (Bauwens, Z'14)

There exists a computable (uniformly in n, k and $1 / \delta$) graph with the rich owner property for parameters $\left(2^{k}, \delta\right)$ with:

- $L=\{0,1\}^{n}$
- $R=\{0,1\}^{k+O(\log (n / \delta))}$
- $D($ left degree $)=\operatorname{poly}(n / \delta)$

Similar for poly-time G, except overhead in R is $O\left(\log ^{2}(n / \delta)\right)$ and $D=2^{O\left(\log ^{2}(n / \delta)\right)}$.

- Any $p \in N(x)$ owned by x w.r.t. $B=\left\{x^{\prime} \mid C\left(x^{\prime}\right) \leq k\right\}$ is a program for x. How to construct x from p : Enumerate B till we find an element that owns p. This is x.

- Any $p \in N(x)$ owned by x w.r.t. $B=\left\{x^{\prime} \mid C\left(x^{\prime}\right) \leq k\right\}$ is a program for x. How to construct x from p : Enumerate B till we find an element that owns p. This is x.
- So if x is a rich owner, $(1-\delta)$ of his neighbors are programs for it.

- Any $p \in N(x)$ owned by x w.r.t. $B=\left\{x^{\prime} \mid C\left(x^{\prime}\right) \leq k\right\}$ is a program for x. How to construct x from p : Enumerate B till we find an element that owns p. This is x.
- So if x is a rich owner, $(1-\delta)$ of his neighbors are programs for it.
- What if x is a poor owner? There are few poor owners, so x has complexity $<k$.

- Any $p \in N(x)$ owned by x w.r.t. $B=\left\{x^{\prime} \mid C\left(x^{\prime}\right) \leq k\right\}$ is a program for x. How to construct x from p : Enumerate B till we find an element that owns p. This is x.
- So if x is a rich owner, $(1-\delta)$ of his neighbors are programs for it.
- What if x is a poor owner? There are few poor owners, so x has complexity $<k$.
- So if $C(x)=k$, we compress x by picking at random one of its neighbors.

Building graphs with the rich owner property

- Step 1: $(1-\delta)$ of $x \in B$ partially own $(1-\delta)$ of its neighbors.

Building graphs with the rich owner property

shared with only $\operatorname{poly}(n)$ nodes

- Step 1: $(1-\delta)$ of $x \in B$ partially own $(1-\delta)$ of its neighbors.

Building graphs with the rich owner property

shared with only $\operatorname{poly}(n)$ nodes

- Step 1: $(1-\delta)$ of $x \in B$ partially own $(1-\delta)$ of its neighbors.
- Step 2: $(1-\delta)$ of $x \in B$ partially own $(1-\delta)$ of its neighbors.

Building graphs with the rich owner property

shared with only $\operatorname{poly}(n)$ nodes

- Step 1: $(1-\delta)$ of $x \in B$ partially own $(1-\delta)$ of its neighbors.
- Step 2: $(1-\delta)$ of $x \in B$ partially own $(1-\delta)$ of its neighbors.

Step 1 is done with extractors that have small entropy loss.
Step 2 is done by hashing.

Extractors

$E:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ is a (k, ϵ)-extractor if for any $B \subseteq\{0,1\}^{n}$ of size $|B| \geq 2^{k}$ and for any $A \subseteq\{0,1\}^{m}$,

$$
\left|\operatorname{Prob}\left(E\left(U_{B}, U_{d}\right) \in A\right)-\operatorname{Prob}\left(U_{m} \in A\right)\right| \leq \epsilon,
$$

Extractors

uniform distr. on $\{0,1\}^{m}$
$E:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ is a (k, ϵ)-extractor for any $B \subseteq\{0,1\}^{n}$ of size $|B| \geq 2^{k}$ and for any $A \subseteq\{0,1\}^{m}$,

$$
\left|\operatorname{Prob}\left(E\left(U_{B}, U_{d}\right) \in A\right)-\operatorname{Prob}\left(U_{m} \mid \in A\right)\right| \leq \epsilon,
$$

Extractors

$E:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ is a (k, ϵ)-extractor if for any $B \subseteq\{0,1\}^{n}$ of size $|B| \geq 2^{k}$ and for any $A \subseteq\{0,1\}^{m}$,

$$
\left|\operatorname{Prob}\left(E\left(U_{B}, U_{d}\right) \in A\right)-\operatorname{Prob}\left(U_{m} \in A\right)\right| \leq \epsilon
$$

or, in other words,

$$
\left|\frac{|E(B, A)|}{|B| \cdot 2^{d}}-\frac{|A|}{2^{m}}\right| \leq \epsilon .
$$

The entropy loss is $s=k+d-m$.

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in B share most of their neighbors with only poly (n) other nodes from B.

We can view an extractor E as a bipartite graph G_{E} with $L=\{0,1\}^{n}, R=\{0,1\}^{m}$ and left-degree $D=2^{d}$.

If E is a (k, ϵ)-extractor, then it has low congestion:
for any $B \subseteq L$ of size $|B| \approx 2^{k}$, most $x \in B$ share most of their neighbors with only $O\left(1 / \epsilon \cdot 2^{s}\right)$ other nodes in B.

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in B share most of their neighbors with only poly (n) other nodes from B.

We can view an extractor E as a bipartite graph G_{E} with $L=\{0,1\}^{n}, R=\{0,1\}^{m}$ and left-degree $D=2^{d}$.

If E is a (k, ϵ)-extractor, then it has low congestion:
 for any $B \subseteq L$ of size $|B| \approx 2^{k}$, most $x \in B$ share most of their neignnors with only $O\left(1 / \epsilon \cdot 2^{s}\right)$ other nodes in B.

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in B share most of their neighbors with only poly (n) other nodes from B.

We can view an extractor E as a bipartite graph G_{E} with $L=\{0,1\}^{n}, R=\{0,1\}^{m}$ and left-degree $D=2^{d}$.

If E is a (k, ϵ)-extractor, then it has low congestion:
for any $B \subseteq L$ of size $|B| \approx 2^{k}$, most $x \in B$ share most of their neighbors with only $O\left(1 / \epsilon \cdot 2^{s}\right)$ other nodes in B.

By the probabilistic method: There are extractors whith entropy loss $s=O(\log (1 / \epsilon))$ and \log-left degree $d=O(\log n / \epsilon)$.
[Guruswami, Umans, Vadhan, 2009] Poly-time extractors with entropy loss $s=O(\log (1 / \epsilon))$ and log-left degree $d=O\left(\log ^{2} n / \epsilon\right)$.
So for $1 / \epsilon=\operatorname{poly}(n)$, we get our GOAL.

Extractors have low congestion

DEF: $E:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ is a (k, ϵ)-extractor if for any $B \subseteq\{0,1\}^{n}$ of size $|B| \geq 2^{k}$ and for any $A \subseteq\{0,1\}^{m},\left|\operatorname{Prob}\left(E\left(U_{B}, U_{d}\right) \in A\right)-\operatorname{Prob}(A)\right| \leq \epsilon$.
The entropy loss is $s=k+d-m$.

Extractors have low congestion

DEF: $E:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ is a (k, ϵ)-extractor if for any $B \subseteq\{0,1\}^{n}$ of size $|B| \geq 2^{k}$ and for any $A \subseteq\{0,1\}^{m},\left|\operatorname{Prob}\left(E\left(U_{B}, U_{d}\right) \in A\right)-\operatorname{Prob}(A)\right| \leq \epsilon$.
The entropy loss is $s=k+d-m$.

Lemma

Let E be a (k, ϵ)-extractor, $B \subseteq L,|B|=\frac{1}{\epsilon} 2^{k}$.
Then all $x \in B$, except at most 2^{k}, share $(1-2 \epsilon)$ of $N(x)$ with at most $2^{s}\left(\frac{1}{\epsilon}\right)^{2}$ other nodes in B.

Extractors have low congestion

DEF: $E:\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$ is a (k, ϵ)-extractor if for any $B \subseteq\{0,1\}^{n}$ of size $|B| \geq 2^{k}$ and for any $A \subseteq\{0,1\}^{m},\left|\operatorname{Prob}\left(E\left(U_{B}, U_{d}\right) \in A\right)-\operatorname{Prob}(A)\right| \leq \epsilon$.
The entropy loss is $s=k+d-m$.

Lemma

Let E be a (k, ϵ)-extractor, $B \subseteq L,|B|=\frac{1}{\epsilon} 2^{k}$.
Then all $x \in B$, except at most 2^{k}, share $(1-2 \epsilon)$ of $N(x)$ with at most $2^{s}\left(\frac{1}{\epsilon}\right)^{2}$ other nodes in B.

PROOF. Restrict left side to B. Avg-right-degree $=\frac{|B| 2^{d}}{2^{m}}=\frac{1}{\epsilon} \cdot 2^{s}$.
Take A - the set of right nodes with $\operatorname{deg}_{B} \geq\left(2^{s}(1 / \epsilon)\right) \cdot(1 / \epsilon)$. Then $|A| /|R| \leq \epsilon$.
Take B^{\prime} the nodes in B that do not have the property, i.e., they have $>2 \epsilon$ fraction of neighbors in A.
$\left|\operatorname{Prob}\left(E\left(U_{B^{\prime}}, U_{d}\right) \in A\right)-|A| /|R|\right|>|2 \epsilon-\epsilon|=\epsilon$.
So $\left|B^{\prime}\right| \leq 2^{k}$.

Step 2

GOAL: Reduce sharing most neighbors with poly (n) other nodes, to sharing them with no other nodes.

$$
y \text { is shared by } x \text { with } x_{2}, \ldots, x_{\text {poly }(n)}
$$

Step 2

GOAL: Reduce sharing most neighbors with poly (n) other nodes, to sharing them with no other nodes.

Let $x_{1}, x_{2}, \ldots, x_{\text {poly }(n)}$ be n-bit strings.
Consider p_{1}, \ldots, p_{T} the first T prime numbers, where $T=(1 / \delta) \cdot n \cdot \operatorname{poly}(n)$.
y is shared by x with $x_{2}, \ldots, x_{\operatorname{poly}(n)}$
For every x_{i}, for $(1-\delta)$ of the T prime numbers, $\left(x_{i} \bmod p\right)$ is unique in $\left(x_{1} \bmod p, \ldots, x_{T} \bmod p\right)$.

Step 2

GOAL: Reduce sharing most neighbors with poly (n) other nodes, to sharing them with no other nodes.

Let $x_{1}, x_{2}, \ldots, x_{\text {poly }(n)}$ be n-bit strings.
Consider p_{1}, \ldots, p_{T} the first T prime numbers, where $T=(1 / \delta) \cdot n \cdot \operatorname{poly}(n)$.
For every x_{i}, for $(1-\delta)$ of the T prime numbers, $\left(x_{i} \bmod p\right)$ is unique in $\left(x_{1} \bmod p, \ldots, x_{T} \bmod p\right)$.
In this way, by "splitting" each edge into T new edges we reach our GOAL.
y is shared by x with $x_{2}, \ldots, x_{\operatorname{poly}(n)}$

Step 2

GOAL: Reduce sharing most neighbors with poly (n) other nodes, to sharing them with no other nodes.

Let $x_{1}, x_{2}, \ldots, x_{\text {poly }(n)}$ be n-bit strings.
Consider p_{1}, \ldots, p_{T} the first T prime numbers, where $T=(1 / \delta) \cdot n \cdot \operatorname{poly}(n)$.
For every x_{i}, for $(1-\delta)$ of the T prime numbers, $\left(x_{i} \bmod p\right)$ is unique in $\left(x_{1} \bmod p, \ldots, x_{T} \bmod p\right)$.
In this way, by "splitting" each edge into T new edges we reach our GOAL.
y is shared by x with $x_{2}, \ldots, x_{\operatorname{poly}_{(n)}}$

Cost: overhead of $O(\log n)$ to the right nodes and the left degree increases by a factor of $T=\operatorname{poly}(n)$.

2-nd proof: Kolmogorov complexity version of the Slepian-Wolf Theorem- 2 sources

Theorem $(Z, 2015)$

There exist probabilistic poly.-time algorithms E_{1}, E_{2} and algorithm D such that for all integers n_{1}, n_{2} and n-bit strings x_{1}, x_{2}, if $n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right), n_{1} \geq C\left(x_{1} \mid x_{2}\right), n_{2} \geq C\left(x_{2} \mid x_{1}\right)$, then

- E_{i} on input $\left(x_{i}, n_{i}\right)$ outputs a string p_{i} of length $n_{i}+O\left(\log ^{3} n\right)$, for $i=1,2$,
- D on input (p_{1}, p_{2}) and the complexity profile of $\left(x_{1}, x_{2}\right)$ outputs $\left(x_{1}, x_{2}\right)$ with probability $1-1 / n$.
(The complexity profile of $\left(x_{1}, x_{2}\right)$ is the tuple $\left(C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)\right)$).

Graphs with the rich owner property - extended version

Bipartite graph G, with left degree D; parameters k, δ;

Graphs with the rich owner property - extended version

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B| \geq 2^{k}$
at least fraction $(1-\delta)$ of
$y \in N(x)$ have
$\operatorname{deg}_{B}(y) \leq\left(2 / \delta^{2}\right)|B| D / 2^{k}$

Graphs with the rich owner property - extended version

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B| \geq 2^{k}$
at least fraction $(1-\delta)$ of
$y \in N(x)$ have
$\operatorname{deg}_{B}(y) \leq\left(2 / \delta^{2}\right)|B| D / 2^{k}$
G has the (k, δ) rich owner
 property:
$\forall B \subseteq L$,
all nodes in B except at most
$\delta \cdot|B|$ are rich owners w.r.t. B

Graphs with the rich owner property - extended version

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B| \geq 2^{k}$
at least fraction $(1-\delta)$ of
$y \in N(x)$ have
$\operatorname{deg}_{B}(y) \leq\left(2 / \delta^{2}\right)|B| D / 2^{k}$
G has the (k, δ) rich owner
 property:
$\forall B \subseteq L$,
all nodes in B except at most
$\delta \cdot|B|$ are rich owners w.r.t. B

Graphs with the rich owner property - extended version

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B| \geq 2^{k}$ at least fraction $(1-\delta)$ of $y \in N(x)$ have $\operatorname{deg}_{B}(y) \leq\left(2 / \delta^{2}\right)|B| D / 2^{k}$
G has the (k, δ) rich owner property:
$\forall B \subseteq L$,
all nodes in B except at most
$\delta \cdot|B|$ are rich owners w.r.t. B

Theorem

There exists a poly.-time computable (uniformly in n, k and $1 / \delta$) graph with the rich owner property for parameters (k, δ) with:

- $L=\{0,1\}^{n}$
- $R=\{0,1\}^{k+O\left(\log ^{3}(n / \delta)\right)}$
- $D($ left degree $)=2^{O\left(\log ^{3}(n / \delta)\right)}$

Proof sketch

- Alice has x_{1}, Bob has x_{2}.
- They want to compress to lengths $n_{1}+O\left(\log ^{3}(n / \delta)\right)$, resp. $n_{2}+O\left(\log ^{3}(n / \delta)\right)$.
- Hypothesis: $n_{1} \geq C\left(x_{1} \mid x_{2}\right), n_{2} \geq C\left(x_{2} \mid x_{1}\right), n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right)$.
- Alice uses G_{1}, graph with the $\left(n_{1}, \delta\right)$ rich owner property. She compresses by choosing p_{1}, a random neighbor of x_{1} in G_{1}.
- Bob uses G_{2}, graph with the (n_{2}, δ) rich owner property. He compresses by choosing p_{2}, a random neighbor of x_{2} in G_{2}.
- Receiver reconstructs x_{1}, x_{2} from p_{1}, p_{2}.

Reconstruction of x_{1}, x_{2} from p_{1}, p_{2}

Case 1: $C\left(x_{2}\right) \leq n_{2}$.

- Let $B=\left\{x \mid C(x) \leq C\left(x_{2}\right)\right\}$.
- $|B| \leq 2^{C\left(x_{2}\right)} \leq 2^{n_{2}}$. So, B is in the small regime in G_{2}.
- Claim: x_{2} can be reconstructed from p_{2} by the following argument.
- |set of poor owners $|\leq \delta| B \mid$. So, poor owners have complexity $<C\left(x_{2}\right)$.
- So, x_{2} is a rich owner; with prob. $1-\delta, x_{2}$ owns p_{2} with respect to B.
- x_{2} can be reconstructed from p_{2}, by enumerating B till we see a neighbor of p_{2}.
- Next, let $B=\left\{x_{1}^{\prime} \mid C\left(x_{1}^{\prime} \mid x_{2}\right) \leq C\left(x_{1} \mid x_{2}\right)\right\}$.
- $|B| \leq 2^{C\left(x_{1} \mid x_{2}\right)} \leq 2^{n_{1}}$. So B is in the small regime in G_{1}.
- Using argument, x_{1} can be reconstructed from p_{1}.

Reconstruction of x_{1}, x_{2} from $p_{1}, p_{2}-(2)$

Case 2: $C\left(x_{2}\right)>n_{2}$.

- Claim 1. $C\left(p_{2}\right)={ }^{*} n_{2}$ (* means that we ignore polylog terms).
- Pf. Let $B=\left\{x \mid C(x) \leq C\left(x_{2}\right)\right\}$. B is in the large regime in G_{2}.
- With prob. $1-\delta, x_{2}$ shares p_{2} with at most $\left(2 / \delta^{2}\right)|B| D / 2^{n_{2}}=2^{C\left(x_{2}\right)-n_{2}+\text { polylogn }}$ other nodes in B.
- x_{2} can be reconstructed from p_{2} and its rank among p_{2} 's neighbors in B.
- So, $C\left(x_{2}\right) \leq^{*} C\left(p_{2}\right)+\left(C\left(x_{2}\right)-n_{2}\right)$.
- So, $C\left(p_{2}\right) \geq^{*} n_{2}$. Since $\left|p_{2}\right|=^{*} n_{2}$, we get $C\left(p_{2}\right)=^{*} n_{2}$.

Reconstruction of x_{1}, x_{2} from $p_{1}, p_{2}-(3)$

- Claim 2. Given p_{2}, x_{1} and $C\left(x_{2} \mid x_{1}\right)$, receiver can reconstruct x_{2}
- Pf. $B=\left\{x_{2}^{\prime} \mid C\left(x_{2}^{\prime} \mid x_{1}\right) \leq C\left(x_{2} \mid x_{1}\right)\right\}$ is in the small regime case, and we can use the argument.
- So, $C\left(x_{2}, x_{1}\right) \leq^{*} C\left(p_{2}, x_{1}\right)$.
- But $C\left(p_{2}, x_{1}\right) \leq^{*} C\left(x_{2}, x_{1}\right)$ (because p_{2} can be obtained from x_{2} and its rank among x_{2} 's neighbors).
- So, $C\left(x_{2}, x_{1}\right)={ }^{*} C\left(p_{2}, x_{1}\right)$.
- So, $C\left(x_{1} \mid p_{2}\right)={ }^{*} C\left(x_{1}, p_{2}\right)-C\left(p_{2}\right)=^{*} C\left(x_{1}, x_{2}\right)-n_{2}$.

Reconstruction of x_{1}, x_{2} from $p_{1}, p_{2}-(4)$

- Claim 3. x_{1} can be reconstructed from p_{1} and p_{2}. (So, by Claim 2, x_{2} can also be reconstructed, and we are done.)
- Pf. $B=\left\{x_{1}^{\prime} \mid C\left(x_{1}^{\prime} \mid p_{2}\right) \leq C\left(x_{1}, x_{2}\right)-n_{2}\right\}$.
- $x_{1} \in B$, by the previous equality.
- Since $C\left(x_{1}, x_{2}\right)-n_{2} \leq\left(n_{1}+n_{2}\right)-n_{2}=n_{1}, B$ is in the small regime case.
- Conclusion follows by argument.

Third proof.

Theorem (Z)

Let us assume complexity assumption H holds.
Let q be some polynomial.
There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k+O(\log |x| / \delta)$ such that if $C^{q}(x \mid y) \leq k$, then, with probability $1-\delta,(p, y)$ is a program for x.

Third proof.

Theorem (Z)

Let us assume complexity assumption H holds.
Let q be some polynomial.
There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k+O(\log |x| / \delta)$ such that if $C^{q}(x \mid y) \leq k$, then, with probability $1-\delta,(p, y)$ is a program for x.

Assumption H

$\exists f \in \mathrm{E}$ which cannot be computed in space $2^{o(n)}$.

Third proof.

Theorem (Z)

Let us assume complexity assumption H holds.
Let q be some polynomial.
There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k+O(\log |x| / \delta)$ such that if $C^{q}(x \mid y) \leq k$, then, with probability $1-\delta,(p, y)$ is a program for x.

Assumption H

$\exists f \in$ E which cannot be computed in space $2^{o(n)}$.

$$
\mathrm{E}=\cup_{c>0} \operatorname{DTIME}\left[2^{c n}\right]
$$

Assumption H implies pseudo-random generators that fool PSPACE predicates

[Nisan-Wigderson'94, Klivans - van Melkebeek'02, Miltersen'01]
If H is true, then there exists a pseudo-random generator g that fools any predicate computable in PSPACE with polynomial advice.

There exists $g:\{0,1\}^{c \log n} \rightarrow\{0,1\}^{n}$ such that for any T computable in PSPACE with poly advice,

$$
\left|\operatorname{Prob}\left[T\left(g\left(U_{s}\right)\right)\right]-\operatorname{Prob}\left[T\left(U_{n}\right)\right]\right|<\epsilon .
$$

Proof - (2)

- Let R be a random binary matrix with $m=k+1 / \delta$ rows and $|x|$ columns.
- We say R isolates x if for all $x^{\prime} \neq x$ in $\left\{x^{\prime} \mid C^{q}\left(x^{\prime} \mid y\right) \leq k\right\}, R x \neq R x^{\prime}$.
- For $x^{\prime} \neq x, \operatorname{Prob}_{R}\left[R x^{\prime} \neq R x\right]=2^{-m}$.
- $\operatorname{Prob}_{R}[R$ does not isolate $x] \leq 2^{k} \cdot 2^{-m}=\delta$.
- If R isolates x, Alice can send to Bob $p=R x$, and p has length $k+1 / \delta$.
- But Bob also needs to know R, which is longer than x...

Proof - (2)

- Let R be a random binary matrix with $m=k+1 / \delta$ rows and $|x|$ columns.
- We say R isolates x if for all $x^{\prime} \neq x$ in $\left\{x^{\prime} \mid C^{q}\left(x^{\prime} \mid y\right) \leq k\right\}, R x \neq R x^{\prime}$.
- For $x^{\prime} \neq x, \operatorname{Prob}_{R}\left[R x^{\prime} \neq R x\right]=2^{-m}$.
- $\operatorname{Prob}_{R}[R$ does not isolate $x] \leq 2^{k} \cdot 2^{-m}=\delta$.
- If R isolates x, Alice can send to Bob $p=R x$, and p has length $k+1 / \delta$.
- But Bob also needs to know R, which is longer than $x \ldots$
- Consider predicate $T_{x, y}(R)=$ true iff R isolates x.
- $T_{x, y}$ is in PSPACE with poly advice and is satisfied by a fraction of $(1-\delta)$ of the R 's.
- Using a prg. g that fools $T_{x, y},\left|\operatorname{Prob}_{s}\left[T_{x, y}(g(s))\right]-\operatorname{Prob}_{R}\left[T_{x, y}(R)\right]\right|<\delta$.
- So, with probability $1-2 \delta, g(s)$ isolates x.
- With probability $1-2 \delta, p=(s, g(s) \cdot x)$ is a program for x of length $k+O(\log |x|)$, QED.

Final remarks

- Slepian-Wolf Th: Distributed compression can be as good as centralized compression for memoryless sources (independent drawings from a joint distribution).
- Kolm. complexity version of the Slepian-Wolf Th: Distributed compression can be essentially as good as centralized compression for algorithmically correlated sources.
- ... provided the senders and the receiver know the information/complexity profile of the data.
- Network Information Theory: well-established, dynamic.
- Algorithmic Information Theory: only sporadic studies at this moment.

Thank you.

