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Intro

Distributed compression vs. centralized compression

Alice and Bob have correlated strings x , and respectively y , which they want to
compress.

Scenario 1 (Centralized compression): They collaborate and compress
together.

Scenario 2 (Distributed compression): They compress separately.

Questions:

What are the possible compression rates in the two scenarios?

Is there are a difference between the two scenarios?

Answer: For quite general types of correlation, distributed compression can be on
a par with centralized compression, provided the parties know how the data is
correlated.
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Intro

Modeling the correlation of x and y

Statistical correlation:

x and y are realizations of random variables X and Y ;

Their correlation is H(X ) + H(Y )− H(X ,Y ), where
H is Shannon entropy.

Algorithmical correlation:

Correlation of x and y : C (x) + C (y)− C (x , y), where
C is Kolmogorov complexity.
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Intro

Information Theory view

The n-bit strings x and y are realizations of r.v.’s X and Y .

X and Y are a 2-DMS (discrete memoryless source): n independent drawings
from (X1,Y1), a joint distribution on bits .

TASK: Alice uses compression function E1 : {0, 1}n → {1, 2, . . . , 2nR1}.
Bob uses compression function E2 : {0, 1}n → {1, 2, . . . , 2nR2}.
GOAL: (X ,Y ) can be reconstructed from the two encodings:

There exists D such that with high probability: D(E1(X ),E2(Y )) = (X ,Y ).

QUESTION: What compression rates R1,R2 can satisfy the task?

From Shannon Source Coding Theorem, it is necessary that

R1 + R2 ≥ H(X1,Y1)
R1 ≥ H(X1 | Y1)
R2 ≥ H(Y1 | X1).
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Intro

Slepian-Wolf Theorem

It is necessary that

R1 + R2 ≥ H(X1,Y1),R1 ≥ H(X1 | Y1),R2 ≥ H(Y1 | X1).

Theorem (Slepian-Wolf)

Any R1,R2 satisfying strictly the above inequalities are sufficient for the task.

The theorem holds for any constant number of sources (not just two sources).

The decompression procedure knows H(X1,X2),H(X1),H(X2) – the
information profile of the sources.

The type of correlation is rather simple, because of the memoryless property.
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Intro

Algorithmic correlation: Motivating story

Alice knows a line `; Bob knows a point P ∈ `; They want to send ` and P to
Zack.

`

P

` : 2n bits of information (intercept, slope in GF[2n]).
P : 2n bits of information (the 2 coord. in GF[2n]).
Total information in (`,P) = 3n bits; mutual information of ` and P = n
bits.

QUESTION: Can Alice send 2n bits, and Bob n bits?

Ans: Yes, of course. But is it just because of the simple geometric relation
between ` and P?

QUESTION: Can Alice send 1.5n bits, and Bob 1.5n bits? Can Alice send
1.74n bits, and Bob 1.26n bits?
Ans: ???
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Intro

Algorithmic correlation: Kolmogorov complexity

Kolmogorov complexity:
C (x) = length of a shortest program that produces x .

Alice knows x ; Bob knows y ; They want to send x , y to Zack;

Assumptions:

C(x) = 2n; x has 2n bits of information.
C(y) = 2n; y has 2n bits of information.
C(x , y) = 3n bits; so, the mutual information of x and y is n bits.

QUESTION: How many bits do Alice and Bob need to send?

Each one has to send at least n bits, and together at least 3n bits.
Can Alice send 2n bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
Can Alice send 1.5n bits, and Bob 1.5n bits?
Can Alice send 1.74n bits, and Bob 1.26 bits?

ANSWER: Yes, if Zack knows the complexity profile of x and y (and if we
ignore logarithmic overhead).

The main focus of this talk is to explain this answer.
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Results

Muchnik’s Theorem (1)

Alice has x , Bob has y .

There is a string p of length C (x | y) such that (p, y) is a program for x .

p can be found from x , y with log n help bits.

Can Alice alone compute p?

In absolute terms, the answer is NO.

Muchnik’s Theorem. Using a few help bits and with a small overhead in
the length, the answer is YES.
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Results

Muchnik’s Theorem (2)

Theorem (Muchnik’s Theorem)

For every x , y of complexity at most n, there exists p such that
• |p| = C (x | y) + O(log n).
• C (p | x) = O(log n)
• C (x | p, y) = O(log n)

overhead

help bits

help bits
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Results

Polynomial-time version of Muchnik’s Th.

Theorem (Bauwens, Makhlin, Vereshchagin, Z., 2013)

For every x , y of complexity at most n, there exists p such that
• |p| = C (x | y) + O(log n).
• Cpoly(p | x) = O(log n)
• C (x | p, y) = O(log n)

Theorem (Teutsch, 2014)

For every x , y of complexity at most n, there exists p such that
• |p| = C (x | y) + O(1).
• Cpoly(p | x) = O(log n)
• (p, y) is a program for x .
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Results

Asymmetric Slepian-Wolf with help bits

Alice knows x ; Bob knows y . Suppose C (x) = 2n,C (y) = 2n,C (x , y) = 3n.

QUESTION: Can Alice communicate x to Bob by sending him n bits?

Muchnik’s Theorem: Since C (x | y) ≈ n, Alice, using only O(log n) help bits,
can compute in polynomial time a string p of length ≈ n, such that Bob can
reconstruct x from (p, y).
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Results

Kolmogorov complexity version of the Slepian-Wolf Th.
with help bits

Theorem (Romashchenko, 2005)

Let x , y be n-bit strings and s, t numbers such that
• s + t ≥ C (x , y)
• s ≥ C (x | y)
• t ≥ C (y | x).
There exists strings p, q such that

(1) |p| = s + O(log n), |q| = t + O(log n).

(2) C (p | x) = O(log n),C (q | y) = O(log n)

(3) (p, q) is a program for (x , y).

Note: Romashchenko’s theorem holds for an arbitrary constant number of sources.
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Results

Alice knows x ; Bob knows y . Suppose C (x) = 2n,C (y) = 2n,C (x , y) = 3n.

QUESTION: Can Alice and Bob communicate x , y to Zack , each one sending
3n/2 bits (or 1.74n, respectively 1.26n)?

Romashchenko’s theorem: YES (modulo the O(log n) overhead), provided
they have a few help bits.
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Results

QUESTION: Can we get rid of the help bits?

Effective compression at minimum description length is impossible, so the
compression/decompression procedures must have some additional
information.

But maybe we can replace the arbitrary help bits with some meaningful
information which is more likely to be available in applications.

Recall the example when Alice knows the line ` and Bob knows a point P. It
may be that Alice, Bob and Zack know that the data is correlated in this
way: P ∈ `. Can they take advantage of this?
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Results

An easier problem: single source compression

Alice knows x and C(x); then she can find a shortest program for x by exhaustive
search.

The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)

Let t(n) be a computable function. If an algorithm on input (x ,C(x)) computes in time
t(n) a program p for x , then |p| = C(x) + Ω(n) (where n = |x |).

Theorem (Bauwens, Z., 2014)

There exists algorithms E and D such that E runs in probabilistic poly. time and for all
n-bit strings x , for all ε > 0,

1 E on input x ,C(x) and 1/ε, outputs a string p of length ≤ C(x) + log2(n/ε),

2 D on input p,C(x) outputs x with probability 1− ε.

So, finding a short program for x , given x and C(x), can be done in probabilistic
poly. time, but any deterministic algorithm takes time larger than any computable
function.

The decompressor D cannot run in polynomial time, when compression is done at
minimum description length (or close to it).
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Results

Kolmogorov complexity version of the Slepian-Wolf Th. -
asymmetric version

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that

• On input (x , ε) and “promise” parameter k , A outputs p,

• |p| = k + O(log2(|x |/ε)),

• If the “promise” k = C (x | y) holds, then,

with probability (1− ε), (p, y) is a program for x .

Alice has x , Bob has y ; they want to send x , y to Zack.

Suppose: C (x) = 2n,C (y) = 2n,C (x , y) = 3n.

Bob can send y , and Alice can compress x to p of length n + log2 n, provided
she knows C (x | y).
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Results

Kolmogorov complexity version of the Slepian-Wolf
Theorem- 2 sources

Theorem (Z., 2015)

There exist probabilistic poly.-time algorithms E1,E2 and algorithm D such that
for all integers n1, n2 and n-bit strings x1, x2,

if n1 + n2 ≥ C (x1, x2), n1 ≥ C (x1 | x2), n2 ≥ C (x2 | x1),

then

Ei on input (xi , ni ) outputs a string pi of length ni + O(log3 n), for i = 1, 2,

D on input (p1, p2) and the complexity profile of (x1, x2) outputs (x1, x2) with
probability 1− 1/n.

(The complexity profile of (x1, x2) is the tuple (C (x1),C (x2),C (x1, x2))).
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Results

Kolmogorov complexity version of the Slepian-Wolf
Theorem- ` sources

The case of ` senders: sender i has string xi , i ∈ [`].

If V = {i1, . . . , ik}, we denote xV = (xi1 , . . . , xik ).

The complexity profile of (x1, . . . , x`) is the set of integers {C (xV ) | V ⊆ [`]}.

Theorem (Z., 2015)

There exist probabilistic poly.-time algorithms E1, . . . ,E`, algorithm D and a
function α(n) = logO`(1)(n), such that for all integers n1, . . . , n` and n-bit strings
x1, . . . , x`,
if
∑

i∈V ni ≥ C (xV | x[`]−V ), for all V ⊆ [`],
then

Ei on input (xi , ni ) outputs a string pi of length ni + α(n), for i ∈ [`],

D on input (p1, . . . , p`) and the complexity profile of (x1, . . . , x`) outputs
(x1, . . . , x`) with probability 1− 1/n.
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Results

On the promise conditions

[Real Theorem] There exists a poly-time probabilistic algorithm A that on
input (x , k) returns a string p of length k + poly(log |x |) such that
if C (x | y) = k , then with high probability (p, y) is a program for x .

The promise condition:

Alice knows k = C (x | y).

Can it be relaxed to
Alice knows k ≥ C (x | y)?

[Dream Theorem ???] · · · if C (x | y) ≤ k · · · .
Dream Theorem open.
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Results

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.
Let q be some polynomial.
There exists a poly time, probabilistic algorithm A that on input (x , k) returns a
string p of length k + O(log |x |/ε) such that if C q(x | y)≤k, then, with
probability 1− ε, (p, y) is a program for x .

Assumption H

∃f ∈ E which cannot be computed in space 2o(n).

E = ∪c>0DTIME[2cn]
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Results

Weaker version of the Dream Theorem.
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Results
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Proofs

Some proof sketches...
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Proofs

First proof

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that
• On input (x , δ) and promise parameter k , A outputs p,
• |p| = k + log2(|x |/δ),
• If the promise condition k = C (x | y) holds, then,
with probability (1− δ), (p, y) is a program for x .

To keep the notation simple, I will assume that y is the empty string, and I will
drop y .
Essentially the same proof works for arbitrary y .
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Proofs

Combinatorial object

Key tool: bipartite graphs G = (L,R,E ⊆ L× R) with the rich owner property:

For any B ⊆ L of size |B| ≈ K , most x in B own most of their neighbors (these
neighbors are not shared with any other node from B).

• x ∈ B owns y ∈ N(x) w.r.t. B if N(y) ∩ B = {x}.

• x ∈ B is a rich owner if x owns (1− δ) of its neighbors w.r.t. B.

• G = (L,R,E ⊆ L× R) has the (K , δ)-rich owner property if
for all B with |B| ≤ K , (1− δ)K of the elements in B are rich owners w.r.t. B.
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Proofs

Bipartite graph G

x is a rich owner
w.r.t B
if x owns (1− δ) of
N(x)

G has the (K , δ)
rich owner property:
∀B ⊆ L, of size at
most K ,
all nodes in B
except at most δ · K
are rich owners
w.r.t. B

x

N(x)

x ’s neighbors

x

N(x)B
x

N(x)B

rich owners

poor owners
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Proofs

Theorem (Bauwens, Z’14)

There exists a computable (uniformly in n, k and 1/δ ) graph with the rich owner
property for parameters (2k , δ) with:
• L = {0, 1}n
• R = {0, 1}k+O(log(n/δ))

• D(left degree) = poly(n/δ)

Similar for poly-time G , except overhead in R is O(log2(n/δ)) and D = 2O(log2(n/δ)).

x

N(x)B

∀B, |B| ≤ 2k
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Proofs

x p

N(x)B

• Any p ∈ N(x) owned by x w.r.t. B = {x ′ | C (x ′) ≤ k} is a program for x .

How to construct x from p: Enumerate B till we find an element that owns p.
This is x .

• So if x is a rich owner, (1− δ) of his neighbors are programs for it.

• What if x is a poor owner? There are few poor owners, so x has complexity
< k.

• So if C (x) = k, we compress x by picking at random one of its neighbors.
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Proofs

Building graphs with the rich owner property

• Step 1: (1− δ) of x ∈ B partially own (1− δ) of its neighbors.

shared with only poly(n) nodes

• Step 2: (1− δ) of x ∈ B partially own (1− δ) of its neighbors.

Step 1 is done with extractors that have small entropy loss.

Step 2 is done by hashing.
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Proofs

Extractors

E : {0, 1}n × {0, 1}d → {0, 1}m is a (k , ε)-extractor if for any B ⊆ {0, 1}n of size
|B| ≥ 2k and for any A ⊆ {0, 1}m,

|Prob(E (UB ,Ud ) ∈ A)− Prob(Um ∈ A)| ≤ ε,

uniform distr. on B uniform distr. on {0, 1}d

uniform distr. on {0, 1}m

or, in other words, ∣∣∣∣ |E (B,A)|
|B| · 2d

− |A|
2m

∣∣∣∣ ≤ ε.
The entropy loss is s = k + d −m.
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Proofs

Step 1

GOAL : ∀B ⊆ L with |B| ≈ K , most nodes in B share most of their
neighbors with only poly(n) other nodes from B.

We can view an extractor E as a bipartite graph GE with L = {0, 1}n,R = {0, 1}m
and left-degree D = 2d .

If E is a (k , ε)-extractor, then it has low congestion:
for any B ⊆ L of size |B| ≈ 2k , most x ∈ B share most of their neighbors with
only O(1/ε · 2s) other nodes in B.

proof on next slide

By the probabilistic method: There are extractors whith entropy loss
s = O(log(1/ε)) and log-left degree d = O(log n/ε).

[Guruswami, Umans, Vadhan, 2009] Poly-time extractors with entropy loss
s = O(log(1/ε)) and log-left degree d = O(log2 n/ε).

So for 1/ε = poly(n), we get our GOAL.
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Proofs

Extractors have low congestion

DEF: E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for any B ⊆ {0, 1}n of size
|B| ≥ 2k and for any A ⊆ {0, 1}m, |Prob(E(UB ,Ud) ∈ A)− Prob(A)| ≤ ε.
The entropy loss is s = k + d −m.

Lemma

Let E be a (k, ε)-extractor, B ⊆ L, |B| = 1
ε2k .

Then all x ∈ B, except at most 2k , share (1− 2ε) of N(x) with at most 2s( 1
ε )2

other nodes in B.

PROOF. Restrict left side to B. Avg-right-degree = |B|2d
2m = 1

ε · 2
s .

Take A - the set of right nodes with degB ≥ (2s(1/ε)) · (1/ε). Then |A|/|R| ≤ ε.
Take B ′ the nodes in B that do not have the property, i.e., they have > 2ε
fraction of neighbors in A.

|Prob(E (UB′ ,Ud) ∈ A)− |A|/|R|| > |2ε− ε| = ε.

So |B ′| ≤ 2k .
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Proofs

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing
them with no other nodes.

Let x1, x2, . . . , xpoly(n) be n-bit strings.

Consider p1, . . . , pT the first T prime
numbers, where T = (1/δ) · n · poly(n).

For every xi , for (1− δ) of the T prime
numbers, (xi mod p) is unique in
(x1 mod p, . . . , xT mod p).

In this way, by ”splitting” each edge into
T new edges we reach our GOAL.

Cost: overhead of O(log n) to the right
nodes and the left degree increases by a
factor of T = poly(n) .

x y

y is shared by x with x2, . . . , xpoly(n)

x y

y is shared by x with x2, . . . , xpoly(n)

...

(y , x mod p1, p1)
(y , x mod p2, p2)

(y , x mod pT , pT )
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Proofs

2-nd proof: Kolmogorov complexity version of the
Slepian-Wolf Theorem- 2 sources

Theorem (Z,2015)

There exist probabilistic poly.-time algorithms E1,E2 and algorithm D such that
for all integers n1, n2 and n-bit strings x1, x2,

if n1 + n2 ≥ C (x1, x2), n1 ≥ C (x1 | x2), n2 ≥ C (x2 | x1),

then

Ei on input (xi , ni ) outputs a string pi of length ni + O(log3 n), for i = 1, 2,

D on input (p1, p2) and the complexity profile of (x1, x2) outputs (x1, x2) with
probability 1− 1/n.

(The complexity profile of (x1, x2) is the tuple (C (x1),C (x2),C (x1, x2))).
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Proofs

Graphs with the rich owner property - extended version

Bipartite graph G , with left
degree D; parameters k , δ;

x is a rich owner w.r.t B if

small regime case: |B| ≤ 2k

x owns (1− δ) of N(x)

large regime case: |B| ≥ 2k

at least fraction (1− δ) of
y ∈ N(x) have
degB(y) ≤ (2/δ2)|B|D/2k

G has the (k, δ) rich owner
property:
∀B ⊆ L,
all nodes in B except at most
δ · |B| are rich owners w.r.t. B

x
N(x)

x ’s neighbors

x
N(x)B

x
N(x)B

rich owners

poor owners
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Proofs

Theorem

There exists a poly.-time computable (uniformly in n, k and 1/δ ) graph with the rich
owner property for parameters (k, δ) with:
• L = {0, 1}n

• R = {0, 1}k+O(log3(n/δ))

• D(left degree) = 2O(log3(n/δ))

x

N(x)B
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Proofs

Proof sketch

Alice has x1, Bob has x2.

They want to compress to lengths n1 + O(log3(n/δ)), resp.
n2 + O(log3(n/δ)).

Hypothesis: n1 ≥ C (x1 | x2), n2 ≥ C (x2 | x1), n1 + n2 ≥ C (x1, x2).

Alice uses G1, graph with the (n1, δ) rich owner property. She compresses by
choosing p1, a random neighbor of x1 in G1.

Bob uses G2, graph with the (n2, δ) rich owner property. He compresses by
choosing p2, a random neighbor of x2 in G2.

Receiver reconstructs x1, x2 from p1, p2.
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Proofs

Reconstruction of x1, x2 from p1, p2

Case 1: C (x2) ≤ n2.

Let B = {x | C (x) ≤ C (x2)}.
|B| ≤ 2C(x2) ≤ 2n2 . So, B is in the small regime in G2.

Claim: x2 can be reconstructed from p2 by the following argument.

|set of poor owners| ≤ δ|B|. So, poor owners have complexity < C(x2).
So, x2 is a rich owner; with prob. 1− δ, x2 owns p2 with respect to B.
x2 can be reconstructed from p2, by enumerating B till we see a neighbor of p2.

Next, let B = {x ′1 | C (x ′1 | x2) ≤ C (x1 | x2)}.
|B| ≤ 2C(x1|x2) ≤ 2n1 . So B is in the small regime in G1.

Using argument, x1 can be reconstructed from p1.
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Proofs

Reconstruction of x1, x2 from p1, p2 – (2)

Case 2: C (x2) > n2.

Claim 1. C (p2) =∗ n2 (∗ means that we ignore polylog terms).

Pf. Let B = {x | C (x) ≤ C (x2)}. B is in the large regime in G2.

With prob. 1− δ, x2 shares p2 with at most
(2/δ2)|B|D/2n2 = 2C(x2)−n2+polylogn other nodes in B.

x2 can be reconstructed from p2 and its rank among p2’s neighbors in B.

So, C (x2) ≤∗ C (p2) + (C (x2)− n2).

So, C (p2) ≥∗ n2. Since |p2| =∗ n2, we get C (p2) =∗ n2.
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Proofs

Reconstruction of x1, x2 from p1, p2 – (3)

Claim 2. Given p2, x1 and C (x2 | x1), receiver can reconstruct x2

Pf. B = {x ′2 | C (x ′2 | x1) ≤ C (x2 | x1)} is in the small regime case, and we
can use the argument.

So, C (x2, x1) ≤∗ C (p2, x1).

But C (p2, x1) ≤∗ C (x2, x1) (because p2 can be obtained from x2 and its rank
among x2’s neighbors).

So, C (x2, x1) =∗ C (p2, x1).

So, C (x1 | p2) =∗ C (x1, p2)− C (p2) =∗ C (x1, x2)− n2.
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Proofs

Reconstruction of x1, x2 from p1, p2 – (4)

Claim 3. x1 can be reconstructed from p1 and p2. (So, by Claim 2, x2 can
also be reconstructed, and we are done.)

Pf. B = {x ′1 | C (x ′1 | p2) ≤ C (x1, x2)− n2}.
x1 ∈ B, by the previous equality.

Since C (x1, x2)− n2 ≤ (n1 + n2)− n2 = n1, B is in the small regime case.

Conclusion follows by argument.
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Proofs

Third proof.

Theorem (Z)

Let us assume complexity assumption H holds.
Let q be some polynomial.
There exists a poly time, probabilistic algorithm A that on input (x , k) returns a
string p of length k + O(log |x |/δ) such that if C q(x | y)≤k, then, with
probability 1− δ, (p, y) is a program for x .

Assumption H

∃f ∈ E which cannot be computed in space 2o(n).

E = ∪c>0DTIME[2cn]
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Proofs

Assumption H implies pseudo-random generators that fool
PSPACE predicates

[Nisan-Wigderson’94, Klivans - van Melkebeek’02, Miltersen’01]

If H is true, then there exists a pseudo-random generator g that fools any
predicate computable in PSPACE with polynomial advice.

There exists g : {0, 1}c log n → {0, 1}n such that for any T computable in PSPACE
with poly advice, ∣∣Prob[T (g(Us))]− Prob[T (Un)]

∣∣ < ε.

Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 42 / 45



Proofs

Proof - (2)

Let R be a random binary matrix with m = k + 1/δ rows and |x | columns.

We say R isolates x if for all x ′ 6= x in {x ′ | C q(x ′ | y) ≤ k}, Rx 6= Rx ′.

For x ′ 6= x , ProbR [Rx ′ 6= Rx ] = 2−m.

ProbR [R does not isolate x ] ≤ 2k · 2−m = δ.

If R isolates x , Alice can send to Bob p = Rx , and p has length k + 1/δ.

But Bob also needs to know R, which is longer than x ...

Consider predicate Tx,y (R) = true iff R isolates x .

Tx,y is in PSPACE with poly advice and is satisfied by a fraction of (1− δ) of
the R’s.

Using a prg. g that fools Tx,y ,
∣∣Probs [Tx,y (g(s))]− ProbR [Tx,y (R)]

∣∣ < δ.

So, with probability 1− 2δ, g(s) isolates x .

With probability 1− 2δ, p = (s, g(s) · x) is a program for x of length
k + O(log |x |), QED.
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Finale

Final remarks

Slepian-Wolf Th: Distributed compression can be as good as centralized
compression for memoryless sources (independent drawings from a joint
distribution).

Kolm. complexity version of the Slepian-Wolf Th: Distributed compression
can be essentially as good as centralized compression for algorithmically
correlated sources.

... provided the senders and the receiver know the information/complexity
profile of the data.

Network Information Theory: well-established, dynamic.

Algorithmic Information Theory: only sporadic studies at this moment.
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Finale

Thank you.
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