Distributed compression – The algorithmic-information-theoretical view

Marius Zimand

Towson University

Institut Henri Poincaré - Feb. 2, 2016

・ロト ・日 ・ ・ ・ ・ ・ 日 ・ くりゃ

Distributed compression vs. centralized compression

Alice and Bob have correlated strings x, and respectively y, which they want to compress.

- Scenario 1 (Centralized compression): They collaborate and compress together.
- Scenario 2 (Distributed compression): They compress separately.

Questions:

- What are the possible compression rates in the two scenarios?
- Is there are a difference between the two scenarios?

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

2016 2 / 45

Distributed compression vs. centralized compression

Alice and Bob have correlated strings x, and respectively y, which they want to compress.

- Scenario 1 (Centralized compression): They collaborate and compress together.
- Scenario 2 (Distributed compression): They compress separately.

Questions:

- What are the possible compression rates in the two scenarios?
- Is there are a difference between the two scenarios?

Answer: For quite general types of correlation, distributed compression can be on a par with centralized compression, provided the parties know how the data is correlated.

Modeling the correlation of x and y

Statistical correlation:

x and y are realizations of random variables X and Y; Their correlation is H(X) + H(Y) - H(X, Y), where H is Shannon entropy.

もしゃ 山下 エルト 山下 エーション

2016

3 / 45

Modeling the correlation of x and y

Statistical correlation:

x and y are realizations of random variables X and Y; Their correlation is H(X) + H(Y) - H(X, Y), where H is Shannon entropy.

Algorithmical correlation:

Correlation of x and y: C(x) + C(y) - C(x, y), where C is Kolmogorov complexity.

< = > < = > < = > < = >

• The *n*-bit strings x and y are realizations of r.v.'s X and Y.

2016

4 / 45

- The *n*-bit strings x and y are realizations of r.v.'s X and Y.
- X and Y are a 2-DMS (discrete memoryless source): n independent drawings from (X_1, Y_1) , a joint distribution on bits .

Intro

2016

4 / 45

- The *n*-bit strings x and y are realizations of r.v.'s X and Y.
- X and Y are a 2-DMS (discrete memoryless source): n independent drawings from (X_1, Y_1) , a joint distribution on bits .
- TASK: Alice uses compression function E₁: {0,1}ⁿ → {1,2,...,2^{nR₁}}. Bob uses compression function E₂: {0,1}ⁿ → {1,2,...,2^{nR₂}}. GOAL: (X, Y) can be reconstructed from the two encodings: There exists D such that with high probability: D(E₁(X), E₂(Y)) = (X, Y).

《曰》 《圖》 《臣》 《臣》

• The *n*-bit strings x and y are realizations of r.v.'s X and Y.

Intro

- X and Y are a 2-DMS (discrete memoryless source): n independent drawings from (X_1, Y_1) , a joint distribution on bits .
- TASK: Alice uses compression function E₁: {0,1}ⁿ → {1,2,...,2^{nR₁}}. Bob uses compression function E₂: {0,1}ⁿ → {1,2,...,2^{nR₂}}. GOAL: (X, Y) can be reconstructed from the two encodings: There exists D such that with high probability: D(E₁(X), E₂(Y)) = (X, Y).
- QUESTION: What compression rates R_1, R_2 can satisfy the task?

2016

4 / 45

• The *n*-bit strings x and y are realizations of r.v.'s X and Y.

Intro

- X and Y are a 2-DMS (discrete memoryless source): n independent drawings from (X_1, Y_1) , a joint distribution on bits .
- TASK: Alice uses compression function E₁: {0,1}ⁿ → {1,2,...,2^{nR₁}}. Bob uses compression function E₂: {0,1}ⁿ → {1,2,...,2^{nR₂}}. GOAL: (X, Y) can be reconstructed from the two encodings: There exists D such that with high probability: D(E₁(X), E₂(Y)) = (X, Y).
- QUESTION: What compression rates R_1, R_2 can satisfy the task?
- From Shannon Source Coding Theorem, it is necessary that

$$egin{array}{rcl} {R_1} + {R_2} & \geq {H(X_1,Y_1)} \ {R_1} & \geq {H(X_1 \mid Y_1)} \ {R_2} & \geq {H(Y_1 \mid X_1)}. \end{array}$$

2016

4 / 45

Slepian-Wolf Theorem

It is necessary that

$R_1 + R_2 \ge H(X_1, Y_1), R_1 \ge H(X_1 | Y_1), R_2 \ge H(Y_1 | X_1).$

Theorem (Slepian-Wolf)

Any R_1 , R_2 satisfying strictly the above inequalities are sufficient for the task.

5 / 45

Slepian-Wolf Theorem

It is necessary that

$R_1 + R_2 \ge H(X_1, Y_1), R_1 \ge H(X_1 | Y_1), R_2 \ge H(Y_1 | X_1).$

Theorem (Slepian-Wolf)

Any R_1 , R_2 satisfying strictly the above inequalities are sufficient for the task.

- The theorem holds for any constant number of sources (not just two sources).
- The decompression procedure knows H(X₁, X₂), H(X₁), H(X₂) the information profile of the sources.
- The type of correlation is rather simple, because of the memoryless property.

Algorithmic correlation: Motivating story

• Alice knows a line ℓ ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

Algorithmic correlation: Motivating story

• Alice knows a line ℓ ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

• ℓ : 2*n* bits of information (intercept, slope in GF[2^{*n*}]).

6 / 45

Algorithmic correlation: Motivating story

• Alice knows a line ℓ ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- ℓ : 2*n* bits of information (intercept, slope in GF[2^{*n*}]).
- P: 2n bits of information (the 2 coord. in $GF[2^n]$).

6 / 45

Algorithmic correlation: Motivating story

• Alice knows a line ℓ ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- $\ell : 2n$ bits of information (intercept, slope in $GF[2^n]$).
- P: 2n bits of information (the 2 coord. in $GF[2^n]$).
- Total information in $(\ell, P) = 3n$ bits; mutual information of ℓ and P = n bits.

2016

6 / 45

Algorithmic correlation: Motivating story

• Alice knows a line ℓ ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- $\ell : 2n$ bits of information (intercept, slope in $GF[2^n]$).
- P: 2n bits of information (the 2 coord. in $GF[2^n]$).
- Total information in $(\ell, P) = 3n$ bits; mutual information of ℓ and P = n bits.
- QUESTION: Can Alice send 2n bits, and Bob n bits?

Ans: Yes, of course. But is it just because of the simple geometric relation between ℓ and P?

Algorithmic correlation: Motivating story

• Alice knows a line ℓ ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- ℓ : 2*n* bits of information (intercept, slope in GF[2^{*n*}]).
- P: 2n bits of information (the 2 coord. in $GF[2^n]$).
- Total information in $(\ell, P) = 3n$ bits; mutual information of ℓ and P = n bits.
- QUESTION: Can Alice send 2n bits, and Bob n bits?

Ans: Yes, of course. But is it just because of the simple geometric relation between ℓ and P?

• QUESTION: Can Alice send 1.5*n* bits, and Bob 1.5*n* bits? Can Alice send 1.74*n* bits, and Bob 1.26*n* bits? Ans: ???

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2016 6 / 45

Algorithmic correlation: Kolmogorov complexity

• Kolmogorov complexity:

C(x) = length of a shortest program that produces x.

Algorithmic correlation: Kolmogorov complexity

• Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

• Alice knows x; Bob knows y; They want to send x, y to Zack;

SAC

Algorithmic correlation: Kolmogorov complexity

• Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:

SAC

Algorithmic correlation: Kolmogorov complexity

• Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.

Algorithmic correlation: Kolmogorov complexity

• Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.

7 / 45

Algorithmic correlation: Kolmogorov complexity

• Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.

Algorithmic correlation: Kolmogorov complexity

• Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.

Algorithmic correlation: Kolmogorov complexity

Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?

7 / 45

Algorithmic correlation: Kolmogorov complexity

Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
 - Each one has to send at least *n* bits, and together at least 3*n* bits.

7 / 45

Algorithmic correlation: Kolmogorov complexity

Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
 - Each one has to send at least *n* bits, and together at least 3*n* bits.
 - Can Alice send 2*n* bits, and Bob *n* bits? (Asymmetric Slepian-Wolf coding)

7 / 45

Algorithmic correlation: Kolmogorov complexity

Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
 - Each one has to send at least *n* bits, and together at least 3*n* bits.
 - Can Alice send 2*n* bits, and Bob *n* bits? (Asymmetric Slepian-Wolf coding)
 - Can Alice send 1.5n bits, and Bob 1.5n bits?

7 / 45

Algorithmic correlation: Kolmogorov complexity

Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
 - Each one has to send at least *n* bits, and together at least 3*n* bits.
 - Can Alice send 2*n* bits, and Bob *n* bits? (Asymmetric Slepian-Wolf coding)
 - Can Alice send 1.5*n* bits, and Bob 1.5*n* bits?
 - Can Alice send 1.74n bits, and Bob 1.26 bits?

7 / 45

Algorithmic correlation: Kolmogorov complexity

Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
 - Each one has to send at least *n* bits, and together at least 3*n* bits.
 - Can Alice send 2*n* bits, and Bob *n* bits? (Asymmetric Slepian-Wolf coding)
 - Can Alice send 1.5*n* bits, and Bob 1.5*n* bits?
 - Can Alice send 1.74n bits, and Bob 1.26 bits?

7 / 45

Algorithmic correlation: Kolmogorov complexity

Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
 - Each one has to send at least *n* bits, and together at least 3*n* bits.
 - Can Alice send 2*n* bits, and Bob *n* bits? (Asymmetric Slepian-Wolf coding)
 - Can Alice send 1.5*n* bits, and Bob 1.5*n* bits?
 - Can Alice send 1.74n bits, and Bob 1.26 bits?
- ANSWER: Yes, if Zack knows the complexity profile of x and y (and if we
 ignore logarithmic overhead).

<ロト < 回 > < 臣 > < 臣 > 三 三 つ つ

Algorithmic correlation: Kolmogorov complexity

• Kolmogorov complexity:

C(x) =length of a shortest program that produces x.

- Alice knows x; Bob knows y; They want to send x, y to Zack;
- Assumptions:
 - C(x) = 2n; x has 2n bits of information.
 - C(y) = 2n; y has 2n bits of information.
 - C(x, y) = 3n bits; so, the mutual information of x and y is n bits.
- QUESTION: How many bits do Alice and Bob need to send?
 - Each one has to send at least n bits, and together at least 3n bits.
 - Can Alice send 2n bits, and Bob n bits? (Asymmetric Slepian-Wolf coding)
 - Can Alice send 1.5*n* bits, and Bob 1.5*n* bits?
 - Can Alice send 1.74n bits, and Bob 1.26 bits?
- ANSWER: Yes, if Zack knows the complexity profile of x and y (and if we ignore logarithmic overhead).
- The main focus of this talk is to explain this answer.

Muchnik's Theorem (1)

- Alice has x, Bob has y.
- There is a string p of length C(x | y) such that (p, y) is a program for x.
- p can be found from x, y with $\log n$ help bits.
- Can Alice alone compute p?
- In absolute terms, the answer is NO.
- **Muchnik's Theorem.** Using a few help bits and with a small overhead in the length, the answer is YES.

Muchnik's Theorem (2)

Theorem (Muchnik's Theorem)

For every x, y of complexity at most n, there exists p such that $p = C(x + y) + O(\log p)$

- $|p| = C(x \mid y) + O(\log n).$
- $C(p \mid x) = O(\log n)$
- $C(x \mid p, y) = O(\log n)$

9 / 45

Muchnik's Theorem (2)

<ロト < 団 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

9 / 45
Muchnik's Theorem (2)

・ロト <
回 ト <
三 ト <
三 ト <
三 ・ つへ
の
</p>

2016

Polynomial-time version of Muchnik's Th.

Theorem (Bauwens, Makhlin, Vereshchagin, Z., 2013)

For every x, y of complexity at most n, there exists p such that f(x,y) = f(x,y) + f(x,y)

• $|p| = C(x \mid y) + O(\log n).$

•
$$C^{\text{poly}}(p \mid x) = O(\log n)$$

• $C(x \mid p, y) = O(\log n)$

Theorem (Teutsch, 2014)

For every x, y of complexity at most n, there exists p such that

- |p| = C(x | y) + O(1).
- $C^{\text{poly}}(p \mid x) = O(\log n)$
- (p, y) is a program for x.

《曰》 《圖》 《臣》 《臣》

Asymmetric Slepian-Wolf with help bits

- Alice knows x; Bob knows y. Suppose C(x) = 2n, C(y) = 2n, C(x, y) = 3n.
- QUESTION: Can Alice communicate x to Bob by sending him n bits?
- Muchnik's Theorem: Since $C(x | y) \approx n$, Alice, using only $O(\log n)$ help bits, can compute in polynomial time a string p of length $\approx n$, such that Bob can reconstruct x from (p, y).

2016

Kolmogorov complexity version of the Slepian-Wolf Th. with help bits

Theorem (Romashchenko, 2005) Let x, y be n-bit strings and s, t numbers such that • $s + t \ge C(x, y)$ • $s \ge C(x \mid y)$ • $t \ge C(y \mid x)$. There exists strings p, q such that (1) $|p| = s + O(\log n), |q| = t + O(\log n)$. (2) $C(p \mid x) = O(\log n), C(q \mid y) = O(\log n)$ (3) (p, q) is a program for (x, y).

Note: Romashchenko's theorem holds for an arbitrary constant number of sources.

2016 12 / 45

< = > < @ > < E > < E > < E</p>

Results

- Alice knows x; Bob knows y. Suppose C(x) = 2n, C(y) = 2n, C(x, y) = 3n.
- QUESTION: Can Alice and Bob communicate x, y to Zack, each one sending 3n/2 bits (or 1.74n, respectively 1.26n)?
- Romashchenko's theorem: YES (modulo the $O(\log n)$ overhead), provided they have a few help bits.

13 / 45

Results

- QUESTION: Can we get rid of the help bits?
- Effective compression at minimum description length is impossible, so the compression/decompression procedures must have some additional information.
- But maybe we can replace the arbitrary help bits with some meaningful information which is more likely to be available in applications.
- Recall the example when Alice knows the line ℓ and Bob knows a point P. It may be that Alice, Bob and Zack know that the data is correlated in this way: P ∈ ℓ. Can they take advantage of this?

An easier problem: single source compression

- Alice knows x and C(x); then she can find a shortest program for x by exhaustive search.
- The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)

Let t(n) be a computable function. If an algorithm on input (x, C(x)) computes in time t(n) a program p for x, then $|p| = C(x) + \Omega(n)$ (where n = |x|).

2016

An easier problem: single source compression

- Alice knows x and C(x); then she can find a shortest program for x by exhaustive search.
- The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)

Let t(n) be a computable function. If an algorithm on input (x, C(x)) computes in time t(n) a program p for x, then $|p| = C(x) + \Omega(n)$ (where n = |x|).

Theorem (Bauwens, Z., 2014)

0

There exists algorithms E and D such that E runs in probabilistic poly. time and for all n-bit strings x, for all $\epsilon > 0$,

- ① E on input x, C(x) and $1/\epsilon$, outputs a string p of length $\leq C(x) + \log^2(n/\epsilon)$,
 - 2) D on input p, C(x) outputs x with probability 1ϵ .
 - So, finding a short program for x, given x and C(x), can be done in probabilistic poly. time, but any deterministic algorithm takes time larger than any computable function.

● The decompressor *D* cannot run in polynomial time, when compression is done at minimum description length (or close to it). Marius Zimand (Towson University) Kolm. Slepian Wolf 2016 15 / 45

Kolmogorov complexity version of the Slepian-Wolf Th. - asymmetric version

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that

- On input (x, ϵ) and "promise" parameter k, A outputs p,
- $|p| = k + O(\log^2(|x|/\epsilon)),$
- If the "promise" $k = C(x \mid y)$ holds, then,

with probability $(1 - \epsilon)$, (p, y) is a program for x.

16 / 45

Kolmogorov complexity version of the Slepian-Wolf Th. - asymmetric version

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that

- On input (x, ϵ) and "promise" parameter k, A outputs p,
- $|p| = k + O(\log^2(|x|/\epsilon))$,
- If the "promise" k = C(x | y) holds, then, with probability $(1 - \epsilon)$, (p, y) is a program for x.
 - Alice has x, Bob has y; they want to send x, y to Zack.
 - Suppose: C(x) = 2n, C(y) = 2n, C(x, y) = 3n.
 - Bob can send y, and Alice can compress x to p of length $n + \log^2 n$, provided she knows $C(x \mid y)$.

< = > < @ > < E > < E > < E</p>

Kolmogorov complexity version of the Slepian-Wolf Theorem- 2 sources

Theorem (Z., 2015)

There exist probabilistic poly.-time algorithms E_1, E_2 and algorithm D such that for all integers n_1, n_2 and n-bit strings x_1, x_2 ,

if
$$n_1 + n_2 \ge C(x_1, x_2)$$
, $n_1 \ge C(x_1 \mid x_2)$, $n_2 \ge C(x_2 \mid x_1)$,

then

- E_i on input (x_i, n_i) outputs a string p_i of length $n_i + O(\log^3 n)$, for i = 1, 2,
- D on input (p₁, p₂) and the complexity profile of (x₁, x₂) outputs (x₁, x₂) with probability 1 − 1/n.

(The complexity profile of (x_1, x_2) is the tuple $(C(x_1), C(x_2), C(x_1, x_2)))$.

イロト イロト イヨト イヨト

Kolmogorov complexity version of the Slepian-Wolf Theorem- ℓ sources

- The case of ℓ senders: sender *i* has string x_i , $i \in [\ell]$.
- If $V = \{i_1, ..., i_k\}$, we denote $x_V = (x_{i_1}, ..., x_{i_k})$.
- The complexity profile of (x_1, \ldots, x_ℓ) is the set of integers $\{C(x_V) \mid V \subseteq [\ell]\}$.

Theorem (Z., 2015)

There exist probabilistic poly-time algorithms E_1, \ldots, E_{ℓ} , algorithm D and a function $\alpha(n) = \log^{O_{\ell}(1)}(n)$, such that for all integers n_1, \ldots, n_{ℓ} and n-bit strings x_1, \ldots, x_{ℓ} , if $\sum_{i \in V} n_i \ge C(x_V \mid x_{[\ell]-V})$, for all $V \subseteq [\ell]$, then

- E_i on input (x_i, n_i) outputs a string p_i of length $n_i + \alpha(n)$, for $i \in [\ell]$,
- D on input (p₁,..., p_ℓ) and the complexity profile of (x₁,..., x_ℓ) outputs (x₁,..., x_ℓ) with probability 1 − 1/n.

2016 18 / 45

< = > < @ > < E > < E > < E</p>

On the promise conditions

- **[Real Theorem]** There exists a poly-time probabilistic algorithm A that on input (x, k) returns a string p of length $k + poly(\log |x|)$ such that if C(x | y) = k, then with high probability (p, y) is a program for x.
- The promise condition:

Alice knows $k = C(x \mid y)$.

19 / 45

On the promise conditions

- **[Real Theorem]** There exists a poly-time probabilistic algorithm A that on input (x, k) returns a string p of length $k + poly(\log |x|)$ such that if C(x | y) = k, then with high probability (p, y) is a program for x.
- The promise condition:

Alice knows $k = C(x \mid y)$.

- Or Can it be relaxed to Alice knows k ≥ C(x | y)?
- [Dream Theorem ???] \cdots if $C(x \mid y) \leq k \cdots$.

2016

On the promise conditions

- **[Real Theorem]** There exists a poly-time probabilistic algorithm A that on input (x, k) returns a string p of length $k + poly(\log |x|)$ such that if C(x | y) = k, then with high probability (p, y) is a program for x.
- The promise condition:

Alice knows $k = C(x \mid y)$.

- Or Can it be relaxed to Alice knows k ≥ C(x | y)?
- [Dream Theorem ???] \cdots if $C(x \mid y) \leq k \cdots$.
- Dream Theorem open.

2016

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.

Let q be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k + O(\log |x|/\epsilon)$ such that if $C^q(x | y) \le k$, then, with probability $1 - \epsilon$, (p, y) is a program for x.

2016

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.

Let q be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k + O(\log |x|/\epsilon)$ such that if $C^{q}(x \mid y) \leq k$, then, with probability $1 - \epsilon$, (p, y) is a program for x.

Assumption H

 $\exists f \in E$ which cannot be computed in space $2^{o(n)}$.

イロト イロト イヨト イヨト

Weaker version of the Dream Theorem.

Theorem (Z)

Let us assume complexity assumption H holds.

Let q be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k + O(\log |x|/\epsilon)$ such that if $C^q(x \mid y) \leq k$, then, with probability $1 - \epsilon$, (p, y) is a program for x.

Results

DQC

イロト イロト イモト イモト 三日

Some proof sketches...

First proof

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that

- On input (x, δ) and promise parameter k, A outputs p,
- $|p| = k + \log^2(|x|/\delta)$,
- If the promise condition k = C(x | y) holds, then, with probability (1δ) , (p, y) is a program for x.

2016

First proof

Theorem (Bauwens, Z, 2014)

There exists a probabilistic poly. time algorithm A such that

- On input (x, δ) and promise parameter k, A outputs p,
- $|p| = k + \log^2(|x|/\delta)$,
- If the promise condition k = C(x | y) holds, then, with probability (1δ) , (p, y) is a program for x.

To keep the notation simple, I will assume that y is the empty string, and I will drop y.

Essentially the same proof works for arbitrary y.

Combinatorial object

Key tool: bipartite graphs $G = (L, R, E \subseteq L \times R)$ with the rich owner property:

For any $B \subseteq L$ of size $|B| \approx K$, most x in B own most of their neighbors (these neighbors are not shared with any other node from B).

24 / 45

Combinatorial object

Key tool: bipartite graphs $G = (L, R, E \subseteq L \times R)$ with the rich owner property:

For any $B \subseteq L$ of size $|B| \approx K$, most x in B own most of their neighbors (these neighbors are not shared with any other node from B).

- $x \in B$ owns $y \in N(x)$ w.r.t. B if $N(y) \cap B = \{x\}$.
- $x \in B$ is a rich owner if x owns (1δ) of its neighbors w.r.t. B.

• $G = (L, R, E \subseteq L \times R)$ has the (K, δ) -rich owner property if for all B with $|B| \leq K$, $(1 - \delta)K$ of the elements in B are rich owners w.r.t. B.

2016

Bipartite graph G

・ロト ・ 西 ト ・ ヨ ト ・ ヨ ・ つへぐ

2016 25 / 45

Bipartite graph G

```
x is a rich owner
w.r.t B
if x owns (1 - \delta) of
N(x)
```


・ロト ・日 ・ ・ モ ・ ・ モ ・ E 990 25 / 45

Bipartite graph G

x is a rich owner w.r.t B if x owns $(1 - \delta)$ of N(x)

G has the (K, δ) rich owner property: $\forall B \subseteq L$, of size at most K. all nodes in Bexcept at most $\delta \cdot K$ are rich owners w.r.t. *B*

< = > < = > < = > < = >

nac

x is a rich owner w.r.t B if x owns $(1 - \delta)$ of N(x)

G has the (K, δ) rich owner property: $\forall B \subseteq L$, of size at most K, all nodes in Bexcept at most $\delta \cdot K$ are rich owners w.r.t. *B*

< = > < = > < = > < = >

DQC

x is a rich owner w.r.t B if x owns $(1 - \delta)$ of N(x)

G has the (K, δ) rich owner property: $\forall B \subseteq L$, of size at most K, all nodes in Bexcept at most $\delta \cdot K$ are rich owners w.r.t. *B*

Theorem (Bauwens, Z'14)

There exists a computable (uniformly in n, k and $1/\delta$) graph with the rich owner property for parameters $(2^k, \delta)$ with:

- $L = \{0, 1\}^n$ $R = \{0, 1\}^{k+O(\log(n/\delta))}$
- $D(left degree) = poly(n/\delta)$

Similar for poly-time G, except overhead in R is $O(\log^2(n/\delta))$ and $D = 2^{O(\log^2(n/\delta))}$.

• Any $p \in N(x)$ owned by x w.r.t. $B = \{x' \mid C(x') \le k\}$ is a program for x. How to construct x from p: Enumerate B till we find an element that owns p. This is x.

27 / 45

• Any $p \in N(x)$ owned by x w.r.t. $B = \{x' \mid C(x') \le k\}$ is a program for x. How to construct x from p: Enumerate B till we find an element that owns p. This is x.

• So if x is a rich owner, $(1 - \delta)$ of his neighbors are programs for it.

27 / 45

• Any $p \in N(x)$ owned by x w.r.t. $B = \{x' \mid C(x') \le k\}$ is a program for x. How to construct x from p: Enumerate B till we find an element that owns p. This is x.

- So if x is a rich owner, (1δ) of his neighbors are programs for it.
- What if x is a poor owner? There are few poor owners, so x has complexity < k.

27 / 45

• Any $p \in N(x)$ owned by x w.r.t. $B = \{x' \mid C(x') \le k\}$ is a program for x. How to construct x from p: Enumerate B till we find an element that owns p. This is x.

- So if x is a rich owner, (1δ) of his neighbors are programs for it.
- What if x is a poor owner? There are few poor owners, so x has complexity < k.
- So if C(x) = k, we compress x by picking at random one of its neighbors.

Building graphs with the rich owner property

• Step 1: $(1 - \delta)$ of $x \in B$ partially own $(1 - \delta)$ of its neighbors.

Building graphs with the rich owner property

もしゃ 山下 エルト 山下 エーション

2016
Building graphs with the rich owner property

• Step 2: $(1 - \delta)$ of $x \in B$ partially own $(1 - \delta)$ of its neighbors.

Building graphs with the rich owner property

• Step 2: $(1 - \delta)$ of $x \in B$ partially own $(1 - \delta)$ of its neighbors.

Step 1 is done with extractors that have small entropy loss. Step 2 is done by hashing.

2016

Extractors

 $E: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -extractor if for any $B \subseteq \{0,1\}^n$ of size $|B| \ge 2^k$ and for any $A \subseteq \{0,1\}^m$,

 $|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(U_m \in A)| < \epsilon$

< = > < = > < = > < = > 29 / 45

Extractors

$$\begin{split} E: \{0,1\}^n\times\{0,1\}^d \to \{0,1\}^m \text{ is a } (k,\epsilon)\text{-extractor if for any } B\subseteq \{0,1\}^n \text{ of size } \\ |B| \geq 2^k \text{ and for any } A\subseteq \{0,1\}^m, \end{split}$$

$$|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(U_m \in A)| \leq \epsilon,$$

or, in other words,

$$\left|\frac{|E(B,A)|}{|B|\cdot 2^d} - \frac{|A|}{2^m}\right| \le \epsilon.$$

The entropy loss is s = k + d - m.

Sac

・ロト ・四ト ・ヨト ・ ヨ

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in *B* share most of their neighbors with only poly(n) other nodes from *B*.

We can view an extractor E as a bipartite graph G_E with $L = \{0, 1\}^n, R = \{0, 1\}^m$ and left-degree $D = 2^d$.

If *E* is a (k, ϵ) -extractor, then it has low congestion: for any $B \subseteq L$ of size $|B| \approx 2^k$, most $x \in B$ share most of their neighbors with only $O(1/\epsilon \cdot 2^s)$ other nodes in *B*.

2016 30 / 45

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in *B* share most of their neighbors with only poly(n) other nodes from *B*.

We can view an extractor E as a bipartite graph G_E with $L = \{0, 1\}^n, R = \{0, 1\}^m$ and left-degree $D = 2^d$.

If *E* is a (k, ϵ) -extractor, then it has low congestion: proof on next slide for any $B \subseteq L$ of size $|B| \approx 2^k$, most $x \in B$ share most of their neignbors with only $O(1/\epsilon \cdot 2^s)$ other nodes in *B*.

Step 1

GOAL : $\forall B \subseteq L$ with $|B| \approx K$, most nodes in *B* share most of their neighbors with only poly(n) other nodes from *B*.

We can view an extractor E as a bipartite graph G_E with $L = \{0, 1\}^n, R = \{0, 1\}^m$ and left-degree $D = 2^d$.

If *E* is a (k, ϵ) -extractor, then it has low congestion: for any $B \subseteq L$ of size $|B| \approx 2^k$, most $x \in B$ share most of their neighbors with only $O(1/\epsilon \cdot 2^s)$ other nodes in *B*.

By the probabilistic method: There are extractors whith entropy loss $s = O(\log(1/\epsilon))$ and log-left degree $d = O(\log n/\epsilon)$.

[Guruswami, Umans, Vadhan, 2009] Poly-time extractors with entropy loss $s = O(\log(1/\epsilon))$ and log-left degree $d = O(\log^2 n/\epsilon)$.

So for $1/\epsilon = poly(n)$, we get our GOAL.

Extractors have low congestion

DEF: $E: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -extractor if for any $B \subseteq \{0,1\}^n$ of size $|B| \ge 2^k$ and for any $A \subseteq \{0,1\}^m$, $|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(A)| \le \epsilon$. The entropy loss is s = k + d - m.

31 / 45

Extractors have low congestion

DEF: $E : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -extractor if for any $B \subseteq \{0,1\}^n$ of size $|B| \ge 2^k$ and for any $A \subseteq \{0,1\}^m$, $|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(A)| \le \epsilon$. The entropy loss is s = k + d - m.

Lemma

Let E be a (k, ϵ) -extractor, $B \subseteq L$, $|B| = \frac{1}{\epsilon}2^k$. Then all $x \in B$, except at most 2^k , share $(1 - 2\epsilon)$ of N(x) with at most $2^s(\frac{1}{\epsilon})^2$ other nodes in B.

2016

Extractors have low congestion

DEF: $E : \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -extractor if for any $B \subseteq \{0,1\}^n$ of size $|B| \ge 2^k$ and for any $A \subseteq \{0,1\}^m$, $|\operatorname{Prob}(E(U_B, U_d) \in A) - \operatorname{Prob}(A)| \le \epsilon$. The entropy loss is s = k + d - m.

Lemma

Let *E* be a (k, ϵ) -extractor, $B \subseteq L$, $|B| = \frac{1}{\epsilon}2^k$. Then all $x \in B$, except at most 2^k , share $(1 - 2\epsilon)$ of N(x) with at most $2^s(\frac{1}{\epsilon})^2$ other nodes in *B*.

PROOF. Restrict left side to *B*. Avg-right-degree $=\frac{|B|2^d}{2^m}=\frac{1}{\epsilon}\cdot 2^s$. Take *A* - the set of right nodes with $\deg_B \ge (2^s(1/\epsilon))\cdot (1/\epsilon)$. Then $|A|/|R| \le \epsilon$. Take *B'* the nodes in *B* that do not have the property, i.e., they have $> 2\epsilon$ fraction of neighbors in *A*.

$$|\operatorname{Prob}(E(U_{B'}, U_d) \in A) - |A|/|R|| > |2\epsilon - \epsilon| = \epsilon.$$

So $|B'| \le 2^k$.

2016

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing them with no other nodes.

y is shared by x with $x_2, \ldots, x_{poly(n)}$

<u>х_____у</u>

2016

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing them with no other nodes.

Let $x_1, x_2, \ldots, x_{poly(n)}$ be *n*-bit strings.

Consider p_1, \ldots, p_T the first T prime numbers, where $T = (1/\delta) \cdot n \cdot \text{poly}(n)$.

For every x_i , for $(1 - \delta)$ of the *T* prime numbers, $(x_i \mod p)$ is unique in $(x_1 \mod p, \dots, x_T \mod p)$.

y is shared by x with $x_2, \ldots, x_{poly(n)}$

x_____y

2016 32 / 45

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing them with no other nodes.

Let $x_1, x_2, \ldots, x_{poly(n)}$ be *n*-bit strings.

Consider p_1, \ldots, p_T the first T prime numbers, where $T = (1/\delta) \cdot n \cdot \text{poly}(n)$.

For every x_i , for $(1 - \delta)$ of the *T* prime numbers, $(x_i \mod p)$ is unique in $(x_1 \mod p, \dots, x_T \mod p)$.

In this way, by "splitting" each edge into T new edges we reach our GOAL.

《曰》 《圖》 《臣》 《臣》

Step 2

GOAL: Reduce sharing most neighbors with poly(n) other nodes, to sharing them with no other nodes.

Let $x_1, x_2, \ldots, x_{poly(n)}$ be *n*-bit strings.

Consider p_1, \ldots, p_T the first T prime numbers, where $T = (1/\delta) \cdot n \cdot \text{poly}(n)$.

For every x_i , for $(1 - \delta)$ of the *T* prime numbers, $(x_i \mod p)$ is unique in $(x_1 \mod p, \dots, x_T \mod p)$.

In this way, by "splitting" each edge into ${\cal T}$ new edges we reach our GOAL.

Cost: overhead of $O(\log n)$ to the right nodes and the left degree increases by a factor of T = poly(n).

《曰》 《圖》 《臣》 《臣》

2-nd proof: Kolmogorov complexity version of the Slepian-Wolf Theorem- 2 sources

Theorem (Z,2015)

There exist probabilistic poly.-time algorithms E_1 , E_2 and algorithm D such that for all integers n_1 , n_2 and n-bit strings x_1 , x_2 ,

if
$$n_1 + n_2 \ge C(x_1, x_2)$$
, $n_1 \ge C(x_1 \mid x_2)$, $n_2 \ge C(x_2 \mid x_1)$,

then

- E_i on input (x_i, n_i) outputs a string p_i of length $n_i + O(\log^3 n)$, for i = 1, 2,
- D on input (p₁, p₂) and the complexity profile of (x₁, x₂) outputs (x₁, x₂) with probability 1 − 1/n.

(The complexity profile of (x_1, x_2) is the tuple $(C(x_1), C(x_2), C(x_1, x_2)))$.

イロト イロト イヨト イヨト

Graphs with the rich owner property - extended version

(ロ) (四) (日) (日) (日) (日)

Bipartite graph G, with left degree D; parameters k, δ ;

x is a rich owner w.r.t B if

small regime case: $|B| \le 2^k$ x owns $(1 - \delta)$ of N(x)

large regime case: $|B| \ge 2^k$ at least fraction $(1 - \delta)$ of $y \in N(x)$ have $\deg_B(y) \le (2/\delta^2)|B|D/2^k$

Bipartite graph G, with left degree D; parameters k, δ ;

x is a rich owner w.r.t B if

small regime case: $|B| \le 2^k$ x owns $(1 - \delta)$ of N(x)

large regime case: $|B| \ge 2^k$ at least fraction $(1 - \delta)$ of $y \in N(x)$ have $\deg_B(y) \le (2/\delta^2)|B|D/2^k$

G has the (k, δ) rich owner property: $\forall B \subseteq L$, all nodes in B except at most $\delta \cdot |B|$ are rich owners w.r.t. B

A (10) + A (10) +

Bipartite graph G, with left degree D; parameters k, δ ;

x is a rich owner w.r.t B if

small regime case: $|B| \le 2^k$ x owns $(1 - \delta)$ of N(x)

large regime case: $|B| \ge 2^k$ at least fraction $(1 - \delta)$ of $y \in N(x)$ have $\deg_B(y) \le (2/\delta^2)|B|D/2^k$

G has the (k, δ) rich owner property: $\forall B \subseteq L$, all nodes in *B* except at most $\delta \cdot |B|$ are rich owners w.r.t. *B*

イロト イポト イヨト イヨト

2016 34 / 45

Bipartite graph G, with left degree D; parameters k, δ ;

- x is a rich owner w.r.t B if
- small regime case: $|B| \le 2^k$ x owns $(1 - \delta)$ of N(x)
- large regime case: $|B| \ge 2^k$ at least fraction $(1 - \delta)$ of $y \in N(x)$ have $\deg_B(y) \le (2/\delta^2)|B|D/2^k$
- *G* has the (k, δ) rich owner property: $\forall B \subseteq L$, all nodes in *B* except at most $\delta \cdot |B|$ are rich owners w.r.t. *B*

Theorem

There exists a poly.-time computable (uniformly in n, k and $1/\delta$) graph with the rich owner property for parameters (k, δ) with:

- $L = \{0, 1\}^n$
- $R = \{0, 1\}^{k+O(\log^3(n/\delta))}$ $D(left \ degree) = 2^{O(\log^3(n/\delta))}$

35 / 45

Proof sketch

- Alice has x₁, Bob has x₂.
- They want to compress to lengths $n_1 + O(\log^3(n/\delta))$, resp. $n_2 + O(\log^3(n/\delta))$.
- Hypothesis: $n_1 \ge C(x_1 \mid x_2), n_2 \ge C(x_2 \mid x_1), n_1 + n_2 \ge C(x_1, x_2).$
- Alice uses G_1 , graph with the (n_1, δ) rich owner property. She compresses by choosing p_1 , a random neighbor of x_1 in G_1 .
- Bob uses G_2 , graph with the (n_2, δ) rich owner property. He compresses by choosing p_2 , a random neighbor of x_2 in G_2 .
- Receiver reconstructs x_1, x_2 from p_1, p_2 .

Reconstruction of x_1, x_2 from p_1, p_2

Case 1: $C(x_2) \le n_2$.

- Let $B = \{x \mid C(x) \le C(x_2)\}.$
- $|B| \leq 2^{C(x_2)} \leq 2^{n_2}$. So, B is in the small regime in G_2 .
- Claim: x_2 can be reconstructed from p_2 by the following argument.
 - |set of poor owners| $\leq \delta |B|$. So, poor owners have complexity $< C(x_2)$.
 - So, x_2 is a rich owner; with prob. 1δ , x_2 owns p_2 with respect to B.
 - x_2 can be reconstructed from p_2 , by enumerating B till we see a neighbor of p_2 .
- Next, let $B = \{x'_1 \mid C(x'_1 \mid x_2) \le C(x_1 \mid x_2)\}.$
- $|B| \leq 2^{C(x_1|x_2)} \leq 2^{n_1}$. So B is in the small regime in G_1 .
- Using argument, x_1 can be reconstructed from p_1 .

Reconstruction of x_1, x_2 from $p_1, p_2 - (2)$

Case 2: $C(x_2) > n_2$.

- Claim 1. $C(p_2) = n_2$ (* means that we ignore polylog terms).
- Pf. Let $B = \{x \mid C(x) \leq C(x_2)\}$. B is in the large regime in G_2 .
- With prob. 1δ , x_2 shares p_2 with at most $(2/\delta^2)|B|D/2^{n_2} = 2^{C(x_2)-n_2+\text{polylogn}}$ other nodes in B.
- x_2 can be reconstructed from p_2 and its rank among p_2 's neighbors in B.
- So, $C(x_2) \leq^* C(p_2) + (C(x_2) n_2)$.
- So, $C(p_2) \ge^* n_2$. Since $|p_2| =^* n_2$, we get $C(p_2) =^* n_2$.

2016 38 / 45

Reconstruction of x_1, x_2 from $p_1, p_2 - (3)$

- Claim 2. Given p_2, x_1 and $C(x_2 | x_1)$, receiver can reconstruct x_2
- Pf. $B = \{x'_2 \mid C(x'_2 \mid x_1) \le C(x_2 \mid x_1)\}$ is in the small regime case, and we can use the argument.
- So, $C(x_2, x_1) \leq^* C(p_2, x_1)$.
- But C(p₂, x₁) ≤^{*} C(x₂, x₁) (because p₂ can be obtained from x₂ and its rank among x₂'s neighbors).
- So, $C(x_2, x_1) =^* C(p_2, x_1)$.
- So, $C(x_1 \mid p_2) =^* C(x_1, p_2) C(p_2) =^* C(x_1, x_2) n_2.$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○</p>

2016 39 / 45

Reconstruction of x_1, x_2 from $p_1, p_2 - (4)$

- **Claim 3.** x_1 can be reconstructed from p_1 and p_2 . (So, by Claim 2, x_2 can also be reconstructed, and we are done.)
- Pf. $B = \{x'_1 \mid C(x'_1 \mid p_2) \leq C(x_1, x_2) n_2\}.$
- $x_1 \in B$, by the previous equality.
- Since $C(x_1, x_2) n_2 \le (n_1 + n_2) n_2 = n_1$, B is in the small regime case.
- Conclusion follows by argument.

2016

Third proof.

Theorem (Z)

Let us assume complexity assumption H holds.

Let q be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k + O(\log |x|/\delta)$ such that if $C^q(x \mid y) \leq k$, then, with probability $1 - \delta$, (p, y) is a program for x.

2016

Third proof.

Theorem (Z)

Let us assume complexity assumption H holds.

Let q be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k + O(\log |x|/\delta)$ such that if $C^q(x \mid y) \leq k$, then, with probability $1 - \delta$, (p, y) is a program for x.

Assumption H

 $\exists f \in E$ which cannot be computed in space $2^{o(n)}$.

< 由 > < 回 > < 回 > < 回 > < 回 > <

Third proof.

Theorem (Z)

Let us assume complexity assumption H holds.

Let q be some polynomial.

There exists a poly time, probabilistic algorithm A that on input (x, k) returns a string p of length $k + O(\log |x|/\delta)$ such that if $C^q(x \mid y) \leq k$, then, with probability $1 - \delta$, (p, y) is a program for x.

Assumption H implies pseudo-random generators that fool PSPACE predicates

[Nisan-Wigderson'94, Klivans - van Melkebeek'02, Miltersen'01]

If H is true, then there exists a pseudo-random generator g that fools any predicate computable in PSPACE with polynomial advice.

There exists $g:\{0,1\}^{c\log n}\to \{0,1\}^n$ such that for any T computable in PSPACE with poly advice,

 $\left|\operatorname{Prob}[T(g(U_s))] - \operatorname{Prob}[T(U_n)]\right| < \epsilon.$

2016 42 / 45

Proof - (2)

- Let R be a random binary matrix with $m=k+1/\delta$ rows and |x| columns.
- We say R isolates x if for all $x' \neq x$ in $\{x' \mid C^q(x' \mid y) \leq k\}$, $Rx \neq Rx'$.
- For $x' \neq x$, $\operatorname{Prob}_{R}[Rx' \neq Rx] = 2^{-m}$.
- $\operatorname{Prob}_{R}[R \text{ does not isolate } x] \leq 2^{k} \cdot 2^{-m} = \delta.$
- If R isolates x, Alice can send to Bob p = Rx, and p has length $k + 1/\delta$.
- But Bob also needs to know R, which is longer than x...

< = > < @ > < E > < E > < E</p>

Proof - (2)

- Let R be a random binary matrix with $m=k+1/\delta$ rows and |x| columns.
- We say R isolates x if for all $x' \neq x$ in $\{x' \mid C^q(x' \mid y) \leq k\}$, $Rx \neq Rx'$.
- For $x' \neq x$, $\operatorname{Prob}_{R}[Rx' \neq Rx] = 2^{-m}$.
- $\operatorname{Prob}_{R}[R \text{ does not isolate } x] \leq 2^{k} \cdot 2^{-m} = \delta.$
- If R isolates x, Alice can send to Bob p = Rx, and p has length $k + 1/\delta$.
- But Bob also needs to know R, which is longer than x...
- Consider predicate $T_{x,y}(R)$ = true iff R isolates x.
- $T_{x,y}$ is in PSPACE with poly advice and is satisfied by a fraction of (1δ) of the *R*'s.
- Using a prg. g that fools $T_{x,y}$, $\left|\operatorname{Prob}_{s}[T_{x,y}(g(s))] \operatorname{Prob}_{R}[T_{x,y}(R)]\right| < \delta$.
- So, with probability $1 2\delta$, g(s) isolates x.
- With probability $1 2\delta$, $p = (s, g(s) \cdot x)$ is a program for x of length $k + O(\log |x|)$, QED.

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Final remarks

- Slepian-Wolf Th: Distributed compression can be as good as centralized compression for memoryless sources (independent drawings from a joint distribution).
- Kolm. complexity version of the Slepian-Wolf Th: Distributed compression can be essentially as good as centralized compression for algorithmically correlated sources.
- ... provided the senders and the receiver know the information/complexity profile of the data.
- Network Information Theory: well-established, dynamic.
- Algorithmic Information Theory: only sporadic studies at this moment.

200

イロト イロト イヨト イヨト

Thank you.

≣

590