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This work in a sentence

When we compress correlated pieces of data,

Distributed Compression = Centralized Compression

and this is true even for a very general definition of correlation based on
Kolmogorov complexity.
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Distributed compression: a simple example

Alice knows a line `; Bob knows a point P ∈ `; They want
to send ` and P to Zack.

` : 2n bits of information (intercept, slope in GF[2n]).

P : 2n bits of information (the 2 coord. in GF[2n]).

Total information in (`,P) = 3n bits; mutual information
of ` and P = n bits.

If Alice and Bob get together, they need to send 3n bits.
What if they compress separately?

`

P

Marius Zimand (Towson University) Kolmogorov Slepian-Wolf 2017 3 / 17



Distributed compression: a simple example

Alice knows a line `; Bob knows a point P ∈ `; They want
to send ` and P to Zack.

` : 2n bits of information (intercept, slope in GF[2n]).

P : 2n bits of information (the 2 coord. in GF[2n]).

Total information in (`,P) = 3n bits; mutual information
of ` and P = n bits.

If Alice and Bob get together, they need to send 3n bits.
What if they compress separately?

`

P

QUESTION 1:

Alice can send 2n bits, and Bob n bits. Is the geometric correlation between ` and P
crucial for these compression lengths?

Ans: No. Same is true (modulo a polylog(n) overhead.) if Alice and Bob each have 2n
bits of information, with mutual information n, in the sense of Kolmogorov complexity.
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Total information in (`,P) = 3n bits; mutual information
of ` and P = n bits.

If Alice and Bob get together, they need to send 3n bits.
What if they compress separately?

`

P

QUESTION 2:

Can Alice send 1.5n bits, and Bob 1.5n bits? Can Alice send 1.74n bits, and Bob 1.26n
bits?

Ans: Yes and Yes (modulo a polylog(n) overhead.)

Marius Zimand (Towson University) Kolmogorov Slepian-Wolf 2017 3 / 17



IT vs. AIT

IT (à la Shannon)

• Data is the realization of a random
variable X .
• The model: a stochastic process
generates the data.
• Amount of information in the data:
H(X ) (Shannon entropy).

AIT (Kolmogorov complexity)

• Data is just an individual string x
• There is no generative model.
• Amount of information in the data:
C (x) = minimum description length.

0000000000000000

101101000110010

Kolmogorov complexity

Fix U a universal Turing machine.
p is a description of x if U(p) = x . p is a description of x given y if U(p, y) = x .

C (x) = min{|p| | p is a description of x .}
C (x | y) = min{|p| | p is a description of x given y .}
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Distributed compression (IT view): Slepian-Wolf Theorem

The classic Slepian-Wolf Th. is the analog of Shannon
Source Coding Th. for the distributed compression of
memoryless sources.

Memoryless source: (X1,X2) consists of n independent draws
from a joint distribution p(b1, b2) on pair of bits.

Encoding: E1 : {0, 1}n → {0, 1}n1 , E2 : {0, 1}n → {0, 1}n2 .
Decoding: D : {0, 1}n1 × {0, 1}n2 → {0, 1}n × {0, 1}n.
Goal: D(E1(X1),E2(X2)) = (X1,X2) with probability 1− ε.
It is necessary that n1 + n2 ≥ H(X1,X2)− εn,
n1 ≥ H(X1 | X2)− εn, n2 ≥ H(x2 | x1)− εn.

X2X1

E2E1

D

X1,X2

nn

n2n1

Theorem (Slepian, Wolf, 1973)

There exist encoding/decoding functions E1,E2 and D satisfying the goal such
that

n1 + n2 ≥ H(X1,X2) + εn, n1 ≥ H(X1 | X2) + εn, n2 ≥ H(X2 | X1) + εn.

It holds for any constant number of sources.
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Slepian-Wolf Th.: Some comments

Theorem (Slepian, Wolf, 1973)

There exist encoding/decoding functions E1, E2 and D such that n1 + n2 ≥ H(X1, X2) + εn, n1 ≥ H(X1 | X2) + εn, n2 ≥ H(X2 | X1) + εn.

Even if (X1,X2) are compressed together, the sender still
needs to send ≈ H(X1,X2) many bits.

Strength of S.-W. Th. : distributed compression =
centralized compression, for memoryless sources.

Shortcoming of S.-W. Th. : Memoryless sources are very
simple. The theorem has been extended to stationary and
ergodic sources (Cover, 1975), which are still pretty lame.

X2X1

E2E1

D

X1, X2

nn

n2n1
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Recall: Alice knows a line `; Bob knows a point P ∈ `;
They want to send ` and P to Zack.

There is no generative model.

Correlation can be described with the complexity
profile: C (`) = 2n,C (P) = 2n,C (`,P) = 3n.

Is it possible to have distributed compression based
only on the complexity profile?

If yes, what are the possible compression lengths?

`

P

Necessary conditions: Suppose we want encoding/decoding procedures so that
D(E1(x1),E2(x2)) = (x1, x2) with probability 1− ε, for all strings x1, x2.
Then, for infinitely many x1, x2,

|E1(x1)|+ |E2(x2)| ≥ C (x1, x2) + log(1− ε)− O(1)
|E1(x1)| ≥ C (x1 | x2) + log(1− ε)− O(1)
|E2(x2)| ≥ C (x2 | x1) + log(1− ε)− O(1)
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MAIN RESULT: Kolmogorov complexity version of the
Slepian-Wolf Theorem

Theorem

There exist probabilistic poly.-time algorithms E1,E2

and algorithm D such that for all integers n1, n2 and
n-bit strings x1, x2,
if n1 + n2 ≥ C (x1, x2), n1 ≥ C (x1 | x2),
n2 ≥ C (x2 | x1),

then

Ei on input (xi , ni ) outputs a string pi of length
ni + O(log3 n), for i = 1, 2,

D on input (p1, p2) outputs (x1, x2) with
probability 1− 1/n.

x2x1

E2E1

D

x1, x2

nn

n2n1

There is an analogous version for any constant number of sources.
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Some comments

Compression takes polynomial time. Decompression is slower than any
computable function. This is unavoidable at this level of optimality
(compression at close to minimum description length).

If we use time/space-bounded Kolmogorov complexity, decompression is
somewhat better. For the line/point example, decompression is in linear
space.

Compression for individual strings is also done by Lempel-Ziv algorithms.
They compress optimally for finite-state procedures. We compress at close to
minimum description length.

At the high level, the proof follows the approach from a paper of Andrei
Romashchenko (2005). Technical machinery is different.

The classical S.-W. Th. can be obtained from the Kolmogorov complexity
version (because if X is memoryless, H(X )− cε

√
n ≤ C (X ) ≤ H(X ) + cε

√
n

with prob. 1− ε).

The O(log3 n) overhead can be reduced to O(log n), but compression is no
longer in polynomial time.
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Proof sketch
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Graphs with the rich owner property

Bipartite graph G , with left degree D;
parameters k , δ;

x is a rich owner w.r.t B if

small regime case: |B| ≤ 2k

x owns (1− δ) of N(x)

large regime case: |B| > 2k

at least fraction (1− δ) of y ∈ N(x) have
degB(y) ≤ (2/δ2)|B|D/2k

(“close” to avg. right degree if |R| ≈ 2k)

G has the (k, δ) rich owner property:
∀B ⊆ L,
all nodes in B except at most δ · |B| are
rich owners w.r.t. B

x
N(x)

x ’s neighbors

x
N(x)B

x
N(x)B

rich owners

poor owners
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Theorem (based on the (Raz-Reingold-Vadhan 2002) extractor)

There exists a poly.-time computable (uniformly in n, k and 1/δ ) graph with the rich
owner property for parameters (k, δ) with:
• L = {0, 1}n

• R = {0, 1}k+O(log3(n/δ))

• D(left degree) = 2O(log3(n/δ))

x

N(x)B
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Proof sketch (cont. 1)

Suppose that compression lengths satisfy
n1 ≥ C (x1 | x2), n2 ≥ C (x2 | x1),
n1 + n2 ≥ C (x1, x2).

Alice uses graph G1 with
(n1 + 1, δ = 1/n2) rich owner property,
Bob uses graph G2 with (n2 + 1, δ = 1/n2)
rich owner property.

Compression: Alice chooses p1 a random
neighbor of x1, Bob chooses p2 a random
neighbor of x2.

Decompression: Zack needs to
reconstruct x1, x2 from p1, p2.

Idea: For i = 1, 2, find Bi in the “small
regime”, containing xi as a rich owner.
Then with prob 1− δ, xi owns pi , so from
pi we can reconstruct xi .

G1 x1

G2 x2

G1 x1 p1

G2 x2 p2
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Decompression - 1

Assume first that the decompressor
knows the complexity profile
C (x1),C (x2),C (x1, x2).

Case 1 (easy case): C (x2) ≤ n2.

Take B2 = {x | C (x) ≤ C (x2)}. B2 is in
the “small regime,” x2 is rich owner.

So, with prob 1− δ, x2 owns p2, so it
can be reconstructed from p2.

Take B1 = {x | C (x | x2) ≤ C (x1 | x2)}.
B1 is in the “small regime,”, x1 is a rich
owner.

So, with prob 1− δ, x1 owns p1, so it
can be reconstructed from p1.

G1 x1 p1
B1

G2 x2 p2
B2
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Decompression - 2

Case 2 (hard case): C (x2) > n2.

With some work, it can be shown that
C (p2) ≈ n2 and C (x1 | p2) ≈
C (x1, x2)− n2 < (n1 + n2)− n2 = n1.

Take
B1 = {x | C (x | p2) ≤ C (x1, x2)− n2}.
B1 is in the “small regime,” x1 is rich
owner.

So, with prob 1− δ, x1 owns p1, so it
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B2 is in the “small regime,”, x2 is a rich
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So, with prob 1− δ, x2 owns p2, so it
can be reconstructed from p2.

G1 x1 p1
B1

G2 x2 p2
B2

Marius Zimand (Towson University) Kolmogorov Slepian-Wolf 2017 15 / 17



Decompression - 2

Case 2 (hard case): C (x2) > n2.

With some work, it can be shown that
C (p2) ≈ n2 and C (x1 | p2) ≈
C (x1, x2)− n2 < (n1 + n2)− n2 = n1.

Take
B1 = {x | C (x | p2) ≤ C (x1, x2)− n2}.
B1 is in the “small regime,” x1 is rich
owner.

So, with prob 1− δ, x1 owns p1, so it
can be reconstructed from p1.

Take B2 = {x | C (x | x1) ≤ C (x1 | x2)}.
B2 is in the “small regime,”, x2 is a rich
owner.

So, with prob 1− δ, x2 owns p2, so it
can be reconstructed from p2.

G1 x1 p1
B1

G2 x2 p2
B2

Marius Zimand (Towson University) Kolmogorov Slepian-Wolf 2017 15 / 17



Decompression - 2

Case 2 (hard case): C (x2) > n2.

With some work, it can be shown that
C (p2) ≈ n2 and C (x1 | p2) ≈
C (x1, x2)− n2 < (n1 + n2)− n2 = n1.

Take
B1 = {x | C (x | p2) ≤ C (x1, x2)− n2}.
B1 is in the “small regime,” x1 is rich
owner.

So, with prob 1− δ, x1 owns p1, so it
can be reconstructed from p1.

Take B2 = {x | C (x | x1) ≤ C (x1 | x2)}.
B2 is in the “small regime,”, x2 is a rich
owner.

So, with prob 1− δ, x2 owns p2, so it
can be reconstructed from p2.

G1 x1 p1
B1

G2 x2 p2
B2

Marius Zimand (Towson University) Kolmogorov Slepian-Wolf 2017 15 / 17



Decompression - 2

Case 2 (hard case): C (x2) > n2.

With some work, it can be shown that
C (p2) ≈ n2 and C (x1 | p2) ≈
C (x1, x2)− n2 < (n1 + n2)− n2 = n1.

Take
B1 = {x | C (x | p2) ≤ C (x1, x2)− n2}.
B1 is in the “small regime,” x1 is rich
owner.

So, with prob 1− δ, x1 owns p1, so it
can be reconstructed from p1.

Take B2 = {x | C (x | x1) ≤ C (x1 | x2)}.
B2 is in the “small regime,”, x2 is a rich
owner.

So, with prob 1− δ, x2 owns p2, so it
can be reconstructed from p2.

G1 x1 p1
B1

G2 x2 p2
B2

Marius Zimand (Towson University) Kolmogorov Slepian-Wolf 2017 15 / 17



Decompression - 2

Case 2 (hard case): C (x2) > n2.

With some work, it can be shown that
C (p2) ≈ n2 and C (x1 | p2) ≈
C (x1, x2)− n2 < (n1 + n2)− n2 = n1.

Take
B1 = {x | C (x | p2) ≤ C (x1, x2)− n2}.
B1 is in the “small regime,” x1 is rich
owner.

So, with prob 1− δ, x1 owns p1, so it
can be reconstructed from p1.

Take B2 = {x | C (x | x1) ≤ C (x1 | x2)}.
B2 is in the “small regime,”, x2 is a rich
owner.

So, with prob 1− δ, x2 owns p2, so it
can be reconstructed from p2.

G1 x1 p1
B1

G2 x2 p2
B2

Marius Zimand (Towson University) Kolmogorov Slepian-Wolf 2017 15 / 17



Decompression - 2

Case 2 (hard case): C (x2) > n2.

With some work, it can be shown that
C (p2) ≈ n2 and C (x1 | p2) ≈
C (x1, x2)− n2 < (n1 + n2)− n2 = n1.

Take
B1 = {x | C (x | p2) ≤ C (x1, x2)− n2}.
B1 is in the “small regime,” x1 is rich
owner.

So, with prob 1− δ, x1 owns p1, so it
can be reconstructed from p1.

Take B2 = {x | C (x | x1) ≤ C (x1 | x2)}.
B2 is in the “small regime,”, x2 is a rich
owner.

So, with prob 1− δ, x2 owns p2, so it
can be reconstructed from p2.

G1 x1 p1
B1

G2 x2 p2
B2

Marius Zimand (Towson University) Kolmogorov Slepian-Wolf 2017 15 / 17



Decompression - 3

How to lift the assumption that the decompressor knows the complexity
profile C (x1),C (x2),C (x1, x2).

Try in parallel all possibilities for C (x1),C (x2),C (x1, x2). We run the
decompressor for each one till it finds the first neighbors of p1 and p2 in the
corresponding Bi -sets (Note: some may never find any neighbors).

For the right guess of the profile, p1 and p2 have unique neighbors in the
Bi -sets, and they are x1 and x2.

Using extra hashing, we can isolate x1 and x2 from the strings produced by
the parallel procedures with incorrect guesses. Cost of hashing: O(log n) bits,
because there are O(n3) parallel procedures.
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Merci beaucoup.
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