Kolmogorov complexity version of Slepian-Wolf coding

Marius Zimand
Towson University
STOC 2017, Montreal

This work in a sentence

When we compress correlated pieces of data,
Distributed Compression $=$ Centralized Compression
and this is true even for a very general definition of correlation based on Kolmogorov complexity.

Distributed compression: a simple example

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell: 2 n$ bits of information (intercept, slope in GF[$\left.2^{n}\right]$).
- $P: 2 n$ bits of information (the 2 coord. in GF[2n $]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information of ℓ and $P=n$ bits.

- If Alice and Bob get together, they need to send $3 n$ bits. What if they compress separately?

Distributed compression: a simple example

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell: 2 n$ bits of information (intercept, slope in GF[$\left.2^{n}\right]$).
- $P: 2 n$ bits of information (the 2 coord. in GF[$\left.2^{n}\right]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information of ℓ and $P=n$ bits.

- If Alice and Bob get together, they need to send $3 n$ bits. What if they compress separately?

QUESTION 1:

Alice can send $2 n$ bits, and Bob n bits. Is the geometric correlation between ℓ and P crucial for these compression lengths?

Ans: No. Same is true (modulo a polylog(n) overhead.) if Alice and Bob each have $2 n$ bits of information, with mutual information n, in the sense of Kolmogorov complexity.

Distributed compression: a simple example

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell: 2 n$ bits of information (intercept, slope in $\operatorname{GF}\left[2^{n}\right]$).
- $P: 2 n$ bits of information (the 2 coord. in GF[2n $]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information of ℓ and $P=n$ bits.

- If Alice and Bob get together, they need to send $3 n$ bits. What if they compress separately?

QUESTION 2:

Can Alice send $1.5 n$ bits, and Bob $1.5 n$ bits? Can Alice send $1.74 n$ bits, and Bob $1.26 n$ bits?
Ans: Yes and Yes (modulo a polylog(n) overhead.)

IT vs. AIT

IT (à la Shannon)

- Data is the realization of a random variable X.
- The model: a stochastic process generates the data.
- Amount of information in the data: $H(X)$ (Shannon entropy).

AIT (Kolmogorov complexity)

- Data is just an individual string x
- There is no generative model.
- Amount of information in the data:
$C(x)=$ minimum description length.

IT vs. AIT

IT (à la Shannon)

- Data ic 0000000000000000 variable X.
- The model: a stochastic generates the data.
- Amount of information in the data: $H(X)$ (Shannon entropy).

AIT (Kolmogorov complexity)

- Data is just an individual string x
- There is no generative model.
- Amount of information in the data:
$C(x)=$ minimum description length.

IT vs. AIT

IT (à la Shannon)

- Data is the realization of a random variable X.
- The model: a stachactir noncess generates the 101101000110010
- Amount of information in the ta: $H(X)$ (Shannon entropy).

AIT (Kolmogorov complexity)

- Data is just an individual string x
- There is no generative model.
- Amount of information in the data:
$C(x)=$ minimum description length.

IT vs. AIT

IT (à la Shannon)

- Data is the realization of a random variable X.
- The model: a stochastic process generates the data.
- Amount of information in the data: $H(X)$ (Shannon entropy).

AIT (Kolmogorov complexity)

- Data is just an individual string x
- There is no generative model.
- Amount of information in the data:
$C(x)=$ minimum description length.

Kolmogorov complexity
Fix U a universal Turing machine.
p is a description of x if $U(p)=x$. p is a description of x given y if $U(p, y)=x$.
$C(x)=\min \{|p| \mid p$ is a description of x.
$C(x \mid y)=\min \{|p| \mid p$ is a description of x given y.

Distributed compression (IT view): Slepian-Wolf Theorem

- The classic Slepian-Wolf Th. is the analog of Shannon Source Coding Th. for the distributed compression of memoryless sources.
- Memoryless source: $\left(X_{1}, X_{2}\right)$ consists of n independent draws from a joint distribution $p\left(b_{1}, b_{2}\right)$ on pair of bits.
- Encoding: $E_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{n_{1}}, E_{2}:\{0,1\}^{n} \rightarrow\{0,1\}^{n_{2}}$.
- Decoding: $D:\{0,1\}^{n_{1}} \times\{0,1\}^{n_{2}} \rightarrow\{0,1\}^{n} \times\{0,1\}^{n}$.
- Goal: $D\left(E_{1}\left(X_{1}\right), E_{2}\left(X_{2}\right)\right)=\left(X_{1}, X_{2}\right)$ with probability $1-\epsilon$.
- It is necessary that $n_{1}+n_{2} \geq H\left(X_{1}, X_{2}\right)-\epsilon n$, $n_{1} \geq H\left(X_{1} \mid X_{2}\right)-\epsilon n, n_{2} \geq H\left(x_{2} \mid x_{1}\right)-\epsilon n$.

Theorem (Slepian, Wolf, 1973)
There exist encoding/decoding functions E_{1}, E_{2} and D satisfying the goal such that
$n_{1}+n_{2} \geq H\left(X_{1}, X_{2}\right)+\epsilon n, n_{1} \geq H\left(X_{1} \mid X_{2}\right)+\epsilon n, n_{2} \geq H\left(X_{2} \mid X_{1}\right)+\epsilon n$.
It holds for any constant number of sources.

Slepian-Wolf Th.: Some comments

Theorem (Slepian, Wolf, 1973)
There exist encoding/decoding functions E_{1}, E_{2} and D such that $n_{1}+n_{2} \geq H\left(X_{1}, X_{2}\right)+\epsilon n, n_{1} \geq H\left(X_{1} \mid X_{2}\right)+\epsilon n, n_{2} \geq H\left(X_{2} \mid X_{1}\right)+\epsilon n$.

- Even if $\left(X_{1}, X_{2}\right)$ are compressed together, the sender still needs to send $\approx H\left(X_{1}, X_{2}\right)$ many bits.
- Strength of S.-W. Th. : distributed compression $=$ centralized compression, for memoryless sources.
- Shortcoming of S.-W. Th. : Memoryless sources are very simple. The theorem has been extended to stationary and ergodic sources (Cover, 1975), which are still pretty lame.
- Recall: Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- There is no generative model.
- Correlation can be described with the complexity profile: $C(\ell)=2 n, C(P)=2 n, C(\ell, P)=3 n$.
- Is it possible to have distributed compression based
 only on the complexity profile?
- If yes, what are the possible compression lengths?
- Recall: Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- There is no generative model.
- Correlation can be described with the complexity profile: $C(\ell)=2 n, C(P)=2 n, C(\ell, P)=3 n$.
- Is it possible to have distributed compression based
 only on the complexity profile?
- If yes, what are the possible compression lengths?

Necessary conditions: Suppose we want encoding/decoding procedures so that $D\left(E_{1}\left(x_{1}\right), E_{2}\left(x_{2}\right)\right)=\left(x_{1}, x_{2}\right)$ with probability $1-\epsilon$, for all strings x_{1}, x_{2}.
Then, for infinitely many x_{1}, x_{2},

$$
\begin{aligned}
\left|E_{1}\left(x_{1}\right)\right|+\left|E_{2}\left(x_{2}\right)\right| & \geq C\left(x_{1}, x_{2}\right)+\log (1-\epsilon)-O(1) \\
\left|E_{1}\left(x_{1}\right)\right| & \geq C\left(x_{1} \mid x_{2}\right)+\log (1-\epsilon)-O(1) \\
\left|E_{2}\left(x_{2}\right)\right| & \geq C\left(x_{2} \mid x_{1}\right)+\log (1-\epsilon)-O(1)
\end{aligned}
$$

MAIN RESULT: Kolmogorov complexity version of the Slepian-Wolf Theorem

Theorem

There exist probabilistic poly.-time algorithms E_{1}, E_{2} and algorithm D such that for all integers n_{1}, n_{2} and n-bit strings x_{1}, x_{2},
if $n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right), n_{1} \geq C\left(x_{1} \mid x_{2}\right)$, $n_{2} \geq C\left(x_{2} \mid x_{1}\right)$,
then

- E_{i} on input $\left(x_{i}, n_{i}\right)$ outputs a string p_{i} of length $n_{i}+O\left(\log ^{3} n\right)$, for $i=1,2$,
- D on input $\left(p_{1}, p_{2}\right)$ outputs $\left(x_{1}, x_{2}\right)$ with probability $1-1 / n$.

There is an analogous version for any constant number of sources.

Some comments

- Compression takes polynomial time. Decompression is slower than any computable function. This is unavoidable at this level of optimality (compression at close to minimum description length).

Some comments

- Compression takes polynomial time. Decompression is slower than any computable function. This is unavoidable at this level of optimality (compression at close to minimum description length).
- If we use time/space-bounded Kolmogorov complexity, decompression is somewhat better. For the line/point example, decompression is in linear space.

Some comments

- Compression takes polynomial time. Decompression is slower than any computable function. This is unavoidable at this level of optimality (compression at close to minimum description length).
- If we use time/space-bounded Kolmogorov complexity, decompression is somewhat better. For the line/point example, decompression is in linear space.
- Compression for individual strings is also done by Lempel-Ziv algorithms. They compress optimally for finite-state procedures. We compress at close to minimum description length.

Some comments

- Compression takes polynomial time. Decompression is slower than any computable function. This is unavoidable at this level of optimality (compression at close to minimum description length).
- If we use time/space-bounded Kolmogorov complexity, decompression is somewhat better. For the line/point example, decompression is in linear space.
- Compression for individual strings is also done by Lempel-Ziv algorithms. They compress optimally for finite-state procedures. We compress at close to minimum description length.
- At the high level, the proof follows the approach from a paper of Andrei Romashchenko (2005). Technical machinery is different.

Some comments

- Compression takes polynomial time. Decompression is slower than any computable function. This is unavoidable at this level of optimality (compression at close to minimum description length).
- If we use time/space-bounded Kolmogorov complexity, decompression is somewhat better. For the line/point example, decompression is in linear space.
- Compression for individual strings is also done by Lempel-Ziv algorithms. They compress optimally for finite-state procedures. We compress at close to minimum description length.
- At the high level, the proof follows the approach from a paper of Andrei Romashchenko (2005). Technical machinery is different.
- The classical S.-W. Th. can be obtained from the Kolmogorov complexity version (because if X is memoryless, $H(X)-c_{\epsilon} \sqrt{n} \leq C(X) \leq H(X)+c_{\epsilon} \sqrt{n}$ with prob. $1-\epsilon$).

Some comments

- Compression takes polynomial time. Decompression is slower than any computable function. This is unavoidable at this level of optimality (compression at close to minimum description length).
- If we use time/space-bounded Kolmogorov complexity, decompression is somewhat better. For the line/point example, decompression is in linear space.
- Compression for individual strings is also done by Lempel-Ziv algorithms. They compress optimally for finite-state procedures. We compress at close to minimum description length.
- At the high level, the proof follows the approach from a paper of Andrei Romashchenko (2005). Technical machinery is different.
- The classical S.-W. Th. can be obtained from the Kolmogorov complexity version (because if X is memoryless, $H(X)-c_{\epsilon} \sqrt{n} \leq C(X) \leq H(X)+c_{\epsilon} \sqrt{n}$ with prob. $1-\epsilon$).
- The $O\left(\log ^{3} n\right)$ overhead can be reduced to $O(\log n)$, but compression is no longer in polynomial time.

Proof sketch

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B|>2^{k}$
at least fraction $(1-\delta)$ of $y \in N(x)$ have $\operatorname{deg}_{B}(y) \leq\left(2 / \delta^{2}\right)|B| D / 2^{k}$
("close" to avg. right degree if $|R| \approx 2^{k}$)

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B|>2^{k}$
at least fraction $(1-\delta)$ of $y \in N(x)$ have $\operatorname{deg}_{B}(y) \leq\left(2 / \delta^{2}\right)|B| D / 2^{k}$
("close" to avg. right degree if $|R| \approx 2^{k}$)

G has the (k, δ) rich owner property:
$\forall B \subseteq L$,
all nodes in B except at most $\delta \cdot|B|$ are rich owners w.r.t. B

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B|>2^{k}$
at least fraction $(1-\delta)$ of $y \in N(x)$ have $\operatorname{deg}_{B}(y) \leq\left(2 / \delta^{2}\right)|B| D / 2^{k}$
("close" to avg. right degree if $|R| \approx 2^{k}$)

G has the (k, δ) rich owner property:
$\forall B \subseteq L$,
all nodes in B except at most $\delta \cdot|B|$ are rich owners w.r.t. B

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B|>2^{k}$
at least fraction $(1-\delta)$ of $y \in N(x)$ have $\operatorname{deg}_{B}(y) \leq\left(2 / \delta^{2}\right)|B| D / 2^{k}$
("close" to avg. right degree if $|R| \approx 2^{k}$)
G has the (k, δ) rich owner property: $\forall B \subseteq L$,
all nodes in B except at most $\delta \cdot|B|$ are
 rich owners w.r.t. B

Theorem (based on the (Raz-Reingold-Vadhan 2002) extractor)
There exists a poly.-time computable (uniformly in n, k and $1 / \delta$) graph with the rich owner property for parameters (k, δ) with:

- $L=\{0,1\}^{n}$
- $R=\{0,1\}^{k+O\left(\log ^{3}(n / \delta)\right)}$
- $D($ left degree $)=2^{O\left(\log ^{3}(n / \delta)\right)}$

Proof sketch (cont. 1)

- Suppose that compression lengths satisfy

$$
\begin{aligned}
& n_{1} \geq C\left(x_{1} \mid x_{2}\right), n_{2} \geq C\left(x_{2} \mid x_{1}\right), \\
& n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Proof sketch (cont. 1)

- Suppose that compression lengths satisfy
$n_{1} \geq C\left(x_{1} \mid x_{2}\right), n_{2} \geq C\left(x_{2} \mid x_{1}\right)$,
$n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right)$.
- Alice uses graph G_{1} with ($n_{1}+1, \delta=1 / n^{2}$) rich owner property, Bob uses graph G_{2} with $\left(n_{2}+1, \delta=1 / n^{2}\right)$ rich owner property.

Proof sketch (cont. 1)

- Suppose that compression lengths satisfy
$n_{1} \geq C\left(x_{1} \mid x_{2}\right), n_{2} \geq C\left(x_{2} \mid x_{1}\right)$,
$n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right)$.
- Alice uses graph G_{1} with ($n_{1}+1, \delta=1 / n^{2}$) rich owner property, Bob uses graph G_{2} with $\left(n_{2}+1, \delta=1 / n^{2}\right)$ rich owner property.
- Compression: Alice chooses p_{1} a random neighbor of x_{1}, Bob chooses p_{2} a random neighbor of x_{2}.

Proof sketch (cont. 1)

- Suppose that compression lengths satisfy
$n_{1} \geq C\left(x_{1} \mid x_{2}\right), n_{2} \geq C\left(x_{2} \mid x_{1}\right)$,
$n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right)$.
- Alice uses graph G_{1} with ($n_{1}+1, \delta=1 / n^{2}$) rich owner property, Bob uses graph G_{2} with $\left(n_{2}+1, \delta=1 / n^{2}\right)$ rich owner property.
- Compression: Alice chooses p_{1} a random neighbor of x_{1}, Bob chooses p_{2} a random neighbor of x_{2}.
- Decompression: Zack needs to reconstruct x_{1}, x_{2} from p_{1}, p_{2}.

Proof sketch (cont. 1)

- Suppose that compression lengths satisfy
$n_{1} \geq C\left(x_{1} \mid x_{2}\right), n_{2} \geq C\left(x_{2} \mid x_{1}\right)$, $n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right)$.
- Alice uses graph G_{1} with ($n_{1}+1, \delta=1 / n^{2}$) rich owner property, Bob uses graph G_{2} with $\left(n_{2}+1, \delta=1 / n^{2}\right)$ rich owner property.
- Compression: Alice chooses p_{1} a random neighbor of x_{1}, Bob chooses p_{2} a random neighbor of x_{2}.
- Decompression: Zack needs to reconstruct x_{1}, x_{2} from p_{1}, p_{2}.
- Idea: For $i=1,2$, find B_{i} in the "small
 regime", containing x_{i} as a rich owner. Then with prob $1-\delta, x_{i}$ owns p_{i}, so from p_{i} we can reconstruct x_{i}.

Decompression - 1

- Assume first that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.

Decompression - 1

- Assume first that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.
- Case 1 (easy case): $C\left(x_{2}\right) \leq n_{2}$.

Decompression - 1

- Assume first that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.
- Case 1 (easy case): $C\left(x_{2}\right) \leq n_{2}$.
- Take $B_{2}=\left\{x \mid C(x) \leq C\left(x_{2}\right)\right\} . B_{2}$ is in the "small regime," x_{2} is rich owner.

Decompression - 1

- Assume first that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.
- Case 1 (easy case): $C\left(x_{2}\right) \leq n_{2}$.
- Take $B_{2}=\left\{x \mid C(x) \leq C\left(x_{2}\right)\right\} . B_{2}$ is in the "small regime," x_{2} is rich owner.

- So, with prob $1-\delta, x_{2}$ owns p_{2}, so it can be reconstructed from p_{2}.

Decompression - 1

- Assume first that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.
- Case 1 (easy case): $C\left(x_{2}\right) \leq n_{2}$.
- Take $B_{2}=\left\{x \mid C(x) \leq C\left(x_{2}\right)\right\} . B_{2}$ is in the "small regime," x_{2} is rich owner.

- So, with prob $1-\delta, x_{2}$ owns p_{2}, so it can be reconstructed from p_{2}.
- Take $B_{1}=\left\{x \mid C\left(x \mid x_{2}\right) \leq C\left(x_{1} \mid x_{2}\right)\right\}$. B_{1} is in the "small regime,", x_{1} is a rich owner.

Decompression - 1

- Assume first that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.
- Case 1 (easy case): $C\left(x_{2}\right) \leq n_{2}$.
- Take $B_{2}=\left\{x \mid C(x) \leq C\left(x_{2}\right)\right\}$. B_{2} is in the "small regime," x_{2} is rich owner.

- So, with prob $1-\delta, x_{2}$ owns p_{2}, so it can be reconstructed from p_{2}.
- Take $B_{1}=\left\{x \mid C\left(x \mid x_{2}\right) \leq C\left(x_{1} \mid x_{2}\right)\right\}$. B_{1} is in the "small regime,", x_{1} is a rich owner.
- So, with prob $1-\delta, x_{1}$ owns p_{1}, so it
 can be reconstructed from p_{1}.

Decompression - 2

- Case 2 (hard case): $C\left(x_{2}\right)>n_{2}$.

Decompression - 2

- Case 2 (hard case): $C\left(x_{2}\right)>n_{2}$.
- With some work, it can be shown that $C\left(p_{2}\right) \approx n_{2}$ and $C\left(x_{1} \mid p_{2}\right) \approx$ $C\left(x_{1}, x_{2}\right)-n_{2}<\left(n_{1}+n_{2}\right)-n_{2}=n_{1}$.

Decompression - 2

- Case 2 (hard case): $C\left(x_{2}\right)>n_{2}$.
- With some work, it can be shown that $C\left(p_{2}\right) \approx n_{2}$ and $C\left(x_{1} \mid p_{2}\right) \approx$ $C\left(x_{1}, x_{2}\right)-n_{2}<\left(n_{1}+n_{2}\right)-n_{2}=n_{1}$.
- Take
$B_{1}=\left\{x \mid C\left(x \mid p_{2}\right) \leq C\left(x_{1}, x_{2}\right)-n_{2}\right\}$. B_{1} is in the "small regime," x_{1} is rich owner.

Decompression - 2

- Case 2 (hard case): $C\left(x_{2}\right)>n_{2}$.
- With some work, it can be shown that $C\left(p_{2}\right) \approx n_{2}$ and $C\left(x_{1} \mid p_{2}\right) \approx$ $C\left(x_{1}, x_{2}\right)-n_{2}<\left(n_{1}+n_{2}\right)-n_{2}=n_{1}$.
- Take
$B_{1}=\left\{x \mid C\left(x \mid p_{2}\right) \leq C\left(x_{1}, x_{2}\right)-n_{2}\right\}$. B_{1} is in the "small regime," x_{1} is rich owner.
- So, with prob $1-\delta, x_{1}$ owns p_{1}, so it can be reconstructed from p_{1}.

Decompression - 2

- Case 2 (hard case): $C\left(x_{2}\right)>n_{2}$.
- With some work, it can be shown that $C\left(p_{2}\right) \approx n_{2}$ and $C\left(x_{1} \mid p_{2}\right) \approx$ $C\left(x_{1}, x_{2}\right)-n_{2}<\left(n_{1}+n_{2}\right)-n_{2}=n_{1}$.
- Take
$B_{1}=\left\{x \mid C\left(x \mid p_{2}\right) \leq C\left(x_{1}, x_{2}\right)-n_{2}\right\}$. B_{1} is in the "small regime," x_{1} is rich owner.
- So, with prob $1-\delta, x_{1}$ owns p_{1}, so it can be reconstructed from p_{1}.
- Take $B_{2}=\left\{x \mid C\left(x \mid x_{1}\right) \leq C\left(x_{1} \mid x_{2}\right)\right\}$. B_{2} is in the "small regime,", x_{2} is a rich owner.

Decompression - 2

- Case 2 (hard case): $C\left(x_{2}\right)>n_{2}$.
- With some work, it can be shown that $C\left(p_{2}\right) \approx n_{2}$ and $C\left(x_{1} \mid p_{2}\right) \approx$ $C\left(x_{1}, x_{2}\right)-n_{2}<\left(n_{1}+n_{2}\right)-n_{2}=n_{1}$.
- Take
$B_{1}=\left\{x \mid C\left(x \mid p_{2}\right) \leq C\left(x_{1}, x_{2}\right)-n_{2}\right\}$. B_{1} is in the "small regime," x_{1} is rich owner.
- So, with prob $1-\delta, x_{1}$ owns p_{1}, so it can be reconstructed from p_{1}.
- Take $B_{2}=\left\{x \mid C\left(x \mid x_{1}\right) \leq C\left(x_{1} \mid x_{2}\right)\right\}$. B_{2} is in the "small regime,", x_{2} is a rich owner.

- So, with prob $1-\delta, x_{2}$ owns p_{2}, so it can be reconstructed from p_{2}.

Decompression - 3

- How to lift the assumption that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.

Decompression - 3

- How to lift the assumption that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.
- Try in parallel all possibilities for $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$. We run the decompressor for each one till it finds the first neighbors of p_{1} and p_{2} in the corresponding B_{i}-sets (Note: some may never find any neighbors).

Decompression - 3

- How to lift the assumption that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.
- Try in parallel all possibilities for $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$. We run the decompressor for each one till it finds the first neighbors of p_{1} and p_{2} in the corresponding B_{i}-sets (Note: some may never find any neighbors).
- For the right guess of the profile, p_{1} and p_{2} have unique neighbors in the B_{i}-sets, and they are x_{1} and x_{2}.

Decompression - 3

- How to lift the assumption that the decompressor knows the complexity profile $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$.
- Try in parallel all possibilities for $C\left(x_{1}\right), C\left(x_{2}\right), C\left(x_{1}, x_{2}\right)$. We run the decompressor for each one till it finds the first neighbors of p_{1} and p_{2} in the corresponding B_{i}-sets (Note: some may never find any neighbors).
- For the right guess of the profile, p_{1} and p_{2} have unique neighbors in the B_{i}-sets, and they are x_{1} and x_{2}.
- Using extra hashing, we can isolate x_{1} and x_{2} from the strings produced by the parallel procedures with incorrect guesses. Cost of hashing: $O(\log n)$ bits, because there are $O\left(n^{3}\right)$ parallel procedures.

Merci beaucoup.

