
Simple extractors via crypto
pseudo-random generators

Marius Zimand

(Towson University)

Extractors vs. Pseudo-Rand. Generators

• Fundamental primitives in derandomization, cryp-
tography, ...

• They ”manufacture” randomness, but different
sort of randomness

• Extractor = procedure that transforms imper-
fect randomness into (almost) perfect random-
ness (information-theoretic randomness).

• P.R. Gen. = procedure that transforms a short
random seed into a long string that looks ran-
dom to any poly-time adversary (computational
randomness).

• (OLD?) Common Wisdom: information-theoretic
randomness and computational randomness live
in two very different worlds.

Trevisan’s result (’99)

• There are two types of p.r.generators

– p.r. gen. constructed from a hard function

(Nisan-Wigderson) → derandomization

– p.r. gen constructed from a one-way permu-

tation/function (Blum-Micali-Yao) → crypto

• Trevisan’99: the N-W construction ⇒ extractors

• “ ... it might also be that our results are just an isolated

exception to the “rule” that computational randomness

results are not useful in information theoretic settings. For

ex., we note that the p.r. gen constructions of B-M-Y does

not yield an extractor using our technique.”

• Our result: B-M-Y method ⇒ extractors

• ... and they are very simple (locally computable!).

Quality of Randomness

Perfect Randomness =

Unif. distribution

n-bit strings

• each string is equally
likely to be produced

• for all x,

Pr(X = x) = 2−n

Imperfect randomness =

min-entropy < n

n-bit strings

• some strings are more
likely than other strings

• for all x,

Pr(X = x) ≤ 2−k def⇔
min− entropy(X) = k

Definition of extractor

Extractors = procedures that transform imperfect
randomness into perfect randomness

We consider seeded extractors

X: n bits,
min-entropy = k

y: d bits, random

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXX

rrffffffffffffffffffffffffffff

EXT

��

poly. time

Z: m bits long

• ∆stat(Z, Um) < ε

• For any A ⊆ {0,1}m, |Pr(Z ∈ A)− |A|
2m| < ε

• We say that EXT : {0,1}n × {0,1}d → {0,1}m is
a (k, ε)-extractor.

Methods for constructing extractors:

• ’89 – ’99: Hashing (left-over hash lemma) +

sampling

• ’99: Trevisan

Nisan-Wigderson method for p.r.-generators +

error-correcting codes

→ extractors

• post ’99: combinations and refinements of the

above

• Here:

Blum-Micali-Yao methods for p.r.-generators

→ extractors

Our extractors are very simple

X:

 2
n
 blocks

 n bits

 …

seed = ((y1, y2, . . . , y`), r), |yi| = n, |r| = `n, ` = O(n)

b0 = (X[y1] . . . X[y`]) · r (inner prod. mod 2)

b1 = (X[y1 + 1] . . . X[y` + 1]) · r

. . .

bm−1 = (X[y1 + m− 1] . . . X[y` + m− 1]) · r

output = b0b1 . . . bm−1

Parameters (not optimal but non-trivial)

• Notation: |X| = N = (n · 2n)

• Locally computable extractor: each output bit is

extracted in O(log2 N) time.

• Works for min-entropy λN , any const. λ

• Seed length O(log2 N)

• Output length ≈ Nλ/3

• Also seed length O(logN) but output length 2c
√

logN

A useful lemma

 m-bit strings

 X …

 Ex EXT(X,yD)
 E

 EXT(X,y1)

W

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

DEF. X hits W ε-correctly if∣∣∣|{y | EXT(X, y) ∈ W}|
D

−
|W |
2m

∣∣∣ < ε

Lemma. If ∀W , no. of X that do not hit W ε-
correctly is ≤ 2t

⇒ EXT is a (t + log(1/ε),2ε)-extractor

Pseudo-rand. generator

 hard (N-W) y (seed)

f

 one-way (B-M-Y)

g(y)

 m bits

for all A ⊆ {0,1}m, com-
putable by poly-size
circuits,∣∣∣Pr(g(y) ∈ A)−

|A|
2m

∣∣∣ < ε

Extractor

 X (weakly rand. string)

 min-entropy(X) = k y (seed)

 EXT(X,y)

 m bits

 EXT

for all A,∣∣∣Pr(EXT(X, y) ∈ A)−
|A|
2m

∣∣∣ < ε

Trevisan’s method

f
N−W−→ gf

hard-function p.r.gen.

N-W: If circuit D distinguishes gf(y) from unif., one

can transform D into A, not much larger, and A

computes f

Trevisan:

• Take a random f

• View the truth-table of f as the weakly random

string

• EXT(f, y) = gf(y)

• f does not hit D ε-correctly ⇔ D disting. f from

unif.

• f can be calculated by small A with D-gates

• f has a small description, so there are few f ’s

like this

• |{f | f does not hit D ε-correctly}| is small

• So, by Lemma, EXT is an extractor

B-M-Y: p.r.gen. from one-way permutations

R
B−M−Y−→ gR

O-W perm. p.r.gen.

B-M-Y: If circuit D distinguishes gR(y) from unif.,

one can transform D into A, not much larger, and A

inverts R on may inputs.

Try to mimic Trevisan:

• R does not hit D ε-correctly ⇔ ∃A, built from D,

distinguisher.

• We need:

Most permutations are one-way. (????)

• Solution: Allow circuits that calculate R to have

oracle access to R, permutation on n-bit strings.

• All R’s are easy to calculate.

• R does not hit D ε-correctly ⇒ ∃A with query

complexity poly(m,1/ε) that inverts R on

ε/poly(m,1/ε) fraction of R(x)’s.

• We need: for decently long m, the number of

such R’s is small.

• Known techniques (Impagliazzo’96, Gennaro-

Trevisan’00, Wee’05) are not enough.

• Closer look at B-M-Y: D distinguisher

⇒ A (built from D) is a ’nice’ inverter:

determines x using only the values of

R(x), R2(x), . . . , Rm(x) (m is the output length).

• Intuitively, for a random perm R, x should be

almost indep. of R(x), R2(x), . . . , Rm(x).

• We restrict to cyclic permutations 1 → R(1) →
R2(1) → . . . → RN−1(1) → 1.

• Using A, we can reconstruct perm. R only from

RN−1(1), RN−2(1), . . . , RN−m(1)

• How: RN−1(1), RN−2(1), . . . , RN−m(1)⇒ RN−m−1(1) ⇒
RN−m−2(1) ⇒ . . . ⇒ R(1).

So, R does not hit D ε-correctly

⇒ D distinguisher

⇒ ∃A ’nice’ inverter

⇒ R has small description

⇒ few such R’s

⇒ extractor.

several complications ...

• the weakly random string is not a cyclic permu-
tation.
→ we convert it into one.

• A does not determine x from R(x), R2(x), . . . ,
Rm(x), but only finds a list containing x.
→ we include in the description the rank of x in
the list.

• The above holds only for ε/m fraction of x.
→ amplify this to (1 − δ) using the ”weak-O-W
to strong-O-W” transformation.

• A is a randomized circuit and we cannot hard-
wire the ”best” bits (they may be different for
different R’s).
→ we get more inverting circuits, and the index
of the right one must be included in the descrip-
tion of R.

Conclusions/Open Problems:

• The Blum-Micali-Yao technique works for ex-

tractors.

• There are tight lower bounds for extractors. Can

they be used to obtain lower bounds for the var-

ious steps in B-M-Y method?

• Extractors obtained in this way are very simple

and some are locally computable (each bit is ex-

tracted separately in polylog time).

• Parameters are not optimal at this time. Can

they be improved?

• Maybe good for teaching extractors

(after B-M-Y has been covered).

