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Two strings x , y , and the information therein

C(x) C(y)

C(x | y) C(y | x)

C(x , y)

I (x : y)

C(x) = length of a shortest description of x .
C(x | y) = length of a shortest description of x
given y .
...
Mutual information of x and y is defined by a
formula:
I (x : y) = C(x) + C(y)− C(x , y).

Also, I (x : y) =+ C(x)− C(x | y),
I (x : y) =+ C(y)− C(y | x)

(=+ hides ±O(log n))

All the regions except the center have an
operational meaning.

Does I (x : y) have an operational meaning?
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This work in one slide

Question: Can mutual information be “materialized”?

Answer: YES.

Mutual information of strings x , y = length of the longest shared secret key
that Alice having x and Bob having y can establish via a randomized
protocol.

This was known in the setting of Information Theory (Shannon entropy, etc.)
for memoryless and stationary ergodic sources.

We show it in the framework of Kolmogorov complexity (it has been an open
folklore question since the ’70s).

We also have analog results for multiparty secret key agreement protocols.

We present matching upper/lower bounds for the communication complexity
of 2-party secret key agreement protocols, in the public randomness model.
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IT vs. AIT

IT (à la Shannon)

• Data is the realization of a random variable
X .
• The model: a stochastic process generates
the data.
• Amount of information in the data: H(X )
(Shannon entropy).

AIT (Kolmogorov complexity)

• Data is just an individual string x

• There is no generative model.

• Amount of information in the data: C(x) =
minimum description length.

0000000000000000

101101000110010

Kolmogorov complexity

Fix U a universal Turing machine.
p is a description of x if U(p) = x . p is a description of x given y if U(p, y) = x .

C(x) = min{|p| | p is a description of x .}
C(x | y) = min{|p| | p is a description of x given y .}
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Secret key agreement protocol: warm-up example

Alice and Bob want to agree on a secret key.

Problem is that they can only communicate through a
public channel.

Alice knows line L : y = a1x + a0;

Bob knows point P: (b1, b2);

L : 2n bits of information (intercept, slope in F2n ).

P: 2n bits of information (the 2 coord. in F2n ).

Total information in (L,P) = 3n bits; mutual information
of L and P = n bits.

L

P

SOLUTION:

Alice sends a1 to Bob.

Bob, knowing that P ∈ L, finds L.

Alice and Bob use a0 as a secret key.

It works! Eve has seen a1, but a1 and a0 are independent.
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Main result (informally stated)

Secret key agreement protocol:

Alice knows x

Bob knows y

they exchange messages and compute a shared secret key z

z must be random conditioned by the transcript of the protocol

Our setting:

(1) Alice and Bob also know how their x and y are correlated.
Technically, they know the complexity profile of x and y : (C(x),C(y),C(x , y)).

(2) Alice and Bob use randomized algorithms to compute their messages.

Theorem (Characterization of the mutual information)

1 There is a protocol that for every n-bit strings x and y allows to compute
with high probability a shared secret key of length I (x : y) (up to −O(log n)).

2 No protocol can produce a longer shared secret key (up to +O(log n)).
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Main result (positive part).

Theorem

There exists a secret key agreement protocol with the following property: if

Alice knows x , ε, and the complexity profile of (x , y),

Bob knows y , ε, and the complexity profile of (x , y),

then with probability 1− ε they obtain a string z such that,

|z | ≥ I (x : y)− O(log(n/ε))

and C (z | transcript) ≥ |z | − O(log(1/ε)).
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Secret key agreement: sketch of the general protocol

Alice and Bob want to agree on a secret key.

they can only communicate through a public channel.

Alice knows : x ; Bob knows a point y ;

C(x | y) =+ n1

C(y | x) =+ n2

I (x : y) =+ n0.

x y

n1 n2
n0

Protocol:

Alice sends to Bob a random hash(1)(x) of size ≈ n1.

Bob (knowing y) reconstructs x .

Alice and Bob compute (independently) a random z = hash(2)(x) of size ≈ n0

Adversary gets hash(1)(x) but learns nothing about hash(2)(x).

Tricky part: choose “communication-efficient” and independent hash(1) and hash(2).

Under the hood:

randomness extractors and universal hashing.

cf. Buhrman-Fortnow-Laplante 2001,
Musatov-R.-Shen 2009,

Bauwens et al. 2013,
Z. 2017
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Main result (negative part).

Theorem

Let x and y be input strings of length n on which the protocol succeeds with error
probability ε so that with prob 1− ε Alice and Bob have at the end the same z ,
and C (z | t) ≥ |z | − δ(n).

Then with probability ≥ 1− O(ε) we have
|z | ≤ I (x : y) + δ(n) + O(log(n/ε)).

Under the hood:

Conditional information inequality

simple part: if no communication, then key ≤ I (x : y)

still simple: with communication, key ≤ I (x : y | transcript)
hard part: I (x : y | transcript) ≤ I (x : y)

technical lemma: C (transcript | x) + C (transcript | y) ≤ C (transcript)

cf. Kaced-R.-Vereshchagin 2017
(Shannon’s entropy version)
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Result (2): Multi-party secret agreement

x1

x2

x3

Alice: x1

Bob: x2

Charlie: x3

points x1, x2, x3 belong to one line
in the affine plane over F2n

maximal common secret key: n/2 bits

Theorem (Informal statement)

We have ` parties, given inputs x1, . . . , x`.

Each party also knows the complexity profile of (x1, . . . , x`).

We provide an explicit formula for the maximal size of the common secret key that can be
established via an open communication channel.

Under the hood:

the size of the secret key → linear program → explicit (but complex) formula [Chan et. al.,
2015]

... + the same techniques as for ` = 2
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Result (3): Communication complexity for secret key
agreement

Fact: Our protocol for secret key agreement produces a key of length ≈ I (x : y) and has
communication complexity ≈ min{C(x | y),C(y | x)}.

Theorem (Somewhat informal)

If the communication complexity of a protocol with public randomness is
< 0.999 ·min{C(x | y),C(y | x)}, then the size of the obtained common secret key is
� 0.001 · I (x : y).

Under the hood:

common information is far less than mutual information;

(Gács & Körner 1970s ; Kolmogorov seminar in 1990s; Muchik & A.R. 2000s)

opposition stochastic/nonstochastic objects (Shen 1983; Razenshteyn 2011)

Open question

What is the communication complexity for the model with private random bits?
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Previous results: Shannon framework

Ahlswede and Csiszár [1993] and Maurer [1993]:

the optimal size of the common secret key for two parties

Csiszár and Narayan [2004]:

the optimal size of the common secret key for ` > 2 parties

Tyagi [2013]: communication complexity of the protocols

formal difference
previous works: random variables & Shannon’s entropy

our work: binary strings & Kolmogorov complexity

1st substantial difference
previous works: (X,Y) from random memoryless / stationary ergodic sources

our work : no specific structure on X and Y

2nd substantial difference
previous works: protocols work for most admissible pairs (X ,Y )

our work: protocols work for all admissible pairs (X ,Y )
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Previous results: Kolmogorov complexity framework

• Finding an operational characterization of mutual information has been a folklore open
problem.

• Some earlier approaches:

Common information of x and y : longest z that can be computed from x and, separately,
from y with a few help bits:

C(z | x) = O(log n) C(z | y) = O(log n).

Is common information equal to mutual information?

Gács and Körner [1973]: NO!They exhibit x , y with I (x : y) = Ω(n) and |z| = o(n).

Muchnik, Romashchenko, Chernov, Vereschagin: several papers with refinements of Gács
and Körner.

For example: there are x , y with C(x),C(y) =+ n, I (x : y) = 0.99n, |z| = O(log n).
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One proof

Upon conditioning, mutual information can increase or decrease.

There are x , y , t1, t2 such that I (x : y | t1) > I (x : y) and I (x : y | t2) < I (x : y)

We show:

If t(x , y) is a function with the rectangle property, then conditioning with t(x , y) decreases
mutual information.

t has the rectangle property, if

t(x1, y1) = t(x2, y2) = t ⇒ t(x1, y2) = t.

This fact is the key point in showing the negative part of our main result.

The transcript t(x , y) of a protocol on input (x , y) has the rectangle property.

It has other applications in comm. complexity, maybe elsewhere as well.
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One proof(2)

Theorem

If t has the rectangle property, then for all x , y , I (x : y | t(x , y)) ≤ I (x : y) + O(log n).

Proof:

Fix x , y , t = t(x , y)

x ′ is a clone of x , if ∃y ′, t(x ′, y ′) = t and C(x ′) ≤ C(x).

y ′ is a clone of y , if ∃x ′, t(x ′, y ′) = t and C(y ′) ≤ C(y).

Clonesx : set of clones of x ; Clonesy : set of clones of y .

FACT: log |Clonesx | ≥ C(x | t)− O(log n) (and similarly for Clonesy .)

Proof: x is described by its ordinal in an enumeration of Clonesx , which can be done
effectively given t and C(x).

So, C(x | t) ≤ log |Clonesx |+ O(log n).
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One proof(3)

Theorem

If t has the rectangle property, then for all x , y , I (x : y | t(x , y)) ≤ I (x : y) + O(log n).

Proof (continuation):

Take a pair (x ′, y ′) ∈ Clonesx × Clonesy with maximal C(x ′, y ′ | t).

C(x ′, y ′ | t) ≥+ log |Clonesx × Clonesy | =+ C(x | t) + C(y | t).

C(x ′, y ′) = C(x ′, y ′, t) (because t = t(x ′, y ′), using the rectangle property)

=+ C(t) + C(x ′, y ′ | t) (chain rule)

≥+ C(t) + C(x | t) + C(y | t).

On the other hand,

C(x ′, y ′) ≤ C(x ′) + C(y ′) ≤ C(x) + C(y) (by def. of clones)

Combining the last two inequalities, C(t) + C(x | t) + C(y | t) ≤+ C(x) + C(y).

Now subtract C(x , y , t) in the LHS, and (the smaller) C(x , y) in the RHS.

QED
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Take home message

Operational characterization of the mutual information of strings x and y :

I (x : y) is equal (up to logarithmic precision) to the length of a longest secret
key that two parties, one having x and the other having y , can establish via an
interactive protocol on an open channel.

The protocol is probabilistic and the parties also need to know how their strings are

correlated (i.e., they know the complexity profile of x and y).

The protocol has communication complexity min(C (x | y),C (y | x)).

The communication is optimal for finding a secret key of maximal length, in
the model with public randomness.

We also determine the maximum length of a shared secret key in the
multi-party setting.
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Thank you

Full version:

A. Romashchenko and M. Zimand, An operational characterization of mutual
information in algorithmic information theory, available at
ECCC https://eccc.weizmann.ac.il/report/2018/043
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