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A simple example for randomness extraction: von
Neumann problem

Source of randomness: a biased coin.

Prob[coin = H] = p, Prob[coin = T] = (1-p), p unknown.

Independent tosses: TT HH HT HT HH TH H...

Can we get unbiased bits?

Yes. Prob[HT] = p(1-p), Prob[TH] = (1-p)p. So make HT
→ 0, TH → 1.

So we get 001...
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Many times we need good random bits: cryptography,
algorithms, simulation, ...

Typically, the sources of randomness are not perfect: biases,
correlations.

Extractors improve the quality of randomness of a source.

Pseudo-random generators handle a different problem: given a
few random bits (the seed), produce a longer random string
that “looks” random.

Extractors and pseudo-random generators solve quite different
problems; there are however surprising connections.
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What’s in this talk

Extractors

Exposure-resilient extractors introduced in [ZIM’06]

A construction of exposure-resilient extractors based on the
Håstad-Impagliazzo-Levin-Luby construction of a
pseudo-random generator from a one-way function [ZIM’06]

Applications in derandomization [ZIM’07]
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A short history of randomness extractors

50’s - Von Neumann: How to get unbiased bits from a biased
coin.

80’s: generalization to distributions were bits may have
Markov-type correlations.

90’s - present: theory of extractors that handle general
imperfect distributions.
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Extractor = procedure that transforms imperfect randomness
into (almost) perfect randomness (information-theoretic
randomness).

Exposure-resilient Extractor = the above +
the output looks random even to computationally unbounded
adversaries that have adaptive but bounded access to the
input.

Marius Zimand Extractors and applications



Intro Construction Derandomizing BP(sublinear)

Extractor = procedure that transforms imperfect randomness
into (almost) perfect randomness (information-theoretic
randomness).

Exposure-resilient Extractor = the above +
the output looks random even to computationally unbounded
adversaries that have adaptive but bounded access to the
input.

Marius Zimand Extractors and applications



Intro Construction Derandomizing BP(sublinear)

Min-entropy; a way to assess the quality of randomness

Perfect Randomness = Unif.

distribution

n-bit strings

each string is equally
likely to be produced

for all x ,

Pr(X = x) = 2−n

Imperfect randomness = min-

entropy < n

n-bit strings

some strings are more
likely than other strings

for all x ,

Pr(X = x) ≤ 2−k def⇔
min− entropy(X ) = k
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(standard) seeded extractor

EXT : {0, 1}n × {0, 1}d → {0, 1}m
EXT(X ,Y )

X - “weakly random string,”, min-entropy(X ) = k
Y - “seed,” unif. distributed

For any W ⊆ {0, 1}m,

ProbX ,Y (EXT(X ,Y ) ∈W ) =
|W |
2m
± ε.
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Another view

Let’s view W as an adversary – computationally unbounded.

Adversary is given the challenge Z which is either

(1) EXT(x , y), OR
(2) Um

Adv. wants to distinguish (1) from (2) with bias ε. EXT is a
(k , ε)-extractor if no adv. succeeds.
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Can we consider a more powerful adversary?

Yes. Give him more information.
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Strong extractor

Adversary is given the seed y and the challenge Z which is
either

(1) EXT(x , y), OR
(2) Um

Adv. wants to distinguish (1) from (2) with bias ε. EXT is a
(k , ε)-strong extractor if no adv. succeeds.

Marius Zimand Extractors and applications



Intro Construction Derandomizing BP(sublinear)

Lu extractor

ROUND 1: Adversary is given x and is allowed to calculate
f (x) with |f (x)| = q bits.

ROUND 2: Adversary loses access to x and is given the seed
y and the challenge Z which is either

(1) EXT(x , y), OR
(2) Um

Adv. wants to distinguish (1) from (2) with bias ε. EXT is a
(k , ε)-Lu extractor resistant to storage size q if no adv.
succeeds.
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Exposure-resilient extractor

Adversary is given the challenge Z which is either

(1) EXT(x , y), OR
(2) Um

and simultaneously oracle access to x to which it is allowed to
make q queries.

Adv. wants to distinguish (1) from (2) with bias ε.

EXT is a (k , ε)-exposure-resilient extractor resistant to q
queries if no adv. succeeds.
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Formal definition

adaptive test = oracle circuit

EXT : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor with
query resistance q if for every distribution X with min-entropy
k and for every adaptive test W with query complexity q

ProbX ,y (EXT(X , y) ∈W X ) = ProbX ,Um(Um ∈W X )± ε.

Marius Zimand Extractors and applications



Intro Construction Derandomizing BP(sublinear)

 

 

   (Standard) Extractor 

 

         m-bit strings 

 

 

      

  

 

 X                                           …  

 

 

                                                                                                                   Ex       EXT(X,yD) 

                                                                                                                 E         

          EXT(X,y1)
  

         

W       

 

    Exposure-resilient extractor 

 

         m-bit strings 

 

 

      

  

 

 X                                           …  

 

 

                                                                                                                   Ex       EXT(X,yD) 

                            

 

 

 

 

 

 

 

 

 

 

 

                                                                                           

          EXT(X,y1)
 

 
         

WX      

 

         

WX      

Marius Zimand Extractors and applications



Intro Construction Derandomizing BP(sublinear)

Motivation

Natural concept

Exposure-resiliency is an important issue in cryptography.

Sampling functions that have some dependency on the
randomness of the sampler.

Derandomization (later).
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How to build an exposure-resilient extractor

An extractor EXT : {0, 1}n × {0, 1}d → {0, 1}m has nice
combinatorial properties.

Using EXT, we color the [N]× [D] rectangle with colors from [M].

If in each each strip of height ≥ 2k each color c ∈ [M] appears a
fraction of (1± ε)/M times, then E is (k , ε)-extractor.

y1 . . . . . . . . . yD

x1

x2

·
· 4 4 4 4 4
· 4 4 4 4 4
· 4 4 4 4 4
·

xN
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How to build an exposure-resilient extractor

No similar property for exposure-resilient extractors.

Techniques based on error-correcting codes, polynomials,
designs, etc., are not enough.

Use a reduction based on the HILL construction of a PRG
from a one-way function.
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A simple and useful lemma
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DEF. X hits W X ε-correctly if

|{y | EXT(X , y) ∈W X}|
D

=
|W X |

2m
± ε.

Lemma. Let EXT : {0, 1}n × {0, 1}d → {0, 1}m. If ∀W , no. of X
that do not hit W ε-correctly is ≤ 2t

⇒ EXT is a (t + log(1/ε), 2ε)-extractor
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Pseudo-rand. generator
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for all A ⊆ {0, 1}m, computable
by poly-size circuits,

Pr(g(y) ∈ A) =
|A|
2m
± ε.
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Trevisan’s method

f
N−W−→ gf

hard-function p.r.gen.

N-W: If circuit D distinguishes gf (y) from unif., then using some
small advice, one can transform D into A such that A computes f .

Trevisan:

View the weakly random string as the truth-table of a
function f

EXT(f , y) = gf (y)

f does not hit D ε-correctly ⇔ D disting. f from unif.

f can be calculated by small A with D-gates + small advice.

f has a small description, so there are few f ’s like this.

|{f | f does not hit D ε-correctly}| is small

So, by Lemma, EXT is an extractor.
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Mimic Trevisan? Not quite.

For exposure-resilient extractors, we need to consider
distinguishers that have bounded access to f (recall
weakly-random string = f ’s truth-table).

But no function is hard to an adversary that has access to its
truth-table.

So the Nisan-Wigderson schema does not work.

Use the HILL construction of a p.r. gen. from a O-W
function!

A function may be O-W even if the adversary has bounded
access to its truth-table.
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using the HILL construction

R : {0, 1}n → {0, 1}n.

R
HILL−→ gR

O-W func. p.r.gen.

LEMMA (Distinguisher ⇒ Inverter) -Informal version:
For any oracle circuit C , we can build an oracle circuit A, making
just a few extra queries, so that if for some R:
CR distinguisher of (gR(x),Um) ⇒

AR inverts a large fraction of {R(x) | x ∈ {0, 1}n} OR
R is a “a-lot”-to-1.
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LEMMA (Formal version)

Let EXT be the extractor obtained via the HILL method.
EXT depends on the parameters β, P ε, and m. Let
ε′ = 1

23βn+1 · (ε/m −
√

P/2βn−1).

Let C be a circuit with query complexity Q. There exists a
circuit A with query complexity (Q + m) · poly(1/β, 1/ε′, 2βn)
with the following property. Suppose R does not hit C
ε-correctly. Then either

(a) R is not P − to − 1 or
(b) for at least a fraction (1/8) · ε′ of the random coins ρ used by

B, it holds that

|{x ∈ {0, 1}n | AR(R(x), ρ) ∈ R−1(R(x))}| ≥ 1
4 · (ε

′)2 · N.
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LEMMA (Informal version)

For any oracle circuit A, there are few R’s such that AR with
|R|δ queries (for any δ < 1) inverts a large fraction of
{R(x) | x ∈ {0, 1}n}.
There are few R’s that are “a-lot”-to-1.

Marius Zimand Extractors and applications



Intro Construction Derandomizing BP(sublinear)

LEMMA (Formal version):

(a) Let E be the event (over random R) “R is not αN − to − 1.”
The probability of E is bounded by 2−Ω(n·αN).

(b) Let A be oracle circuit with query complexity S . Let B be the
event (over random pairs (R, ρ))“|{x ∈ {0, 1}n |
AR(R(x), ρ) ∈ R−1(R(x))}| ≥ 2e · αN · S · T .” The
probability of B is bounded by 2−T + 2−Ω(n·αN).
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Proof - main steps

View the weakly-random string as the truth-table of a
function R. Let gR be the function constructed from R using
the HILL schema.

Take EXT(R, y) = gR(y).

Let D be an adaptive test.

Suppose R does not hit DR ε-correctly

DR distinguisher

From D we build A s.t. AR inverter or R is “a-lot”-to-1.

There are few such R’s.

Few R’s do not hit D ε-correctly

So (by Lemma), exposure-resilient extractor.
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Parameters

EXT : {0, 1}Ñ × {0, 1}d → {0, 1}m.

length of the weakly rand. string: Ñ = n · 2n.

query resistance Ñδ, for any δ < 1

entropy k = Ñ − ÑΩ(1)

seed length d = O(log Ñ)

output length m = ÑΩ(1)
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Application: Derandomization of BPTIME[sublinear]

L ∈ BPTIME[T (n)]:
There is a prob. alg. A running in time T (n) such that

∀xProbρ[A(x , ρ) = L(x)] > 2/3.

Things that can be done in probabilistic sublinear time:

approx. matrix multiplication

approx. min. spanning tree

a lot of property testing

...
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Theorem

There exist two constant natural numbers a and c such that for all
T (N) < N1/a, any alg. in BPTIME[T (N)] can be simulated
deterministically in (T (N))c time and the deterministic simulator
is correct on ≥ (1− 2−Ω(T (N) log T (N))) fraction of inputs of length
N, for all N.
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L ∈ BPTIME[T (n)]

There is a prob. alg. A running in time T (n) such that

∀xProbρ[A(x , ρ) = L(x)] > 2/3.

Wx = {ρ | A(x , ρ) = L(x)}.
density(Wx) > 2/3.
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generic derandomization scheme: use a pseudo-rand. tool to
obtain a small set Z such that for all x ,

|Z ∩Wx |
|Z |

≈ density(Wx) > 2/3.

we only need |Z ∩Wx | > (1/2)|Z |.
simulate A repeteadly using as randomness the elements of Z
and take the majority vote.

usually, a p.r.gen. is used to build Z .

p.r.gens are known to exist only under some hardness
assumptions.
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Use extractors; extractors exist unconditionally.

EXT : {0, 1}n × {0, 1}d → {0, 1}m, (k , ε)-extractor.

For any u ∈ {0, 1}n, Zu = {E (u, y) | y seed}; the samples
induced by u.

For any B ⊆ {0, 1}m, with prob. of u ≥ 1− 2−(n−k−1),

|Zu ∩ B|
|Zu|

=ε density(B).

Take Wx in the role of B.

For a fraction of 1− 2−(n−k−1) of u’s,

|Zu ∩Wx | > (1/2)|Zu|.

We still use randomness u; so no derand. so far.

How to get rid of u?
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Use x itself to obtain Zx to hit Wx correctly!

x and Wx are not independent; so why would this work?

A is sublinear; checking if ρ ∈Wx depends on just a few bits
of x .

the rest of x is indep. of “ρ ∈Wx .”

maybe we can use the rest of x to produce samples that hit
Wx corectly?

Indeed we can! Use an exposure-resilient extractor.
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T (N) - running time of the prob. A, with T (N) < N1/a.

EXT : {0, 1}N × {0, 1}d → {0, 1}T (N),
(N − Ω(T (N) · log T (N)), 1/6) exposure-resilient extractor,
resistant to T (n) queries.

View Wx as computed by an adversary that can query T (N)
bits of x .

Take Zx = {E (x , y) | y seed}.
For (1− 2−Ω(T (N) log T (N))) fraction of x ,

|Zx ∩Wx |
|Zx |

=1/6 density(Wx) > 2/3.

For these x ’s: |Zx ∩Wx | > (1/2)|Zx |.
Exactly what we need!
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Other applications

Increasing the Kolmogorov complexity of infinite sequences

Derandomization for interesting classes of constraint
satisfaction problems
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Multumesc.
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