Exposure-resilient Extractors and Applications

Marius Zimand Towson University

Facultatea de Matematica Bucuresti Feb. 2009

∃ >

Intro Construction Derandomizing BP(sublinear)

A simple example for randomness extraction: von Neumann problem

- Source of randomness: a biased coin.
- Prob[coin = H] = p, Prob[coin = T] = (1-p), p unknown.
- Independent tosses: TT HH HT HT HH TH H...
- Can we get unbiased bits?

Intro Construction Derandomizing BP(sublinear)

A simple example for randomness extraction: von Neumann problem

- Source of randomness: a biased coin.
- Prob[coin = H] = p, Prob[coin = T] = (1-p), p unknown.
- Independent tosses: TT HH HT HT HH TH H...
- Can we get unbiased bits?
- Yes. Prob[HT] = p(1-p), Prob[TH] = (1-p)p. So make HT \rightarrow 0, TH \rightarrow 1.
- So we get 001...

- Many times we need good random bits: cryptography, algorithms, simulation, ...
- Typically, the sources of randomness are not perfect: biases, correlations.
- Extractors improve the quality of randomness of a source.
- Pseudo-random generators handle a different problem: given a few random bits (the seed), produce a longer random string that "looks" random.
- Extractors and pseudo-random generators solve quite different problems; there are however surprising connections.

向下 イヨト イヨト

What's in this talk

- Extractors
- Exposure-resilient extractors introduced in [ZIM'06]
- A construction of exposure-resilient extractors based on the Håstad-Impagliazzo-Levin-Luby construction of a pseudo-random generator from a one-way function [ZIM'06]
- Applications in derandomization [ZIM'07]

• • = • • = •

A short history of randomness extractors

- 50's Von Neumann: How to get unbiased bits from a biased coin.
- 80's: generalization to distributions were bits may have Markov-type correlations.
- 90's present: theory of extractors that handle general imperfect distributions.

(E) < E)</p>

• Extractor = procedure that transforms imperfect randomness into (almost) perfect randomness (information-theoretic randomness).

同 ト イヨ ト イヨト

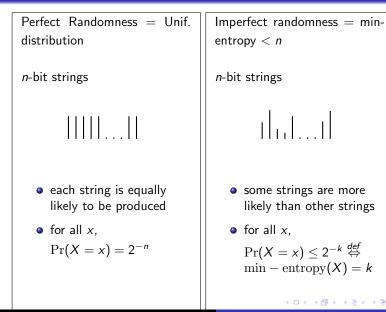
æ

- Extractor = procedure that transforms imperfect randomness into (almost) perfect randomness (information-theoretic randomness).
- Exposure-resilient Extractor = the above +

the output looks random even to computationally unbounded adversaries that have adaptive but bounded access to the input.

▶ ★ 国 ▶ ★ 国 ▶

Min-entropy; a way to assess the quality of randomness

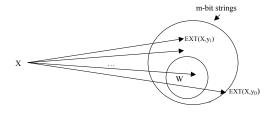


Intro Construction Derandomizing BP(sublinear)

(standard) seeded extractor

$$\operatorname{Prob}_{X,Y}(\operatorname{EXT}(X,Y) \in W) = \frac{|W|}{2^m} \pm \epsilon.$$

(Standard) Extractor



・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Another view

- Let's view W as an adversary computationally unbounded.
- Adversary is given the challenge Z which is either
 - (1) EXT(x, y), OR (2) U_m
- Adv. wants to distinguish (1) from (2) with bias ε. EXT is a (k, ε)-extractor if no adv. succeeds.

▶ < 문 ▶ < 문 ▶</p>

- Can we consider a more powerful adversary?
- Yes. Give him more information.

・ロン ・回と ・ヨン ・ヨン

æ

Strong extractor

- Adversary is given the seed y and the challenge Z which is either
 - (1) EXT(x, y), OR (2) U_m
- Adv. wants to distinguish (1) from (2) with bias ε. EXT is a (k, ε)-strong extractor if no adv. succeeds.

▲ 注 → ▲ 注 →

Lu extractor

- ROUND 1: Adversary is given x and is allowed to calculate f(x) with |f(x)| = q bits.
- ROUND 2: Adversary loses access to x and is given the seed y and the challenge Z which is either
 - (1) EXT(x, y), OR
 - (2) *U*_m
- Adv. wants to distinguish (1) from (2) with bias ε. EXT is a (k, ε)-Lu extractor resistant to storage size q if no adv. succeeds.

回 と く ヨ と く ヨ と

Exposure-resilient extractor

- Adversary is given the challenge Z which is either
 - (1) EXT(x, y), OR
 - (2) *U*_m

and simultaneously oracle access to x to which it is allowed to make q queries.

- Adv. wants to distinguish (1) from (2) with bias ϵ .
- EXT is a (k, ε)-exposure-resilient extractor resistant to q queries if no adv. succeeds.

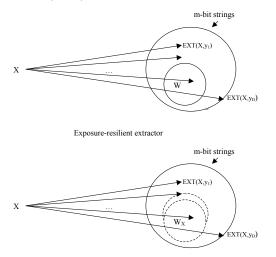
김 글 아이지 글 아

Formal definition

- adaptive test = oracle circuit
- EXT: {0,1}ⁿ × {0,1}^d → {0,1}^m is a (k, ε)-extractor with query resistance q if for every distribution X with min-entropy k and for every adaptive test W with query complexity q

$$\operatorname{Prob}_{X,y}(\operatorname{EXT}(X,y) \in W^X) = \operatorname{Prob}_{X,U_m}(U_m \in W^X) \pm \epsilon.$$

通 とう ほうとう ほうど



Motivation

- Natural concept
- Exposure-resiliency is an important issue in cryptography.
- Sampling functions that have some dependency on the randomness of the sampler.
- Derandomization (later).

< 注 → < 注 →

Intro Construction Derandomizing BP(sublinear)

How to build an exposure-resilient extractor

An extractor EXT : $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ has nice combinatorial properties.

Using EXT, we color the $[N] \times [D]$ rectangle with colors from [M].

If in each each strip of height $\geq 2^k$ each color $c \in [M]$ appears a fraction of $(1 \pm \epsilon)/M$ times, then E is (k, ϵ) -extractor.

	<i>y</i> ₁				УD
x_1					
<i>x</i> ₂					
•					
•	\triangle	\triangle	\triangle	\triangle	\triangle
•	\triangle	\triangle	\triangle	\triangle	\bigtriangleup
•	\triangle	\triangle	\triangle	\triangle	\triangle
•					
х _N					

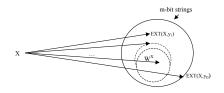
(4) (3) (4) (3) (4)

How to build an exposure-resilient extractor

- No similar property for exposure-resilient extractors.
- Techniques based on error-correcting codes, polynomials, designs, etc., are not enough.
- Use a reduction based on the HILL construction of a PRG from a one-way function.

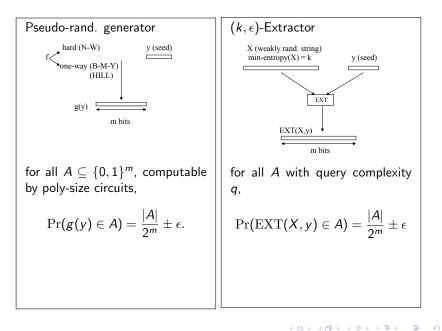
Intro Construction Derandomizing BP(sublinear)

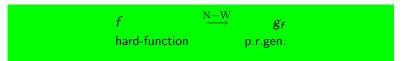
A simple and useful lemma



DEF. X hits $W^X \epsilon$ -correctly if $\frac{|\{y \mid \text{EXT}(X, y) \in W^X\}|}{D} = \frac{|W^X|}{2^m} \pm \epsilon.$

Lemma. Let EXT : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$. If $\forall W$, no. of X that do not hit $W \epsilon$ -correctly is $\leq 2^t$ \Rightarrow EXT is a $(t + \log(1/\epsilon), 2\epsilon)$ -extractor



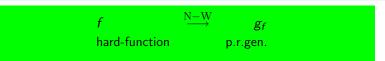


N-W: If circuit D distinguishes $g_f(y)$ from unif., then using some small advice, one can transform D into A such that A computes f.

Trevisan:

< 注→ < 注→

æ

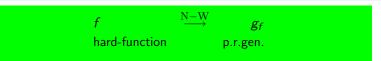


N-W: If circuit D distinguishes $g_f(y)$ from unif., then using some small advice, one can transform D into A such that A computes f.

Trevisan:

• View the weakly random string as the truth-table of a function *f*

▲ 문 ▶ | ▲ 문 ▶



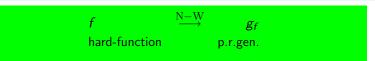
N-W: If circuit D distinguishes $g_f(y)$ from unif., then using some small advice, one can transform D into A such that A computes f.

Trevisan:

• View the weakly random string as the truth-table of a function *f*

•
$$\operatorname{EXT}(f, y) = g_f(y)$$

▲ 문 ▶ | ▲ 문 ▶

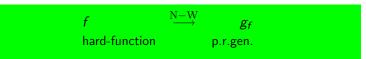


N-W: If circuit D distinguishes $g_f(y)$ from unif., then using some small advice, one can transform D into A such that A computes f.

Trevisan:

- View the weakly random string as the truth-table of a function *f*
- $\operatorname{EXT}(f, y) = g_f(y)$
- f does not hit $D \epsilon$ -correctly $\Leftrightarrow D$ disting. f from unif.

白 ト く ヨ ト く ヨ ト



N-W: If circuit D distinguishes $g_f(y)$ from unif., then using some small advice, one can transform D into A such that A computes f.

Trevisan:

- View the weakly random string as the truth-table of a function *f*
- $\operatorname{EXT}(f, y) = g_f(y)$
- f does not hit D ϵ -correctly \Leftrightarrow D disting. f from unif.
- f can be calculated by small A with D-gates + small advice.

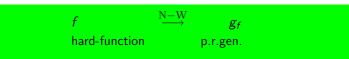
白 と く ヨ と く ヨ と …

N-W: If circuit D distinguishes $g_f(y)$ from unif., then using some small advice, one can transform D into A such that A computes f.

Trevisan:

- View the weakly random string as the truth-table of a function *f*
- $\operatorname{EXT}(f, y) = g_f(y)$
- f does not hit $D \epsilon$ -correctly $\Leftrightarrow D$ disting. f from unif.
- f can be calculated by small A with D-gates + small advice.
- f has a small description, so there are few f's like this.

個 と く ヨ と く ヨ と …

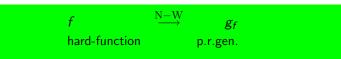


N-W: If circuit D distinguishes $g_f(y)$ from unif., then using some small advice, one can transform D into A such that A computes f.

Trevisan:

- View the weakly random string as the truth-table of a function *f*
- $\operatorname{EXT}(f, y) = g_f(y)$
- f does not hit $D \epsilon$ -correctly $\Leftrightarrow D$ disting. f from unif.
- f can be calculated by small A with D-gates + small advice.
- f has a small description, so there are few f's like this.
- $|\{f \mid f \text{ does not hit } D \epsilon \text{-correctly}\}|$ is small

・回 ・ ・ ヨ ・ ・ ヨ ・



N-W: If circuit D distinguishes $g_f(y)$ from unif., then using some small advice, one can transform D into A such that A computes f.

Trevisan:

- View the weakly random string as the truth-table of a function *f*
- $\operatorname{EXT}(f, y) = g_f(y)$
- f does not hit $D \epsilon$ -correctly $\Leftrightarrow D$ disting. f from unif.
- f can be calculated by small A with D-gates + small advice.
- f has a small description, so there are few f's like this.
- $|\{f \mid f \text{ does not hit } D \epsilon \text{-correctly}\}|$ is small
- So, by Lemma, EXT is an extractor.

・ロト ・回ト ・ヨト ・ヨト

Mimic Trevisan? Not quite.

- For exposure-resilient extractors, we need to consider distinguishers that have bounded access to *f* (recall weakly-random string = *f*'s truth-table).
- But no function is hard to an adversary that has access to its truth-table.
- So the Nisan-Wigderson schema does not work.
- Use the HILL construction of a p.r. gen. from a O-W function!
- A function may be O-W even if the adversary has bounded access to its truth-table.

Intro Construction Derandomizing BP(sublinear)

using the HILL construction

$$R: \{0,1\}^n \to \{0,1\}^n.$$

R	$\xrightarrow{\text{HILL}}$ gr	
O-W func.	p.r.gen.	

LEMMA (Distinguisher \Rightarrow Inverter) -Informal version:

For any oracle circuit C, we can build an oracle circuit A, making just a few extra queries, so that if for some R:

 C^R distinguisher of $(g_R(x), U_m) \Rightarrow$

 A^R inverts a large fraction of $\{R(x) \mid x \in \{0,1\}^n\}$ OR *R* is a "a-lot"-to-1.

LEMMA (Formal version)

- Let EXT be the extractor obtained via the HILL method. EXT depends on the parameters β , $P \epsilon$, and m. Let $\epsilon' = \frac{1}{2^{3\beta n+1}} \cdot (\epsilon/m - \sqrt{P/2^{\beta n-1}}).$
- Let C be a circuit with query complexity Q. There exists a circuit A with query complexity $(Q + m) \cdot \text{poly}(1/\beta, 1/\epsilon', 2^{\beta n})$ with the following property. Suppose R does not hit C ϵ -correctly. Then either

(a)
$$R$$
 is not $P - to - 1$ or

(b) for at least a fraction $(1/8) \cdot \epsilon'$ of the random coins ρ used by B, it holds that

$$|\{x \in \{0,1\}^n \mid A^R(R(x),\rho) \in R^{-1}(R(x))\}| \ge \frac{1}{4} \cdot (\epsilon')^2 \cdot N.$$

ヨット イヨット イヨッ

LEMMA (Informal version)

- For any oracle circuit A, there are few R's such that A^R with $|R|^{\delta}$ queries (for any $\delta < 1$) inverts a large fraction of $\{R(x) \mid x \in \{0,1\}^n\}$.
- There are few *R*'s that are "a-lot"-to-1.

LEMMA (Formal version):

- (a) Let *E* be the event (over random *R*) "*R* is not $\alpha N to 1$." The probability of *E* is bounded by $2^{-\Omega(n \cdot \alpha N)}$.
- (b) Let A be oracle circuit with query complexity S. Let B be the event (over random pairs (R, ρ)) "|{x ∈ {0,1}ⁿ | A^R(R(x), ρ) ∈ R⁻¹(R(x))}| ≥ 2e · αN · S · T." The probability of B is bounded by 2^{-T} + 2^{-Ω(n·αN)}.

通 と く き と く き と

Proof - main steps

• View the weakly-random string as the truth-table of a function R. Let g_R be the function constructed from R using the HILL schema.

回 と く ヨ と く ヨ と

- View the weakly-random string as the truth-table of a function *R*. Let *g*_{*R*} be the function constructed from *R* using the HILL schema.
- Take $\operatorname{EXT}(R, y) = g_R(y)$.

白 ト イヨト イヨト

- View the weakly-random string as the truth-table of a function R. Let g_R be the function constructed from R using the HILL schema.
- Take $\operatorname{EXT}(R, y) = g_R(y)$.
- Let D be an adaptive test.

A B K A B K

- View the weakly-random string as the truth-table of a function *R*. Let *g*_{*R*} be the function constructed from *R* using the HILL schema.
- Take $\operatorname{EXT}(R, y) = g_R(y)$.
- Let D be an adaptive test.
- Suppose R does not hit $D^R \epsilon$ -correctly

- View the weakly-random string as the truth-table of a function *R*. Let *g*_{*R*} be the function constructed from *R* using the HILL schema.
- Take $\operatorname{EXT}(R, y) = g_R(y)$.
- Let D be an adaptive test.
- Suppose R does not hit $D^R \epsilon$ -correctly
- D^R distinguisher

- View the weakly-random string as the truth-table of a function *R*. Let *g*_{*R*} be the function constructed from *R* using the HILL schema.
- Take $\operatorname{EXT}(R, y) = g_R(y)$.
- Let D be an adaptive test.
- Suppose R does not hit $D^R \epsilon$ -correctly
- D^R distinguisher
- From D we build A s.t. A^R inverter or R is "a-lot"-to-1.

- View the weakly-random string as the truth-table of a function *R*. Let *g*_{*R*} be the function constructed from *R* using the HILL schema.
- Take $\operatorname{EXT}(R, y) = g_R(y)$.
- Let D be an adaptive test.
- Suppose R does not hit $D^R \epsilon$ -correctly
- D^R distinguisher
- From D we build A s.t. A^R inverter or R is "a-lot"-to-1.
- There are few such R's.

- View the weakly-random string as the truth-table of a function *R*. Let *g*_{*R*} be the function constructed from *R* using the HILL schema.
- Take $\operatorname{EXT}(R, y) = g_R(y)$.
- Let D be an adaptive test.
- Suppose R does not hit $D^R \epsilon$ -correctly
- D^R distinguisher
- From D we build A s.t. A^R inverter or R is "a-lot"-to-1.
- There are few such R's.
- Few R's do not hit $D \epsilon$ -correctly

- View the weakly-random string as the truth-table of a function *R*. Let *g*_{*R*} be the function constructed from *R* using the HILL schema.
- Take $\operatorname{EXT}(R, y) = g_R(y)$.
- Let D be an adaptive test.
- Suppose R does not hit $D^R \epsilon$ -correctly
- D^R distinguisher
- From D we build A s.t. A^R inverter or R is "a-lot"-to-1.
- There are few such R's.
- Few R's do not hit $D \epsilon$ -correctly
- So (by Lemma), exposure-resilient extractor.

Parameters

$$\text{EXT}: \{0,1\}^{\tilde{N}} \times \{0,1\}^d \to \{0,1\}^m.$$

- length of the weakly rand. string: $\tilde{N} = n \cdot 2^n$.
- query resistance $ilde{N}^{\delta}$, for any $\delta < 1$
- entropy $k = \tilde{N} \tilde{N}^{\Omega(1)}$
- seed length $d = O(\log \tilde{N})$
- output length $m = ilde{N}^{\Omega(1)}$

Application: Derandomization of BPTIME[sublinear]

 $L \in BPTIME[T(n)]$:

There is a prob. alg. A running in time T(n) such that

 $\forall x \operatorname{Prob}_{\rho}[A(x,\rho) = L(x)] > 2/3.$

Things that can be done in probabilistic sublinear time:

- approx. matrix multiplication
- approx. min. spanning tree
- a lot of property testing

• ...

白 ト イヨト イヨト

Theorem

There exist two constant natural numbers a and c such that for all $T(N) < N^{1/a}$, any alg. in BPTIME[T(N)] can be simulated deterministically in $(T(N))^c$ time and the deterministic simulator is correct on $\ge (1 - 2^{-\Omega(T(N)\log T(N))})$ fraction of inputs of length N, for all N.

- $L \in \operatorname{BPTIME}[T(n)]$
- There is a prob. alg. A running in time T(n) such that

$$\forall x \operatorname{Prob}_{\rho}[A(x,\rho) = L(x)] > 2/3.$$

•
$$W_x = \{ \rho \mid A(x, \rho) = L(x) \}.$$

• density(W_x) > 2/3.

個 と く ヨ と く ヨ と …

æ

 generic derandomization scheme: use a pseudo-rand. tool to obtain a small set Z such that for all x,

$$\frac{|Z \cap W_x|}{|Z|} \approx \operatorname{density}(W_x) > 2/3.$$

- we only need $|Z \cap W_x| > (1/2)|Z|$.
- simulate A repeteadly using as randomness the elements of Z and take the majority vote.
- usually, a p.r.gen. is used to build Z.
- p.r.gens are known to exist only under some hardness assumptions.

- - E + - E +

- Use extractors; extractors exist unconditionally.
- EXT : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$, (k,ϵ) -extractor.
- For any $u \in \{0,1\}^n$, $Z_u = \{E(u,y) \mid y \text{ seed}\}$; the samples induced by u.
- For any $B \subseteq \{0,1\}^m$, with prob. of $u \ge 1 2^{-(n-k-1)}$,

$$\frac{|Z_u \cap B|}{|Z_u|} =_{\epsilon} \operatorname{density}(B).$$

- Take W_x in the role of B.
- For a fraction of $1 2^{-(n-k-1)}$ of *u*'s,

$$|Z_u \cap W_x| > (1/2)|Z_u|.$$

- We still use randomness *u*; so no derand. so far.
- How to get rid of *u*?

個人 くほん くほん しき

- Use x itself to obtain Z_x to hit W_x correctly!
- x and W_x are not independent; so why would this work?
- A is sublinear; checking if ρ ∈ W_x depends on just a few bits of x.
- the rest of x is indep. of " $\rho \in W_x$."
- maybe we can use the rest of x to produce samples that hit W_x corectly?
- Indeed we can! Use an exposure-resilient extractor.

• E • • E •

- T(N) running time of the prob. A, with $T(N) < N^{1/a}$.
- EXT: $\{0,1\}^N \times \{0,1\}^d \rightarrow \{0,1\}^{T(N)}$, $(N - \Omega(T(N) \cdot \log T(N)), 1/6)$ exposure-resilient extractor, resistant to T(n) queries.
- View W_x as computed by an adversary that can query T(N) bits of x.

• Take
$$Z_x = \{E(x, y) \mid y \text{ seed}\}.$$

• For $(1 - 2^{-\Omega(T(N) \log T(N))})$ fraction of x,

$$\frac{|Z_x \cap W_x|}{|Z_x|} =_{1/6} \operatorname{density}(W_x) > 2/3.$$

- For these x's: $|Z_x \cap W_x| > (1/2)|Z_x|$.
- Exactly what we need!

(本間) (本語) (本語) (語)

Other applications

- Increasing the Kolmogorov complexity of infinite sequences
- Derandomization for interesting classes of constraint satisfaction problems

Multumesc.

・ロ・・(四・・)を注・・(注・・)注