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Intro

A simple example for randomness extraction: von

Neumann problem

Source of randomness: a biased coin.

Prob[coin = H] = p, Prob[coin = T] = (1-p), p unknown.
Independent tosses: TT HH HT HT HH TH H...

Can we get unbiased bits?
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Intro

A simple example for randomness extraction: von

Neumann problem

@ Source of randomness: a biased coin.

@ Prob[coin = H|] = p, Prob[coin = T] = (1-p), p unknown.
@ Independent tosses: TT HH HT HT HH TH H...

@ Can we get unbiased bits?

°

Yes. Prob[HT] = p(1-p), Prob[TH] = (1-p)p. So make HT
— 0, TH — 1.

@ So we get 001...
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@ Many times we need good random bits: cryptography,
algorithms, simulation, ...

o Typically, the sources of randomness are not perfect: biases,
correlations.
@ Extractors improve the quality of randomness of a source.

@ Pseudo-random generators handle a different problem: given a
few random bits (the seed), produce a longer random string
that “looks” random.

@ Extractors and pseudo-random generators solve quite different
problems; there are however surprising connections.
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What's in this talk

@ Extractors
@ Exposure-resilient extractors introduced in [ZIM’06]

@ A construction of exposure-resilient extractors based on the
Hastad-Impagliazzo-Levin-Luby construction of a
pseudo-random generator from a one-way function [ZIM’06]

@ Applications in derandomization [ZIM’07]
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Intro

A short history of randomness extractors

@ 50’s - Von Neumann: How to get unbiased bits from a biased
coin.

e 80's: generalization to distributions were bits may have
Markov-type correlations.

@ 90's - present: theory of extractors that handle general
imperfect distributions.

[\ ETTEWATLETT Extractors and applications



@ Extractor = procedure that transforms imperfect randomness
into (almost) perfect randomness (information-theoretic
randomness).
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@ Extractor = procedure that transforms imperfect randomness
into (almost) perfect randomness (information-theoretic
randomness).

o Exposure-resilient Extractor = the above +
the output looks random even to computationally unbounded
adversaries that have adaptive but bounded access to the
Input.
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Intro

Min-entropy; a way to assess the quality of randomness

Perfect Randomness = Unif. Imperfect randomness = min-
distribution entropy < n
n-bit strings n-bit strings
[T il ]
@ each string is equally @ some strings are more
likely to be produced likely than other strings
o for all x, o for all x,
Pr(X =x)=27" Pr(X=x)<2«¥
min — entropy(X) = k
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Intro

(standard) seeded extractor

e EXT:{0,1}" x {0,1}4 — {0,1}™

e EXT(X,Y)
e X - “weakly random string,”, min-entropy(X) = k
e Y - “seed,” unif. distributed

e Forany W C {0,1}™,

w
Probx y(EXT(X,Y) e W) = W +e.

(Standard) Extractor

m-bit strings
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Intro
Another view

o Let's view W as an adversary — computationally unbounded.
@ Adversary is given the challenge Z which is either

(1) EXT(x,y), OR

(2) Um

@ Adv. wants to distinguish (1) from (2) with bias e. EXT is a
(k, €)-extractor if no adv. succeeds.
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@ Can we consider a more powerful adversary?

@ Yes. Give him more information.
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Intro
Strong extractor

@ Adversary is given the seed y and the challenge Z which is
either
(1) EXT(x,y), OR

e Adv. wants to distinguish (1) from (2) with bias e. EXT is a
(k, €)-strong extractor if no adv. succeeds.
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Intro
Lu extractor

@ ROUND 1: Adversary is given x and is allowed to calculate
f(x) with |f(x)| = g bits.

@ ROUND 2: Adversary loses access to x and is given the seed
y and the challenge Z which is either
(1) EXT(x,y), OR
(2) Un

e Adv. wants to distinguish (1) from (2) with bias e. EXT is a
(k, €)-Lu extractor resistant to storage size g if no adv.
succeeds.
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Intro
Exposure-resilient extractor

@ Adversary is given the challenge Z which is either
(1) EXT(x,y), OR
(2) Un
and simultaneously oracle access to x to which it is allowed to
make g queries.

@ Adv. wants to distinguish (1) from (2) with bias e.

e EXT is a (k, €)-exposure-resilient extractor resistant to g
queries if no adv. succeeds.
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Intro
Formal definition

@ adaptive test = oracle circuit

e EXT : {0,1}" x {0,1}9 — {0,1}™ is a (k, €)-extractor with
query resistance q if for every distribution X with min-entropy
k and for every adaptive test W with query complexity g

Probx , (EXT(X,y) € WX) = Probx y,, (Un € WX) +e.
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Intro

(Standard) Extractor

m-bit strings

X

EXT(X.yp)

Exposure-resilient extractor

m-bit strings
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Intro
Motivation

Natural concept

Exposure-resiliency is an important issue in cryptography.

Sampling functions that have some dependency on the
randomness of the sampler.

e Derandomization (later).
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Construction
How to build an exposure-resilient extractor

An extractor EXT : {0,1}" x {0,1}? — {0,1}"™ has nice
combinatorial properties.

Using EXT, we color the [N] x [D] rectangle with colors from [M].

If in each each strip of height > 2k each color ¢ € [M] appears a
fraction of (1 4+ €)/M times, then E is (k, €)-extractor.

41 YD
X1
X2
NN N A A
AN AN A A
VANREANEVANRYANNVAN
XN
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Construction
How to build an exposure-resilient extractor

@ No similar property for exposure-resilient extractors.

@ Techniques based on error-correcting codes, polynomials,
designs, etc., are not enough.

@ Use a reduction based on the HILL construction of a PRG
from a one-way function.
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Construction
A simple and useful lemma

m-bit strings

DEF. X hits WX e-correctly if

[y | EXT(X,y) € WX} _ [WX] |
D 2m '

Lemma. Let EXT : {0,1}" x {0,1}? — {0,1}™. If YW, no. of X
that do not hit W e-correctly is < 2!
= EXT is a (t + log(1/€), 2¢)-extractor
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Construction

Pseudo-rand. generator

hard (N-W) y (seed)

——
one-way (B-M-Y)
(HILL)

gy) —————

m bits

for all A C {0,1}™, computable
by poly-size circuits,

Pr(g(y) € A) = ‘—/i\n' te

(k, €)-Extractor

X (weakly rand. string)

min-entropy(X) =k y (seed)
C 1 C 1
EXT
EXT(X.y)
T —
m bits

for all A with query complexity
q,

A
Pr(EXT(X,y) € A) = |2—m| te
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Construction
Trevisan's method

N-W: If circuit D distinguishes g(y) from unif., then using some
small advice, one can transform D into A such that A computes f.

Trevisan:
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Construction
Trevisan's method

N-W: If circuit D distinguishes g(y) from unif., then using some
small advice, one can transform D into A such that A computes f.

Trevisan:

@ View the weakly random string as the truth-table of a
function f
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Construction
Trevisan's method

N-W: If circuit D distinguishes g(y) from unif., then using some
small advice, one can transform D into A such that A computes f.

Trevisan:

@ View the weakly random string as the truth-table of a
function f

o EXT(f,y) = gr(y)
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Construction
Trevisan's method

N-W: If circuit D distinguishes g(y) from unif., then using some
small advice, one can transform D into A such that A computes f.

Trevisan:

@ View the weakly random string as the truth-table of a
function f

o EXT(f,y) = gr(y)
o f does not hit D e-correctly < D disting. f from unif.
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Construction
Trevisan's method

N-W: If circuit D distinguishes g(y) from unif., then using some
small advice, one can transform D into A such that A computes f.
Trevisan:

@ View the weakly random string as the truth-table of a
function f

o EXT(f,y) = gr(y)
o f does not hit D e-correctly < D disting. f from unif.

@ f can be calculated by small A with D-gates + small advice.
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Construction
Trevisan's method

N-W: If circuit D distinguishes g(y) from unif., then using some
small advice, one can transform D into A such that A computes f.
Trevisan:

@ View the weakly random string as the truth-table of a
function f

o EXT(f,y) = gr(y)
o f does not hit D e-correctly < D disting. f from unif.

@ f can be calculated by small A with D-gates + small advice.

@ f has a small description, so there are few f's like this.
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Construction
Trevisan's method

N-W: If circuit D distinguishes g(y) from unif., then using some
small advice, one can transform D into A such that A computes f.
Trevisan:

@ View the weakly random string as the truth-table of a
function f

EXT(f,y) = gr(y)
f does not hit D e-correctly < D disting. f from unif.
f can be calculated by small A with D-gates + small advice.

f has a small description, so there are few f's like this.

[{f | f does not hit D e-correctly}| is small
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Construction
Trevisan's method

N-W: If circuit D distinguishes g(y) from unif., then using some
small advice, one can transform D into A such that A computes f.
Trevisan:

@ View the weakly random string as the truth-table of a
function f

EXT(f,y) = gf(y)

f does not hit D e-correctly < D disting. f from unif.

f can be calculated by small A with D-gates + small advice.
f has a small description, so there are few f's like this.

[{f | f does not hit D e-correctly}| is small

So, by Lemma, EXT is an extractor.

Marius Zimand Extractors and applications



Construction
Mimic Trevisan? Not quite.

@ For exposure-resilient extractors, we need to consider
distinguishers that have bounded access to f (recall
weakly-random string = f's truth-table).

@ But no function is hard to an adversary that has access to its
truth-table.

@ So the Nisan-Wigderson schema does not work.

@ Use the HILL construction of a p.r. gen. from a O-W
function!

@ A function may be O-W even if the adversary has bounded
access to its truth-table.
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Construction
using the HILL construction

R:{0,1}" — {0,1}".

LEMMA (Distinguisher = Inverter) -Informal version:
For any oracle circuit C, we can build an oracle circuit A, making
just a few extra queries, so that if for some R:
CR distinguisher of (gr(x), Un) =
AR inverts a large fraction of {R(x) | x € {0,1}"} OR
R is a “a-lot"-to-1.
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LEMMA (Formal version)

o Let EXT be the extractor obtained via the HILL method.
EXT depends on the parameters 3, P ¢, and m. Let
— 23/@%“ -(e/m — /P /28n=1)

@ Let C be a circuit with query complexity Q. There exists a
circuit A with query complexity (Q + m) - poly(1/3,1/¢,25™)
with the following property. Suppose R does not hit C
e-correctly. Then either

(a) Risnot P—to—1or
(b) for at least a fraction (1/8) - ¢ of the random coins p used by
B, it holds that

[{x €{0,1}" | AR(R(x),p) € RTHR()}H = ¢ - (€)% N.

ENTES
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LEMMA (Informal version)

@ For any oracle circuit A, there are few R's such that AR with
|R|? queries (for any § < 1) inverts a large fraction of

{R(x) | x € {0,1}"}.

@ There are few R's that are “a-lot”-to-1.
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LEMMA (Formal version):

(a) Let E be the event (over random R) “R is not aN — to — 1."
The probability of E is bounded by 2~ (maN),

(b) Let A be oracle circuit with query complexity S. Let B be the
event (over random pairs (R, p))“|{x € {0,1}" |
AR(R(x),p) € R7Y(R(x))}| >2e-aN-S-T.” The
probability of B is bounded by 2= T + 2 %(naN)
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Construction
Proof - main steps

o View the weakly-random string as the truth-table of a
function R. Let gr be the function constructed from R using
the HILL schema.
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Construction
Proof - main steps

o View the weakly-random string as the truth-table of a
function R. Let gr be the function constructed from R using

the HILL schema.
o Take EXT(R,y) = gr(y).
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Construction
Proof - main steps

o View the weakly-random string as the truth-table of a
function R. Let gr be the function constructed from R using
the HILL schema.

o Take EXT(R,y) = gr(y).
@ Let D be an adaptive test.
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Construction
Proof - main steps

o View the weakly-random string as the truth-table of a
function R. Let gr be the function constructed from R using
the HILL schema.

o Take EXT(R,y) = gr(y).
@ Let D be an adaptive test.
@ Suppose R does not hit D e-correctly
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Construction
Proof - main steps

o View the weakly-random string as the truth-table of a
function R. Let gr be the function constructed from R using
the HILL schema.

Take EXT(R,y) = gr(y)-
Let D be an adaptive test.
Suppose R does not hit DR e-correctly

DR distinguisher
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Construction
Proof - main steps

o View the weakly-random string as the truth-table of a
function R. Let gr be the function constructed from R using
the HILL schema.

Take EXT(R,y) = gr(y).

Let D be an adaptive test.

Suppose R does not hit DR e-correctly
DR distinguisher

From D we build A s.t. AR inverter or R is “a-lot”-to-1.
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Construction
Proof - main steps

o View the weakly-random string as the truth-table of a

function R. Let gr be the function constructed from R using
the HILL schema.

Take EXT(R,y) = gr(y).

Let D be an adaptive test.

Suppose R does not hit DR e-correctly
DR distinguisher

From D we build A s.t. AR inverter or R is “a-lot”-to-1.

There are few such R’s.
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Construction
Proof - main steps

o View the weakly-random string as the truth-table of a
function R. Let gr be the function constructed from R using
the HILL schema.

Take EXT(R,y) = gr(y).

Let D be an adaptive test.

Suppose R does not hit DR e-correctly

DR distinguisher

From D we build A s.t. AR inverter or R is “a-lot”-to-1.

There are few such R’s.

Few R's do not hit D e-correctly
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Construction
Proof - main steps

o View the weakly-random string as the truth-table of a
function R. Let gr be the function constructed from R using
the HILL schema.

Take EXT(R,y) = gr(y).

Let D be an adaptive test.

Suppose R does not hit DR e-correctly

DR distinguisher

From D we build A s.t. AR inverter or R is “a-lot”-to-1.
There are few such R's.

Few R's do not hit D e-correctly

So (by Lemma), exposure-resilient extractor.
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Construction
Parameters

EXT : {0,1}N x {0,1} — {0,1}™.
o length of the weakly rand. string: N = n-2".
e query resistance N9, for any 6 < 1
@ entropy k = N — N2
@ seed length d = O(log )
e output length m = N2(1)
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Derandomizing BP(sublinear)

Application: Derandomization of BPTIME[sublinear]

L € BPTIME[T(n)]:
There is a prob. alg. A running in time T(n) such that

VxProb,[A(x, p) = L(x)] > 2/3.

Things that can be done in probabilistic sublinear time:
@ approx. matrix multiplication
@ approx. min. spanning tree
@ a lot of property testing
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Derandomizing BP(sublinear)

There exist two constant natural numbers a and ¢ such that for all
T(N) < NY/2, any alg. in BPTIME[T(N)] can be simulated
deterministically in (T(N))¢ time and the deterministic simulator
is correct on > (1 — 2= UT(M)lee T(N))) fraction of inputs of length
N, for all N.
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Derandomizing BP(sublinear)

L € BPTIME[T(n)]
@ There is a prob. alg. A running in time T(n) such that

VxProb,[A(x, p) = L(x)] > 2/3.

We={p | Axp) = L(x)}.
density( W) > 2/3.
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Derandomizing BP(sublinear)

@ generic derandomization scheme: use a pseudo-rand. tool to
obtain a small set Z such that for all x,
|Z N W]

7 ~ density (W) > 2/3.

e we only need |Z N W] > (1/2)|Z].

@ simulate A repeteadly using as randomness the elements of Z
and take the majority vote.

@ usually, a p.r.gen. is used to build Z.

@ p.r.gens are known to exist only under some hardness
assumptions.
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Derandomizing BP(sublinear)

@ Use extractors; extractors exist unconditionally.
o EXT:{0,1}" x {0,1}4 — {0,1}™, (k, €)-extractor.
e Forany v e {0,1}", Z, = {E(u,y) | y seed}; the samples
induced by u.
e For any B C {0,1}™, with prob. of u >1— 2—(n—k=1)
|Z,N B

——— = density(B).
|Zul

o Take W in the role of B.
@ For a fraction of 1 — 2= (n=k=1) of ,'s,

[Zu N Wil > (1/2)]2,].

@ We still use randomness u; so no derand. so far.

@ How to get rid of u?
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Derandomizing BP(sublinear)

Use x itself to obtain Z to hit W, correctly!

x and W4 are not independent; so why would this work?

A is sublinear; checking if p € W, depends on just a few bits
of x.

the rest of x is indep. of “p € W,."

maybe we can use the rest of x to produce samples that hit
W, corectly?

Indeed we can! Use an exposure-resilient extractor.
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Derandomizing BP(sublinear)

o T(N) - running time of the prob. A, with T(N) < N/2.

o EXT: {0,131V x {0,1}¢ — {0,1}T(V),
(N—Q(T(N)-log T(N)),1/6) exposure-resilient extractor,
resistant to T(n) queries.

o View W, as computed by an adversary that can query T(N)
bits of x.

e Take Z, = {E(x,y) | y seed}.
e For (1 — 2T (M) log T(N))) fraction of x,

| Z,e O Wy

Z =1/6 density(W,) > 2/3.

@ For these x's: |Z, N W, | > (1/2)|Z].

o Exactly what we need!
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Derandomizing BP(sublinear)

Other applications

@ Increasing the Kolmogorov complexity of infinite sequences

@ Derandomization for interesting classes of constraint
satisfaction problems
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Derando ng BP(sublinear)

Multumesc.
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