On the derandomization of BPTIME[sublinear]

Marius Zimand
Towson University

June 2007
- Derandomization = deterministic simulation of a prob. algorithm without a large time overhead.

- Practical application? - Usually there is some overhead, sometimes the simulation does not work for all inputs.

- Theoretical interest: Is randomness necessary? When is it? When is it not?
Best of Derandomization I - Conditional Results

➤ (Impagliazzo, Wigderson '97) If: \(\exists \alpha > 0, \exists \) problem in E that requires circuits of size \(2^{\alpha n} \).
 Then: \(\text{BPP} = \text{P} \).

➤ (Impagliazzo, Wigderson '98) If: \(\text{EXP} \neq \text{BPP} \).
 Then: any problem in \(\text{BPP} \) can be solved in determ. subexponential time at infinitely many input lengths, and at these length the determ. alg. is correct on all inputs except a negligible fraction.

➤ (Goldreich, Zuckerman'97) If: \(\exists \alpha > 0, \exists \) problem in E that requires circuits of size \(2^{\alpha n} \).
 Then: \(\text{MA} = \text{NP} \).

➤ (Miltersen, Vinodchandran’ 99) If: \(\exists \alpha > 0, \exists \) problem in \(\text{NE} \cap \text{co-NE} \) that requires nondeterministic circuits of size \(2^{\alpha n} \).
 Then: \(\text{AM} = \text{NP} \).
Best of Derandomization II - Unconditional Results

- (Rabin’63) 1-way pfa = dfa. (Freivalds’81: 2-way pfa ≠ dfa.)
- (Kaneps, Freivalds’90 and Dwork, Stockmeyer’92) 2-way pfa & subexp. time = dfa.
- (Nisan’91) BP.AC$^0 \subseteq \text{TIME}[n^{\text{poly} \log n}]$.
- (Nisan’92) PRG for small space:
 For every S-space R-random bits prob. alg A and every input x, there is

$$G : \{0,1\}^{S \log R} \rightarrow \{0,1\}^R$$

so that $A(x, U_R)$ and $A(x, G(U_{S \log R}))$ are very close. G can be computed from A and x in time $\text{poly}(R)$ and space $O(S)$.
THIS PAPER: Unconditional result for a weak computational model: BPTIME[sublinear].

BPTIME[sublinear] = decision problems, solvable by prob. algorithms in sublinear time, with bounded error.
Sublinear time used to be illegal

\[[\text{Hopcroft} & \text{ Ullman'79, pp. 288}]: \text{"time complexity } T(n) \text{ means max}(n + 1, \lceil T(n) \rceil)." \]
Times have changed...

Things that can be done in probabilistic sublinear time:

- approx. matrix multiplication
- approx. value of min. spanning tree
- a lot of property testing
- ...

Marius Zimand
Derand. of BPTIME(sublinear)
MAIN THEOREM:

There exist two constant natural numbers a and c such that for all $T(N) < N^{1/a}$, any alg. in $\text{BPTIME}[T(N)]$ can be simulated deterministically in $(T(N))^c$ time and the deterministic simulator is correct on $\geq (1 - 2^{-\Omega(T(N) \log T(N))})$ fraction of inputs of length N, for all N.

- the non-uniform version is trivial.
- Current estimation: $a = 45$.
- Derandomization works also for promise-$\text{BPTIME}[T(N)]$: the simulator is correct on all inputs on which the probabilistic algorithm is correct except at most a $2^{-\Omega(T(N) \log T(N))}$ fraction.
Generic approach

- $L \in \text{BPTIME}[T(n)]$
- There is a prob. alg. A running in time $T(n)$ such that
 \[\forall x \ \text{Prob}_\rho[A(x, \rho) = L(x)] > 2/3. \]
- $W^x = \{ \rho \mid A(x, \rho) = L(x) \}$, set of witnesses for x.
- $\text{density}(W^x) > 2/3.$
Generic approach

- generic derandomization scheme: use a pseudo-random tool to obtain a small set Z such that for all x,

$$\frac{|Z \cap W^x|}{|Z|} \approx \text{density}(W^x) > \frac{2}{3}.$$

- we only need $|Z \cap W^x| > \frac{1}{2}|Z|$.

- simulate A repeatedly using as randomness the elements of Z and take the majority vote.

- usually, a p.r.gen. is used to build Z.

- p.r.gens are known to exist only under some hardness assumptions.
Generic approach

- Use extractors; extractors exist unconditionally.
- Extractors vs. PRGs: some aspects are similar, some aspects are very different
Extractor vs. PRG

Pseudo-rand. generator

\[f \xleftarrow{\text{hard (N-W)}} y \quad \xrightarrow{\text{one-way (B-M-Y)}} \quad (HILL) \]
\[g(y) \quad \text{m bits} \]

for all \(A \subseteq \{0,1\}^m \), computable by poly-size circuits,

\[\left| \Pr(g(y) \in A) - \frac{|A|}{2^m} \right| < \epsilon \]

(k, \(\epsilon \))-Extractor

\[X \text{ (weakly rand. string)} \quad \text{min-entropy}(X) = k \]
\[\quad \xrightarrow{\text{y (seed)}} \quad \text{EXT} \]
\[\text{EXT}(X, y) \quad \text{m bits} \]

for all \(A \subseteq \{0,1\}^m \),

\[\left| \Pr(\text{EXT}(X, y) \in A) - \frac{|A|}{2^m} \right| < \epsilon \]
EXT : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m, (k, \epsilon)-extractor.

For any \(u \in \{0, 1\}^n \), \(Z_u = \{\text{EXT}(u, y) \mid y \text{ seed}\} \); the samples induced by \(u \).

For any \(B \subseteq \{0, 1\}^m \), with prob. of \(u \geq 1 - 2^{-(n-k-1)} \),

\[
\frac{|Z_u \cap B|}{|Z_u|} = \epsilon \ \text{density}(B).
\]

Take \(W^x \) in the role of \(B \).

For a fraction of \(1 - 2^{-(n-k-1)} \) of \(u \)'s,

\[|Z_u \cap W^x| > (1/2)|Z_u|.
\]

We still use randomness \(u \); so no derand. so far.

How to get rid of \(u \)?
Goldreich and Wigderson'2002- use extractors for derandomization

- In their applications, the set W to be hit correctly was a large set of short advice strings;
- W did not depend on x.
- They used x itself to obtain Z_x to hit W correctly using a standard extractor.
The new idea:

- Here W^x does depend on x.
- Use x itself to obtain Z_x to hit W^x correctly!
- x and W^x are not independent; so why would this work?
- A is sublinear; checking if $\rho \in W^x$ depends on just a few bits of x.
- the rest of x is indep. of "$\rho \in W^x$.”
- maybe we can use the rest of x to produce samples that hit W^x correctly?
- Indeed we can! Use an exposure-resilient extractor.
Digression: exposure-resilient extractors

- **Extractor** = procedure that transforms imperfect randomness into (almost) perfect randomness (information-theoretic randomness).
Digression: exposure-resilient extractors

- **Extractor** = procedure that transforms imperfect randomness into (almost) perfect randomness (information-theoretic randomness).

- **Exposure-resilient Extractor** = the above + the output looks random even to computationally unbounded adversaries that have adaptive but bounded access to the input.
Standard extractors

Review the def. of a (standard) extractor

- $\text{EXT} : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m$
- $\text{EXT}(x, y)$
- x - “weakly random string,”, min-entropy$(x) = k$
- y - “seed,” unif. distributed
- adversary - computationally unbounded
Standard extractor: the game view

- Adversary is given the challenge Z which is either
 1. $\text{EXT}(x, y)$, OR
 2. U_m
- Adv. wants to distinguish (1) from (2) with bias ϵ. EXT is a (k, ϵ)-extractor if no adv. succeeds.
Exposure-resilient extractor: the game view

- Adversary is given the challenge Z which is either
 1. $\text{EXT}(x, y)$, OR
 2. U_m
and simultaneously oracle access to x to which it is allowed to make q queries.
- Adv. wants to distinguish (1) from (2) with bias ϵ.
- EXT is a (k, ϵ)-exposure-resilient extractor resistant to q queries if no adv. succeeds.
(Standard) Extractor

m-bit strings

EXTRACT(X,y_1)

W

EXTRACT(X,y_D)

Exposure-resilient extractor

m-bit strings

EXTRACT(X,y_1)

W_X

EXTRACT(X,y_D)
How to build an exposure-resilient extractor

An extractor $\text{EXT} : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m$ has nice combinatorial properties.

Using EXT, we color the $[N] \times [D]$ rectangle with colors from $[M]$.

If in each strip of height $\geq 2^k$ each color $c \in [M]$ appears a fraction of $(1 \pm \epsilon)/M$ times, then E is (k, ϵ)-extractor.
How to build an exposure-resilient extractor

- No similar property for exposure-resilient extractors.
- Techniques based on error-correcting codes, polynomials, designs, etc., are not enough.
- Use a reduction based on the HILL construction of a PRG from a one-way function.
A useful lemma

Here W is an oracle circuit that can query q bits of its oracle.

DEF. x hits W ϵ-correctly if

$$\left| \left| \left| \frac{\{y \mid \text{EXT}(x, y) \in W^x\}}{D} - \frac{|W^x|}{2^m} \right| \right| < \epsilon$$

Lemma. Let $\text{EXT} : \{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m$. If $\forall W$, no. of X that do not hit W ϵ-correctly is $\leq 2^t$

\Rightarrow EXT is a $(t + \log(1/\epsilon), 2\epsilon)$-extractor with q query resistance.
Using the Håstad-Impagliazzo-Levin-Luby construction

\[R : \{0, 1\}^n \rightarrow \{0, 1\}^n. \]

We take \(\text{EXT}(R, y) = g_R(y) \) (à la Trevisan).

\text{HILL}: If \(g_R \) has a distinguisher, then \(R \) is not one-way.

\text{Here}: If \(\text{EXT}(R, \cdot) \) does not hit \(W^R \) correctly, then \(R \) belongs to a small set.
Using the HILL construction

\[R : \{0, 1\}^n \rightarrow \{0, 1\}^n. \]

LEMMA (Distinguisher ⇒ Inverter) - Informal version:
For any oracle circuit \(C \), we can build an oracle circuit \(A \), making just a few extra queries, so that if for some \(R \):
\[C^R \text{ distinguisher of } (g_R(x), U_m) \Rightarrow \]
\[A^R \text{ inverts a large fraction of } \{R(x) | x \in \{0, 1\}^n\} \text{ OR} \]
\(R \) is a “a-lot”-to-1.
LEMMA (Formal version)

$R : \{0, 1\}^n \rightarrow \{0, 1\}^n$, m - parameter.

Let C be an oracle circuit with query complexity m.

There is a set of $2^{m+O(\log m)}$ circuits with query complexity $\text{poly}(m)$ such that if C^R is not hit ϵ-correctly by $\text{EXT}(R, \cdot)$ then either

- R is not m-to-1, or
- R is “good” for some circuit in the set.

(DEF: R is “good” for circuit A if for more than $1/2$ of ρ’s $|\{x \mid A^R(R(x), \rho) \in R^{-1}(R(x))\}| > \text{poly}(m)$.)
LEMMA (Informal version)

- For any oracle circuit A, there are few R's that are “good” for A.
- There are few R’s that are “a-lot”-to-1.
LEMMA (Formal version):

$R : \{0, 1\}^n \rightarrow \{0, 1\}^n$, m - parameter.

(a) Let E be the event (over random R) “R is not $m - to - 1$.”

The probability of E is bounded by $2^{-\Omega(m \cdot \log m)}$.

(b) Let A be oracle circuit with query complexity m. The

probability that R is “good” for A is bounded by $2^{-\Omega(m \cdot \log m)}$.
R does not hit $D^R \, \epsilon$-correctly

D^R distinguisher

from D obtain a list of circuits

R is “good” for some circuit in the list or R is “a-lot”-to-1.

There are few such R’s.

Few R’s do not hit $D \, \epsilon$-correctly

exposure-resilient extractor (by Useful Lemma).
Parameters

$\text{EXT} : \{0, 1\}^N \times \{0, 1\}^d \to \{0, 1\}^m$.

- output length $m \leq N^{1/45}$.
- query resistance m
- entropy $k = N - \Omega(m \log m)$
- seed length $d = O(\log m)$
- computable in $m \cdot \text{polylog}(m)$ time
Back to derandomization of BPTIME(sublinear)

- A - Prob. alg. that $\text{BPTIME}[\text{sublinear}]$-computes L.
- $T(N)$ - running time of A, $T(N) < N^{1/45}$.
- $\text{EXT} : \{0, 1\}^N \times \{0, 1\}^{O(\log(T(N))} \rightarrow \{0, 1\}^{T(N)}$, $(N - \Omega(T(N) \cdot \log T(N)), 1/6)$ exposure-resilient extractor, resistant to $T(N)$ queries.
- Assume x in L (the other case is similar).
- $W^x = \{\rho \mid A(x, \rho) = 1\}$.
Back to derandomization of BPTIME(sublinear)

- \(W^x = \{ \rho \mid A(x, \rho) = 1 \} \).
- View \(W^x \) as computed by an adversary that can query \(T(N) \) bits of \(x \).
- Take \(Z_x = \{ E(x, y) \mid y \text{ seed} \} \).
- For \((1 - 2^{-\Omega(T(N) \log T(N))}) \) fraction of \(x \),
 \[
 \frac{|Z_x \cap W^x|}{|Z_x|} = \frac{1}{6} \text{ density}(W^x) > \frac{2}{3}.
 \]
- For these \(x \)'s: \(|Z_x \cap W^x| > \frac{1}{2}|Z_x| \).
- Exactly what we need!
Thank you.