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Kolmogorov complexity

How complex is a string?

01010101 01010101 01010101 01010101 01010101 01010101 01010101 01010101

01 repeated 32 times

10100011 10111110 01010010 01101110 10011101 00111000 01000101 00101000

random string taken from random.org on June 27, 2019

01101010 00001001 11100110 01100111 11110011 10111100 11001001 00001000

initial segment of
√

2− 1
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This talk in one slide

Kolmogorov complexity of a string = the length of a minimal description of the
string.

Finding a minimal description of a string is a non-computable task.

Otherwise, we can compute for every n
the first string of length n

that has no description of length n/2.
But this string can be described with log n bits.

“... in the framework of Kolmogorov complexity we have no compression
algorithm and deal only with decompression algorithms.”

— Alexander Shen, Around Kolmogorov complexity: basic notions
and results, 2015.

We shall see natural circumstances where compression to close to minimum
description length is not only effective but actually efficient (and decompression
is effective but not efficient).
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Warm-up puzzle

Alice and Bob want to agree on a secret key.

Problem is that we hear everything they say.

Alice knows line L : y = a1x + a0;

Bob knows point P: (b1, b2);

L : 2n bits of information (intercept, slope in F2n ).

P: 2n bits of information (the 2 coord. in F2n ).

Total information in (L,P) = 3n bits; mutual information
of L and P = n bits.

L

P

SOLUTION:

Alice tells a1 to Bob.

Bob, knowing that P ∈ L, finds L.

Alice and Bob use a0 as a secret key.

It works! We have heard a1, but a1 and a0 are independent.
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The real puzzle

x1

x2

x3

Alice: x1

Bob: x2

Charlie: x3

Points x1, x2, x3 belong to one line
in the affine plane over F2n

Each point has 2n points of information, but
together they have 5n bits of information.

QUESTION: Can they agree on a secret key by discussing in this room, where we all

hear what they say?
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Kolmogorov complexity: measuring information in a string

C (x) := length(shortest description of x)

:= size of a shortest program generating x

Formal Definition:

chose an algorithm A

CA(x) := min{length(p) : A(p) = x}
p is called a program for x if A(p) = x .

Invariance Theorem:

There exists an optimal U

such that CU(x) ≤ CA(x) + O(1) for all other A

We fix some optimal U once and forever.
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Kolmogorov complexity: measuring information in a string

C (x) := size of a shortest program generating x

x = 110111001 . . . 101︸ ︷︷ ︸
n bits

x has a description of length n + O(1).

C (x) ≤ n + const for all x of length n

C (x) ≥ n − const for most x of length n

x = 000000000 . . . 000︸ ︷︷ ︸
n bits

C (x) ≤ log n + O(1)
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Information quantities for two strings x , y

C(x) := length(shortest description of x)

:= size of a shortest program generating x

Other quantities: C(y), C(x , y)

C(x | y) := length(shortest description of x given y)

:= size of a shortest program generating x given y

Another quantity: C(y | x)

Mutual information of x and y :

I (x : y) := C(x)− C(x | y).

Chain Rule [Kolmogorov, Levin] C(x , y) =+ C(x) + C(y | x)

where the notation =+ hides ±O(log n)

Corollary. I (x : y) =+ C(x) + C(y)− C(x , y) =+ I (y : x)

C(x) C(y)

C(x | y) C(y | x)

C(x , y)

I (x : y)
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IT vs. AIT (or Shannon vs. Kolmogorov)

The word random is used in computer science in two ways:

(1) random process: a process whose outcome is uncertain, e.g. a series of coin
tosses.

(2) random object: something that lacks regularities, patterns, is incompressible.

Information Theory (IT) focuses on (1).

Algorithmic Information Theory (AIT, also known as Kolmogorov complexity)
focuses on (2).
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IT vs. AIT

IT (à la Shannon)

• Data is the realization of a random variable
X .
• The model: a stochastic process generates
the data.
• Amount of information in the data:

H(X ) =
∑

pi log(1/pi ) (Shannon entropy).

(1,0,0,0)

(1/4,1/4,1/4,1/4)

AIT (Kolmogorov complexity)

• Data is just an individual string x

• There is no generative model.

• Amount of information in the data:

C(x) = minimum description length.

0000000000000000

101101000110010
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Short programs and communication protocols

Alice has x Bob has y .

They run an interactive protocol.

t1−−−−−−−−→
t2←−−−−−−−
t3−−−−−−−→
...
tk−−−−−−−→

Bob has x

QUESTION: What is the communication complexity?

Can it be C (x | y)? Is there a protocol that comes close to this?
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Scenario: Alice and Bob are computationally unbounded

Alice has x , Bob has y . They run a protocol. At the end, Bob has x .

If the protocol is deterministic, Alice needs to send C (x) bits.

(Buhrman, Koucky, Vereshchagin, 2014) There is a randomized protocol
with communication complexity C (x | y) + O(

√
C (x | y)).

The difficult part: Alice needs to find C (x | y).

(Vereshchagin, 2014) The randomized communication complexity of
computing C (x | y) with precision εn is 0.99n.
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Scenario: Alice is algorithmically bounded

Alice has x , Bob has y . Alice wants a program for x given y (which she can send to Bob, to
communicate x).

A program p for x given y is c-short, if |p| ≤ C (x) + c .

(Bauwens, Makhlin, Vereshchagin, Zimand, 2013) Alice can effectively
compute on input x a list with O(n2) elements that contains a O(1)-short
program for x given y .

Such a list must have size Ω(n2).

(Teutsch, 2014) Alice can compute on input x in polynomial time a list
that contains a O(1)-short program for x given y .

(Zimand, 2014) Same as above, with list size O(n6+ε).
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Dagstuhl 2003 - 100-th Anniversary of Kolmogorov
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Scenario: Alice is algorithmically bounded and holds advice
information

Alice has x , Bob has y . Alice wants a program for x given y (which she can send to Bob, to
communicate x).

Assumption: Besides x , Alice has some information about x and y (called
advice).

Muchnik’s theorem, 2001: Alice on input x and some O(log n)-long advice
can compute a 0-short program for x given y .

(Musatov, Romashchenko, Shen, 2009) Space-bounded version of
Muchnik’s Th.:

For every space bound s, Alice on x and some O(log3 n)-long advice can
compute in polynomial space a program p for x given y with space
complexity O(s) + poly(n) and |p| = C space=s(x | y) + O(log n).
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Scenario: Alice is algorithmically bounded and knows
C (x | y).

Alice has x , Bob has y . Alice wants a program for x given y (which she can send to Bob, to
communicate x).

Assumption: Besides x , Alice has some information about x and yC (x |y).

Consider the special case y = empty string.
Alice on input x and C (x) can find a 0-short program for x by exhaustive
search, but this is VERY SLOW.
(Bauwens, Zimand, 2014) Let t be any computable function. If an algorithm
on input (x ,C (x)) finds a program p for x in time t(n), then for infinitely
many x , |p| = C (x) + Ω(n).
(Bauwens, Zimand, 2014) Alice on input (x ,C (x)) can compute in
probabilistic polynomial time a O(log2(n/ε))-short program for x given y ,
with probability error ε.
If we drop the poly time requirement, the overhead can be reduced to
O(log n).
The overhead cannot be less than log n − log log n − O(1), for total
computable compressors.
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Scenario: Alice is algorithmically bounded and knows an
upper bound of C (x | y).

Alice has x , Bob has y . Alice wants a program for x given y (which she can send to Bob, to
communicate x).

Assumption: Besides x , Alice has C (x |y) m ≥ C (x | y)

Consider the special case y = empty string.

Alice on input x and k can find a program p for x with |p| ≤ m by exhaustive
search, but this is VERY SLOW.

(Zimand, 2017) (Bauwens, Zimand, 2019) Alice on input (x ,m) can compute
in probabilistic polynomial time a program for x given y of length
m + O(log2(n/ε)), with probability error ε.
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Theorem (Bauwens, Zimand, 2019)

(Bauwens, Zimand, 2019) Alice on input (x ,m), where m ≥ C(x | y), can compute in
probabilistic polynomial time a program for x given y of length m + O(log2(n/ε)), with
probability error ε.

L = {0, 1}n

X

x

non-defective

defective

R = {0, 1}m

degree D

f : L× [D]→ R, used for fingerprinting.

f (x , 1), . . . , f (x ,D) are the fingerprints of x .

X is the list of candidates, we want to identify
which candidate is x .

A fingerprint is heavy for X , if it has more 2D
pre-images in X .

x is ε-defective for X if it has more than εD
heavy fingerprints.
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Theorem (Bauwens, Zimand, 2019)

(Bauwens, Zimand, 2019) Alice on input (x ,m), where m ≥ C(x | y), can compute in
probabilistic polynomial time a program for x given y of length m + O(log2(n/ε)), with
probability error ε.

L = {0, 1}n

X

x

non-defective

defective

R = {0, 1}m

degree D

f : {0, 1}n × [D]→ {0, 1}m is a k →ε k
condenser , if for every r.v. X with min -
entropy k, f (X ,UD) is ε-close to having
min-entropy k.

f : {0, 1}n × [D]→ {0, 1}m is an ε conductor, if
it is a k →ε k condenser for every k ≤ m.

If f : {0, 1}n × [D]→ {0, 1}m is an ε conductor,
for every X , the fraction of 4ε-defective
elements in X is at most 1/2

(Bauwens, Zimand 2019) There exists

poly-time ε conductor with D = 2log2(n/ε), for
every m ≤ n.
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building on the
Guruswami-Umans-Vadhan

extractor
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Theorem (Bauwens, Zimand, 2019)

(Bauwens, Zimand, 2019) Alice on input (x ,m), where m ≥ C(x | y), can compute in
probabilistic polynomial time a program for x given y of length m + O(log2(n/ε)), with
probability error ε.

L = {0, 1}n

X

x

non-defective

defective

R = {0, 1}m

p +hdegree D

x has complexity C(x) ≤ m.

f : {0, 1}n × [D]→ {0, 1}m, the explicit
ε-conductor.

x has complexity C(x) ≤ m.

f (x , 1), . . . , f (x ,D) are the fingerprints of x .

Compress x: pick randomly p, one of the
fingerprints. Append h, a short hash-code of x .
Output (p, h). Length: m + |h|.
Decompression: we want to reconstruct x from
(p, h).

X the set of strings with complexity ≤ m (list
of candidates). we want to identify which
candidate is x .
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L = {0, 1}n

X

x

non-defective

defective
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Decompression: we want to reconstruct x from
(p, h).

X the set of strings with complexity ≤ m (list
of candidates). We want to identify which
candidate is x .

Case 1: x is non-defective. With prob 1− ε, we
reduce the list of candidates to the
2D-preimages of p.

Case 2: x is defective. We reduce the list of
candidates to the set of defective elements, so
we reduce the list by 1/2.

Continue recursively with fewer candidates.

Problem: We do not know which of Case 1 or
Case 2 is true.
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Case 1: x is non-defective. With prob 1− ε, we
reduce the list of candidates to the
2D-preimages of p.

Case 2: x is defective. We reduce the list of
candidates to the set of defective elements, so
we reduce the list by 1/2.

Problem: We do not know which of Case 1 or
Case 2 is true.

We collect the candidates as if Case 1 is true,
so we keep only the first 2D preimages of p.
Then reduce as in Case 2.

At the end we have collected m × 2D
candidates.

We identify x using h, the short hash code.
Marius Zimand Congress Romanian Mathematicians 2019 2019 22 / 42



Distributed compression: a simple example

Alice knows a line `; Bob knows a point P ∈ `; They want
to send ` and P to Zack.

` : 2n bits of information (intercept, slope in GF[2n]).

P : 2n bits of information (the 2 coord. in GF[2n]).

Total information in (`,P) = 3n bits; mutual information
of ` and P = n bits.

If Alice and Bob get together, they need to send 3n bits.
What if they compress separately?

`

P
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Total information in (`,P) = 3n bits; mutual information
of ` and P = n bits.

If Alice and Bob get together, they need to send 3n bits.
What if they compress separately?

`

P

QUESTION 1:

Alice can send 2n bits, and Bob n bits. Is the geometric correlation between ` and P
crucial for these compression lengths?

Ans: No. Same is true (modulo a polylog(n) overhead.) if Alice and Bob each have 2n
bits of information, with mutual information n, in the sense of Kolmogorov complexity.

Marius Zimand Congress Romanian Mathematicians 2019 2019 23 / 42



Distributed compression: a simple example

Alice knows a line `; Bob knows a point P ∈ `; They want
to send ` and P to Zack.

` : 2n bits of information (intercept, slope in GF[2n]).

P : 2n bits of information (the 2 coord. in GF[2n]).

Total information in (`,P) = 3n bits; mutual information
of ` and P = n bits.

If Alice and Bob get together, they need to send 3n bits.
What if they compress separately?

`

P

QUESTION 2:

Can Alice send 1.5n bits, and Bob 1.5n bits? Can Alice send 1.74n bits, and Bob 1.26n
bits?

Ans: Yes and Yes (modulo a polylog(n) overhead.)
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Distributed compression (IT view): Slepian-Wolf Theorem

The classic Slepian-Wolf Th. is the analog of Shannon
Source Coding Th. for the distributed compression of
memoryless sources.

Memoryless source: (X1,X2) consists of n independent draws
from a joint distribution p(b1, b2) on pair of bits.

Encoding: E1 : {0, 1}n → {0, 1}n1 , E2 : {0, 1}n → {0, 1}n2 .

Decoding: D : {0, 1}n1 × {0, 1}n2 → {0, 1}n × {0, 1}n.

Goal: D(E1(X1),E2(X2)) = (X1,X2) with probability 1− ε.
It is necessary that n1 + n2 ≥ H(X1,X2)− εn,
n1 ≥ H(X1 | X2)− εn, n2 ≥ H(x2 | x1)− εn.

X2X1

E2E1

D

X1,X2

nn

n2n1

Theorem (Slepian, Wolf, 1973)

There exist encoding/decoding functions E1,E2 and D satisfying the goal for all
n1, n2 satisfying

n1 + n2 ≥ H(X1,X2) + εn, n1 ≥ H(X1 | X2) + εn, n2 ≥ H(X2 | X1) + εn.

It holds for any constant number of sources.
Marius Zimand Congress Romanian Mathematicians 2019 2019 24 / 42



Slepian-Wolf Th.: Some comments

Theorem (Slepian, Wolf, 1973)

There exist encoding/decoding functions E1, E2 and D such that n1 + n2 ≥ H(X1, X2) + εn, n1 ≥ H(X1 | X2) + εn, n2 ≥ H(X2 | X1) + εn.

Even if (X1,X2) are compressed together, the sender still
needs to send ≈ H(X1,X2) many bits.

Strength of S.-W. Th. : distributed compression =
centralized compression, for memoryless sources.

Shortcoming of S.-W. Th. : Memoryless sources are very
simple. The theorem has been extended to stationary and
ergodic sources (Cover, 1975), which are still pretty lame.

X2X1

EE

D

X1, X2

nn

n2n1
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Recall: Alice knows a line `; Bob knows a point P ∈ `;
They want to send ` and P to Zack.

There is no generative model.

Correlation can be described with the complexity
profile: C (`) = 2n,C (P) = 2n,C (`,P) = 3n.

Is it possible to have distributed compression based
only on the complexity profile?

If yes, what are the possible compression lengths?

`

P

Necessary conditions: Suppose we want encoding/decoding procedures so that
D(E1(x1),E2(x2)) = (x1, x2) with probability 1− ε, for all strings x1, x2.
Then, for infinitely many x1, x2,

|E1(x1)|+ |E2(x2)| ≥ C (x1, x2) + log(1− ε)− O(1)
|E1(x1)| ≥ C (x1 | x2) + log(1− ε)− O(1)
|E2(x2)| ≥ C (x2 | x1) + log(1− ε)− O(1)
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Kolmogorov complexity version of the Slepian-Wolf
Theorem

Theorem ((Z. 2017), (Bauwens, Z. 2019))

There exist probabilistic poly.-time algorithms E and
algorithm D such that for all integers n1, n2 and n-bit
strings x1, x2,
if n1 + n2 ≥ C (x1, x2), n1 ≥ C (x1 | x2),
n2 ≥ C (x2 | x1),

then

E on input (xi , ni ) outputs a string pi of length
ni + O(log2 n), for i = 1, 2,

D on input (p1, p2) outputs (x1, x2) with
probability 0.99.

x2x1

E2E1

D

x1, x2

nn

n2n1

There is an analogous version for any constant number of sources.
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Proof sketch (1/2)

Alice has x1 and n1.

Bob has x2 and n2.

n1, n2 satisfy the Slepian-Wolf constraints:

n1+n2 ≥ C(x1, x2), n1 ≥ C(x1 | x2), n2 ≥ C(x2 ≥ x1).

Alice uses a conductor with output size = n1.

Bob uses a conductor with output size = n2.

Alice compresses x1 by choosing a random neighbor
p1 + short hash-code h1.

Bob compresses x2 by choosing a random neighbor
p2 + short hash-code h2.

L = {0, 1}n

X

x1

R = {0, 1}n1

p1 +h1degree D

L = {0, 1}n

X

x2

R = {0, 1}n2

p2 +h2degree D
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Proof-sketch (2/2)

How to reconstruct (x1, x2) from (p1, h1) and
(p2, h2)

Enumerate the initial list of candidates: all pairs
x ′1, x

′
2 with

n1+n2 ≥ C(x ′1, x
′
2), n1 ≥ C(x ′1 | x ′2), n2 ≥ C(x ′2 ≥ x ′1).

Apply a cascade of two filters to each enumerated
pair.

Pair (x ′1, ∗) passes the first filter if (p1, h1) is the
compressed code of x ′1.

Pair (∗, x ′2) passes the second filter if (p2, h2) is the
compressed code of x ′2.

With high probability, only (x1, x2) survive the two
filters.

L = {0, 1}n

X

x1

R = {0, 1}n1

p1 +h1degree D

L = {0, 1}n

X

x2

R = {0, 1}n2

p2 +h2degree D
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Some comments

Compression takes polynomial time. Decompression is slower than any
computable function. This is unavoidable at this level of optimality
(compression at close to minimum description length).

If we use time/space-bounded Kolmogorov complexity, decompression is
somewhat better. For the line/point example, decompression is in linear
space.

Compression for individual strings is also done by Lempel-Ziv algorithms.
They compress optimally for finite-state procedures. We compress at close to
minimum description length.

At the high level, the proof follows the approach from a paper of Andrei
Romashchenko (2005). Technical machinery is different.

The classical S.-W. Th. can be obtained from the Kolmogorov complexity
version (because if X is memoryless, H(X )− cε

√
n ≤ C (X ) ≤ H(X ) + cε

√
n

with prob. 1− ε).

The O(log2 n) overhead can be reduced to O(log n), but compression is no
longer in polynomial time.

Marius Zimand Congress Romanian Mathematicians 2019 2019 30 / 42



Some comments

Compression takes polynomial time. Decompression is slower than any
computable function. This is unavoidable at this level of optimality
(compression at close to minimum description length).

If we use time/space-bounded Kolmogorov complexity, decompression is
somewhat better. For the line/point example, decompression is in linear
space.

Compression for individual strings is also done by Lempel-Ziv algorithms.
They compress optimally for finite-state procedures. We compress at close to
minimum description length.

At the high level, the proof follows the approach from a paper of Andrei
Romashchenko (2005). Technical machinery is different.

The classical S.-W. Th. can be obtained from the Kolmogorov complexity
version (because if X is memoryless, H(X )− cε

√
n ≤ C (X ) ≤ H(X ) + cε

√
n

with prob. 1− ε).

The O(log2 n) overhead can be reduced to O(log n), but compression is no
longer in polynomial time.

Marius Zimand Congress Romanian Mathematicians 2019 2019 30 / 42



Some comments

Compression takes polynomial time. Decompression is slower than any
computable function. This is unavoidable at this level of optimality
(compression at close to minimum description length).

If we use time/space-bounded Kolmogorov complexity, decompression is
somewhat better. For the line/point example, decompression is in linear
space.

Compression for individual strings is also done by Lempel-Ziv algorithms.
They compress optimally for finite-state procedures. We compress at close to
minimum description length.

At the high level, the proof follows the approach from a paper of Andrei
Romashchenko (2005). Technical machinery is different.

The classical S.-W. Th. can be obtained from the Kolmogorov complexity
version (because if X is memoryless, H(X )− cε

√
n ≤ C (X ) ≤ H(X ) + cε

√
n

with prob. 1− ε).

The O(log2 n) overhead can be reduced to O(log n), but compression is no
longer in polynomial time.

Marius Zimand Congress Romanian Mathematicians 2019 2019 30 / 42



Some comments

Compression takes polynomial time. Decompression is slower than any
computable function. This is unavoidable at this level of optimality
(compression at close to minimum description length).

If we use time/space-bounded Kolmogorov complexity, decompression is
somewhat better. For the line/point example, decompression is in linear
space.

Compression for individual strings is also done by Lempel-Ziv algorithms.
They compress optimally for finite-state procedures. We compress at close to
minimum description length.

At the high level, the proof follows the approach from a paper of Andrei
Romashchenko (2005). Technical machinery is different.

The classical S.-W. Th. can be obtained from the Kolmogorov complexity
version (because if X is memoryless, H(X )− cε

√
n ≤ C (X ) ≤ H(X ) + cε

√
n

with prob. 1− ε).

The O(log2 n) overhead can be reduced to O(log n), but compression is no
longer in polynomial time.

Marius Zimand Congress Romanian Mathematicians 2019 2019 30 / 42



Some comments

Compression takes polynomial time. Decompression is slower than any
computable function. This is unavoidable at this level of optimality
(compression at close to minimum description length).

If we use time/space-bounded Kolmogorov complexity, decompression is
somewhat better. For the line/point example, decompression is in linear
space.

Compression for individual strings is also done by Lempel-Ziv algorithms.
They compress optimally for finite-state procedures. We compress at close to
minimum description length.

At the high level, the proof follows the approach from a paper of Andrei
Romashchenko (2005). Technical machinery is different.

The classical S.-W. Th. can be obtained from the Kolmogorov complexity
version (because if X is memoryless, H(X )− cε

√
n ≤ C (X ) ≤ H(X ) + cε

√
n

with prob. 1− ε).

The O(log2 n) overhead can be reduced to O(log n), but compression is no
longer in polynomial time.

Marius Zimand Congress Romanian Mathematicians 2019 2019 30 / 42



Some comments

Compression takes polynomial time. Decompression is slower than any
computable function. This is unavoidable at this level of optimality
(compression at close to minimum description length).

If we use time/space-bounded Kolmogorov complexity, decompression is
somewhat better. For the line/point example, decompression is in linear
space.

Compression for individual strings is also done by Lempel-Ziv algorithms.
They compress optimally for finite-state procedures. We compress at close to
minimum description length.

At the high level, the proof follows the approach from a paper of Andrei
Romashchenko (2005). Technical machinery is different.

The classical S.-W. Th. can be obtained from the Kolmogorov complexity
version (because if X is memoryless, H(X )− cε

√
n ≤ C (X ) ≤ H(X ) + cε

√
n

with prob. 1− ε).

The O(log2 n) overhead can be reduced to O(log n), but compression is no
longer in polynomial time.

Marius Zimand Congress Romanian Mathematicians 2019 2019 30 / 42



Operational characterization of mutual information

C(x) C(y)

C(x | y) C(y | x)

C(x , y)

I (x : y)

C(x) = length of a shortest description of x .
C(x | y) = length of a shortest description of x
given y .
...
Mutual information of x and y is defined by a
formula:
I (x : y) = C(x) + C(y)− C(x , y).

Also, I (x : y) =+ C(x)− C(x | y),
I (x : y) =+ C(y)− C(y | x)

(=+ hides ±O(log n))

All the regions except the center have an
operational meaning.

Does I (x : y) have an operational meaning?
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Mutual information and secret key agreement

Question: Can mutual information be “materialized”?

Answer: YES.

Mutual information of strings x , y = length of the longest shared secret key
that Alice having x and Bob having y can establish via a randomized
protocol.

This was known in the setting of Information Theory (Shannon entropy, etc.)
for memoryless and stationary ergodic sources.

(Romashchenko, Z., 2018) Characterization holds in the framework of
Kolmogorov complexity.
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Secret key agreement protocol:

Alice knows x

Bob knows y

they exchange messages and compute a shared secret key z

z must be random conditioned by the transcript of the protocol

Our setting:

(1) Alice and Bob also know how their x and y are correlated.
Technically, they know the complexity profile of x and y : (C(x),C(y),C(x , y)).

(2) Alice and Bob use randomized algorithms to compute their messages.

Theorem (Characterization of the mutual information)

1 There is a protocol that for every n-bit strings x and y allows to compute
with high probability a shared secret key of length I (x : y) (up to −O(log n)).

2 No protocol can produce a longer shared secret key (up to +O(log n)).
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Characterization of mutual information: the positive part

Theorem

There exists a secret key agreement protocol with the following property: if

Alice knows x , ε, and the complexity profile of (x , y),

Bob knows y , ε, and the complexity profile of (x , y),

then with probability 1− ε they obtain a string z such that,

|z | ≥ I (x : y)− O(log(n/ε))

and C (z | transcript) ≥ |z | − O(log(1/ε)).
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|z | ≥ I (x : y)−O(log(n/ε)) /* common key of size ≥+ I (x : y) */

and C (z | transcript) ≥ |z | − O(log(1/ε)). /* no information leakage */

Marius Zimand Congress Romanian Mathematicians 2019 2019 34 / 42



Secret key agreement: sketch of the general protocol

Alice and Bob want to agree on a secret key.

they can only communicate through a public channel.

Alice knows x ; Bob knows y ;

C(x | y) =+ n1

C(y | x) =+ n2

I (x : y) =+ n0.

x y

n1 n2
n0

Protocol:

Alice sends to Bob a program p of x given y of size =+ n1.

Bob (knowing y) reconstructs x .

Alice and Bob compute (independently) a program z of x given p of size =+ n0.

Adversary gets p but learns nothing about z .
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Characterization of mutual information: the negative part.

Theorem

Let x and y be input strings of length n on which the protocol succeeds with error
probability ε so that with prob 1− ε Alice and Bob have at the end the same z ,
and C (z | t) ≥ |z | − δ(n).

Then with probability ≥ 1− O(ε) we have
|z | ≤ I (x : y) + δ(n) + O(log(n/ε)).

Under the hood:

Conditional information inequality

simple part: if no communication, then key ≤ I (x : y)

still simple: with communication, key ≤ I (x : y | transcript)
hard part: I (x : y | transcript) ≤ I (x : y)

technical lemma: C (transcript | x) + C (transcript | y) ≤ C (transcript)

Kaced-Romashchenko-Vereshchagin 2017
(Shannon’s entropy version)
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Communication complexity for secret key agreement

Fact: Our protocol for secret key agreement produces a key of length ≈ I (x : y) and has
communication complexity ≈ min{C(x | y),C(y | x)}.

Theorem (Somewhat informal)

If the communication complexity of a protocol with public randomness is
< 0.999 ·min{C(x | y),C(y | x)}, then the size of the obtained common secret key is
� 0.001 · I (x : y).

Under the hood:

common information is far less than mutual information

(Gács & Körner 1970s ; Kolmogorov seminar in 1990s; Muchik & A.R. 2000s)

opposition stochastic/nonstochastic objects (Shen 1983; Razenshteyn 2011)

Open question

What is the communication complexity for the model with private random bits?
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Motivations

fun: “operational” characterization of the mutual information,
answering an old folklore question

real fun: many interesting techniques in the proofs

a gadget (“primitive”) for more complex crypto protocols

possible area of applications: biometrics
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Previous works

History

Similar results were known in Shannon’s information theory:

Ahlswede and Csiszár [1993] and Maurer [1993]:
the optimal size of the common secret key for two parties

Csiszár and Narayan [2004]:
the optimal size of the common secret key for ` > 2 parties

Tyagi [2013]: communication complexity of the protocols

formal difference
previous works: random variables & Shannon’s entropy
our work: binary strings & Kolmogorov complexity

1st substantial difference
previous works: (X ,Y ) from random memoryless / stationary ergodic sources
our work: no specific structure on X and Y

2nd substantial difference
previous works: protocols work for most admissible pairs (X ,Y )
our work: protocols work for all admissible pairs (X ,Y )
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Previous works

The puzzle

x1

x2

x3

Alice: x1

Bob: x2

Charlie: x3

points x1, x2, x3 belong to one line
in the affine plane over F2n

Each point has 2n points of information, but
together they have 5n bits of information.

QUESTION: Can they agree on a secret key by discussing in this room, where we all

hear what they say?

Marius Zimand Congress Romanian Mathematicians 2019 2019 40 / 42



Previous works

The puzzle

x1

x2

x3

Alice: x1

Bob: x2

Charlie: x3

points x1, x2, x3 belong to one line
in the affine plane over F2n

Each point has 2n points of information, but
together they have 5n bits of information.

QUESTION: Can they agree on a secret key by discussing in this room, where we all

hear what they say?

Marius Zimand Congress Romanian Mathematicians 2019 2019 40 / 42



Previous works

The puzzle: Solution

x1

x2

x3

Alice: x1

Bob: x2

Charlie: x3

Points x1, x2, x3 belong to one line
in the affine plane over F2n

Each point has 2n points of information, but together
they have 5n bits of information.

QUESTION: Can they agree on a secret key by
discussing in this room, where we all hear what they
say?

Alice, Bob, Charlie send, respectively, n1, n2, n3 bits, so that at the end they all
know all points.

Information requirements: ni ≥ n, ni + nj ≥ 3n, for all i , j ∈ {1, 2, 3}.
n1, n2, n3 = 1.5n satisfy the requirements. By S.-W. Th., they can each send 1.5n
bits.

We have heard 4.5n bits, but they have 5n bits.

They compress their 5n bits conditional to our 4.5n bits, and obtain 0.5n secret bits.

(Romashchenko, Z. 2018) This is the best they can do, they cannot obtain a longer
secret key.
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Previous works

Thank you
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