On efficient compression at almost minimum description length

Marius Zimand

Towson University

In praise of short descriptions

Aristotle: *Nature operates in the shortest way possible.*

William of Ockham: “*Entia non sunt multiplicanda praeter necessitatem.*” (Entities must not be multiplied beyond necessity. -Occam’s razor)

Galileo: *Nature [...] makes use of the easiest and simplest means for producing her effects.*

Newton: *We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances.*
Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p) = x$, we say that p is a program (or description) for x.
Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p) = x$, we say that p is a program (or description) for x.
- $C_U(x) = \min(|p| \mid p$ is a program for x).
Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p) = x$, we say that p is a program (or description) for x.
- $C_U(x) = \min(|p| \mid p \text{ is a program for } x)$.
- For every other TM M, $C_U(x) \leq C_M(x) + \text{const.}$
Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p) = x$, we say that p is a program (or description) for x.
- $C_U(x) = \min(\|p\| \mid p \text{ is a program for } x)$.
- For every other TM M, $C_U(x) \leq C_M(x) + \text{const.}$.
- We drop the subscript, and write $C(x)$ - the Kolmogorov complexity of x (MDL of x).
Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p) = x$, we say that p is a program (or description) for x.
- $C_U(x) = \min(|p| \mid p$ is a program for $x)$.
- For every other TM M, $C_U(x) \leq C_M(x) + \text{const.}$.
- We drop the subscript, and write $C(x)$ - the Kolmogorov complexity of x (MDL of x).
- $C(x) \leq |x| + O(1)$, for every x.
Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix \(U \), universal Turing machine.
- If \(U(p) = x \), we say that \(p \) is a program (or description) for \(x \).
- \(C_U(x) = \min(|p| \mid p \text{ is a program for } x) \).
- For every other TM \(M \), \(C_U(x) \leq C_M(x) + \text{const} \).
- We drop the subscript, and write \(C(x) \) - the Kolmogorov complexity of \(x \) (MDL of \(x \)).
- \(C(x) \leq |x| + O(1) \), for every \(x \).
- A program \(p \) for \(x \) with \(|p| = C(x) \) is a shortest program for \(x \).
Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p) = x$, we say that p is a program (or description) for x.
- $C_U(x) = \min(|p| \mid p$ is a program for $x)$.
- For every other TM M, $C_U(x) \leq C_M(x) + \text{const.}$.
- We drop the subscript, and write $C(x)$ - the Kolmogorov complexity of x (MDL of x).
- $C(x) \leq |x| + O(1)$, for every x.
- A program p for x with $|p| = C(x)$ is a shortest program for x.
- A program p for x with $|p| \leq C(x) + c$ is a c-short program for x.
Given x, can we compute a shortest program for x?
Compression at MDL

- Given x, can we compute a shortest program for x?
- NO.
Given x, can we compute a shortest program for x?

NO.

Given x and $C(x)$; we can compute a shortest program for x by exhaustive search.
Given x, can we compute a shortest program for x?

- **NO.**

- Given x and $C(x)$; we can compute a shortest program for x by exhaustive search.

- The running time is larger than any computable function.
Given x, can we compute a shortest program for x?

No.

Given x and $C(x)$; we can compute a shortest program for x by exhaustive search.

The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)

Let $t(n)$ be a computable function. If an algorithm on input $(x, C(x))$ computes in time $t(n)$ a program p for x, then $|p| = C(x) + \Omega(n)$ for infinitely many x.

(where $n = |x|$).
Compression at MDL if we allow some small error probability

Theorem (Bauwens, Z., 2014)

There exists a probabilistic polynomial time algorithm E such that for all n-bit strings x, for all $\epsilon > 0$,

1. E on input $x, C(x)$ and $1/\epsilon$, outputs a string p of length $\leq C(x) + \log^2(n/\epsilon)$,
2. p is a program for x with probability $1 - \epsilon$.

- So, finding a short program for x, given x and $C(x)$, can be done in probabilistic poly. time, but any deterministic algorithm takes time larger than any computable function!
- Decompression (reconstructing x from p) cannot run in polynomial time, when compression is done at minimum description length (or close to it).
Relaxing the promise

- The promise that the compressor knows $C(x)$ is quite demanding.
- But it’s enough if the compressor knows only an upper bound $k \geq C(x)$.

Theorem (Z., 2016)

There exists a probabilistic polynomial time algorithm E such that for all n-bit strings x, for all $\epsilon > 0$,

1. E on input x, $C(x)$ k and $1/\epsilon$, outputs a string p of length $\leq C(x) k + \log^3(n/\epsilon)$,
2. p is a program for x with probability $1 - \epsilon$, provided $k \geq C(x)$.
A surprising relativization

- Suppose Alice wants to send \(x \) to Bob, who has \(y \). How many bits does Alice need to send?
- Think that \(x \) is the updated version of a file, \(y \) is the old version. If Alice knows \(y \), she can send \(\text{diff}(x, y) \).
A surprising relativization

- Suppose Alice wants to send x to Bob, who has y. How many bits does Alice need to send?
- Think that x is the updated version of a file, y is the old version. If Alice knows y, she can send $\text{diff}(x, y)$.
- But suppose Alice does not know y.

Theorem

There exist algorithms E and D such that E runs in probabilistic poly. time and for all n-bit strings x and y, for all $\epsilon > 0$, $1 \leq E$ on input x, k and $1/\epsilon$, outputs a string p of length $\leq k + \log(3(n/\epsilon))$, D on input p, y outputs x with probability $1 - \epsilon$, provided $k \geq C(x | y)$.
A surprising relativization

- Suppose Alice wants to send x to Bob, who has y. How many bits does Alice need to send?
- Think that x is the updated version of a file, y is the old version. If Alice knows y, she can send $\text{diff}(x,y)$.
- But suppose Alice does not know y.
- It’s possible to compress x to almost MDL conditioned by y, without knowing y.
A surprising relativization

- Suppose Alice wants to send x to Bob, who has y. How many bits does Alice need to send?
- Think that x is the updated version of a file, y is the old version. If Alice knows y, she can send $\text{diff}(x, y)$.
- But suppose Alice does not know y.
- It’s possible to compress x to almost MDL conditioned by y, without knowing y.

Theorem

There exist algorithms E and D such that E runs in probabilistic poly. time and for all n-bit strings x and y, for all $\epsilon > 0$,

1. E on input x, k and $1/\epsilon$, outputs a string p of length $\leq k + \log^3(n/\epsilon)$,
2. D on input p, y outputs x with probability $1 - \epsilon$, provided $k \geq C(x \mid y)$.
Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- ℓ: $2n$ bits of information (intercept, slope in GF[2^n]).
- P: $2n$ bits of information (the 2 coord. in GF[2^n]).
- Total information in $(\ell, P) = 3n$ bits; mutual information of ℓ and $P = n$ bits.
Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

ℓ: $2n$ bits of information (intercept, slope in $\text{GF}[2^n]$).

P: $2n$ bits of information (the 2 coord. in $\text{GF}[2^n]$).

Total information in $(\ell, P) = 3n$ bits; mutual information of ℓ and $P = n$ bits.
Distributed compression of correlated sources

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.

- $\ell : 2n$ bits of information (intercept, slope in GF$[2^n]$).

- $P : 2n$ bits of information (the 2 coord. in GF$[2^n]$).

- Total information in $(\ell, P) = 3n$ bits; mutual information of ℓ and $P = n$ bits.
Distributed compression of correlated sources

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell : 2n$ bits of information (intercept, slope in GF$[2^n]$).
- $P : 2n$ bits of information (the 2 coord. in GF$[2^n]$).
- Total information in $(\ell, P) = 3n$ bits; mutual information of ℓ and $P = n$ bits.
Distributed compression of correlated sources

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell : 2n$ bits of information (intercept, slope in GF$[2^n]$).
- $P : 2n$ bits of information (the 2 coord. in GF$[2^n]$).
- Total information in $(\ell, P) = 3n$ bits; mutual information of ℓ and $P = n$ bits.

QUESTION 1: Can Alice send $2n$ bits, and Bob n bits? Yes, of course. But is it just because of the simple geometric relation between ℓ and P?

Ans: We have seen that it works for any x, y with the complexity profile $C(x) = 2n, C(y) = 2n, C(x \mid y) = n$.
Alice knows a line \(l \); Bob knows a point \(P \in l \); They want to send \(l \) and \(P \) to Zack.

- \(l \): \(2n \) bits of information (intercept, slope in \(\text{GF}[2^n] \)).
- \(P \): \(2n \) bits of information (the 2 coord. in \(\text{GF}[2^n] \)).
- Total information in \((l, P) = 3n\) bits; mutual information of \(l \) and \(P = n \) bits.

QUESTION 2: Can Alice send 1.5\(n \) bits, and Bob 1.5\(n \) bits? Can Alice send 1.74\(n \) bits, and Bob 1.26\(n \) bits?

Ans: Yes (essentially, ... there is a \(\text{polylog}(n) \) overhead.) And it works for any \(x, y \) with the given complexity profile.
Kolmogorov complexity version of the Slepian-Wolf Theorem- 2 sources

Theorem

There exist probabilistic poly.-time algorithms E_1, E_2 and algorithm D such that for all integers n_1, n_2 and n-bit strings x_1, x_2,

if $n_1 + n_2 \geq C(x_1, x_2)$, $n_1 \geq C(x_1 \mid x_2)$, $n_2 \geq C(x_2 \mid x_1)$,

then

- E_i on input (x_i, n_i) outputs a string p_i of length $n_i + O(\log^3 n)$, for $i = 1, 2$,
- D on input (p_1, p_2) outputs (x_1, x_2) with probability $1 - 1/n$.

There is an analogous version for any constant number of sources.
Theorem (Z., 2016)

There exists a probabilistic polynomial-time algorithm \(E \) such that for all \(n \)-bit strings \(x \), for all \(\epsilon > 0 \),

1. \(E \) on input \(x, k \) and \(1/\epsilon \), outputs a string \(p \) of length \(\leq k + \log^3(n/\epsilon) \),

2. \(p \) is a program for \(x \) with probability \(1 - \epsilon \), provided \(k \geq C(x) \).
Bipartite graph G, with left degree D; parameters k, δ;

x’s neighbors

x's neighbors
Bipartite graph G, with left degree D; parameters k, δ;

x is a rich owner w.r.t B if

small regime case: $|B| \leq 2^k$
x owns $(1 - \delta)$ of $N(x)$

large regime case: $|B| \geq 2^k$
then x bla bla bla...not used here
(but used in the Slepian-Wolf theorem).
Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;

x is a rich owner w.r.t B if

small regime case: $|B| \leq 2^k$
x owns $(1 - \delta)$ of $N(x)$

large regime case: $|B| \geq 2^k$
then x bla bla bla...not used here (but used in the Slepian-Wolf theorem).

G has the (k, δ) rich owner property:
$\forall B \subseteq L$,
all nodes in B except at most $\delta \cdot |B|$ are rich owners w.r.t. B
Bipartite graph G, with left degree D; parameters k, δ;

x is a rich owner w.r.t B if

small regime case: $|B| \leq 2^k$
x owns $(1 - \delta)$ of $N(x)$

large regime case: $|B| \geq 2^k$
then x bla bla bla...not used here
(but used in the Slepian-Wolf theorem).

G has the (k, δ) rich owner property:
$\forall B \subseteq L$,
all nodes in B except at most $\delta \cdot |B|$ are rich owners w.r.t. B
Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;

x is a rich owner w.r.t B if

small regime case: $|B| \leq 2^k$

x owns $(1 - \delta)$ of $N(x)$

large regime case: $|B| \geq 2^k$

then x bla bla bla...not used here

(but used in the Slepian-Wolf theorem).

G has the (k, δ) rich owner property:

$\forall B \subseteq L$,

all nodes in B except at most $\delta \cdot |B|$ are rich owners w.r.t. B
Theorem (based on the (Raz-Reingold-Vadhan 2002) extractor)

There exists a poly.-time computable (uniformly in n, k and $1/\delta$) graph with the rich owner property for parameters (k, δ) with:

- $L = \{0, 1\}^n$
- $R = \{0, 1\}^{k+O(\log^3(n/\delta))}$
- $D(\text{left degree}) = 2^{O(\log^3(n/\delta))}$
Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,

...
Proof sketch (cont. 2)

- Let \(x \) be an \(n \)-bit string, and \(k \geq C(x) \),
- **Compression of** \(x \). Consider \(G \) with \((k + 1, \delta) \)-rich owner property. Pick \(p \) a random neighbor of \(x \) (viewed as a left node).
 - \(|p| = k + O(\log^3(n/\delta)) \).
 - Also compute a fingerprint \(h(x) \) of length \(O(\log(n/\delta)) \) that with prob. \(1 - \delta \) isolates \(x \) from any \(n \) strings of length \(n \).
Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,

- **Compression of x.** Consider G with $(k + 1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).

 $|p| = k + O(\log^3(n/\delta))$.

 Also compute a fingerprint $h(x)$ of length $O(\log(n/\delta))$ that with prob. $1 - \delta$ isolates x from any n strings of length n.

- **Decompression.** We reconstruct x from p and $h(x)$.

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,

- **Compression of x.** Consider G with $(k + 1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).

 $|p| = k + O(\log^3(n/\delta))$.

 Also compute a fingerprint $h(x)$ of length $O(\log(n/\delta))$ that with prob. $1 - \delta$ isolates x from any n strings of length n.

- **Decompression.** We reconstruct x from p and $h(x)$.

- Take $B = \{u \mid C(u) \leq C(x)\}$.

| Marius Zimand (Towson University) | Compression at MDL | 2016 | 13 / 15 |
Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,

- Compression of x. Consider G with $(k + 1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).
 \[|p| = k + O(\log^3(n/\delta)). \]
 Also compute a fingerprint $h(x)$ of length $O(\log(n/\delta))$ that with prob. $1 - \delta$ isolates x from any n strings of length n.

- Decompression. We reconstruct x from p and $h(x)$.
 - Take $B = \{ u \mid C(u) \leq C(x) \}$.
 - $|B| < 2^{k+1}$, so B is in the small regime case.
Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$.
- **Compression of x.** Consider G with $(k + 1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).

 $|p| = k + O(\log^3(n/\delta))$.

 Also compute a fingerprint $h(x)$ of length $O(\log(n/\delta))$ that with prob. $1 - \delta$ isolates x from any n strings of length n.

- **Decompression.** We reconstruct x from p and $h(x)$.

 - Take $B = \{u \mid C(u) \leq C(x)\}$.
 - $|B| < 2^{k+1}$, so B is in the small regime case.
 - The set of poor owners w.r.t B has size bounded by $\delta|B| \leq \delta 2^{C(x)+1}$.

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,

- **Compression of** x. Consider G with $(k + 1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).
 $$|p| = k + O(\log^3(n/\delta)).$$
 Also compute a fingerprint $h(x)$ of length $O(\log(n/\delta))$ that with prob. $1 - \delta$ isolates x from any n strings of length n.

- **Decompression.** We reconstruct x from p and $h(x)$.
 - Take $B = \{ u \mid C(u) \leq C(x) \}$.
 - $|B| < 2^{k+1}$, so B is in the small regime case.
 - The set of poor owners w.r.t B has size bounded by $\delta|B| \leq \delta 2^{C(x)+1}$.
 - Since the poor owners can be enumerated, a poor owner u has complexity bounded by
 $$C(u) \leq C(x) - \log(1/\delta) + 2 \log C(x) + O(1)$$
 $$< C(x).$$
Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,

- **Compression of x.** Consider G with $(k + 1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).

 $|p| = k + O(\log^3(n/\delta))$.

 Also compute a fingerprint $h(x)$ of length $O(\log(n/\delta))$ that with prob. $1 - \delta$ isolates x from any n strings of length n.

- **Decompression.** We reconstruct x from p and $h(x)$.

- Take $B = \{u \mid C(u) \leq C(x)\}$.

- $|B| < 2^{k+1}$, so B is in the small regime case.

- The set of poor owners w.r.t B has size bounded by $\delta|B| \leq \delta 2^{C(x)+1}$.

- Since the poor owners can be enumerated, a poor owner u has complexity bounded by

 \[
 C(u) \leq C(x) - \log(1/\delta) + 2 \log C(x) + O(1)
 < C(x).
 \]

- So, x is a rich owner w.r.t. B.
Proof sketch (cont. 3)

- So, with prob. $1 - \delta$:
 - p does not have neighbors with complexity $< C(x)$.
 - p has a single neighbor with complexity $C(x)$, namely x.
 - but p may have many neighbors with complexity $> C(x)$.

For each $j = 1, \ldots, k$, we want to find the first program q of length j s.t. $x' = U(q)$ is a neighbor of p, and make a list with the x's. Such a list can be enumerated. x is on the list. The list may contain $\leq n$ other strings (at most one at each complexity level larger than $C(x)$).

Using the fingerprint $h(x)$, the decompressor distinguishes x from the other strings, and halts the enumeration when some enumerated string has the right fingerprint. This must be x, with high probability.

q.e.d.
Proof sketch (cont. 3)

- So, with prob. $1 - \delta$:
 1. p does not have neighbors with complexity $< C(x)$.

Marius Zimand (Towson University)
Compression at MDL
2016 14 / 15
So, with prob. $1 - \delta$:

1. p does not have neighbors with complexity $< C(x)$.
2. p has a single neighbor with complexity $C(x)$, namely x.
Proof sketch (cont. 3)

- So, with prob. $1 - \delta$:
 1. p does not have neighbors with complexity $< C(x)$.
 2. p has a single neighbor with complexity $C(x)$, namely x.
 3. But p may have many neighbors with complexity $> C(x)$.
Proof sketch (cont. 3)

- So, with prob. $1 - \delta$:
 1. p does not have neighbors with complexity $< C(x)$.
 2. p has a single neighbor with complexity $C(x)$, namely x.
 3. but p may have many neighbors with complexity $> C(x)$.

- For each $j = 1, \ldots, k$, we want to find the first program q of length j s.t. $x' = U(q)$ is a neighbor of p, and make a list with the x's.
So, with prob. $1 - \delta$:

1. p does not have neighbors with complexity $< C(x)$.
2. p has a single neighbor with complexity $C(x)$, namely x.
3. but p may have many neighbors with complexity $> C(x)$.

For each $j = 1, \ldots, k$, we want to find the first program q of length j s.t. $x' = U(q)$ is a neighbor of p, and make a list with the x's.

Such a list can be enumerated.
Proof sketch (cont. 3)

• So, with prob. $1 - \delta$:
 1. p does not have neighbors with complexity $< C(x)$.
 2. p has a single neighbor with complexity $C(x)$, namely x.
 3. but p may have many neighbors with complexity $> C(x)$.

• For each $j = 1, \ldots, k$, we want to find the first program q of length j s.t. $x' = U(q)$ is a neighbor of p, and make a list with the x's.

• Such a list can be enumerated.

• x is on the list.
Proof sketch (cont. 3)

- So, with prob. $1 - \delta$:
 1. p does not have neighbors with complexity $< C(x)$.
 2. p has a single neighbor with complexity $C(x)$, namely x.
 3. But p may have many neighbors with complexity $> C(x)$.

- For each $j = 1, \ldots, k$, we want to find the first program q of length j s.t. $x' = U(q)$ is a neighbor of p, and make a list with the x's.

- Such a list can be enumerated.

- x is on the list.

- The list may contain $\leq n$ other strings (at most one at each complexity level larger than $C(x)$).
Proof sketch (cont. 3)

- So, with prob. $1 - \delta$:
 1. p does not have neighbors with complexity $< C(x)$.
 2. p has a single neighbor with complexity $C(x)$, namely x.
 3. but p may have many neighbors with complexity $> C(x)$.

- For each $j = 1, \ldots, k$, we want to find the first program q of length j s.t. $x' = U(q)$ is a neighbor of p, and make a list with the x's.

- Such a list can be enumerated.
- x is on the list.
- The list may contain $\leq n$ other strings (at most one at each complexity level larger than $C(x)$).

- Using the fingerprint $h(x)$, the decompressor distinguishes x from the other strings, and halts the enumeration when some enumerated string has the right fingerprint. This must be x, with high probability.
Proof sketch (cont. 3)

- So, with prob. $1 - \delta$:
 1. p does not have neighbors with complexity $< C(x)$.
 2. p has a single neighbor with complexity $C(x)$, namely x.
 3. but p may have many neighbors with complexity $> C(x)$.

- For each $j = 1, \ldots, k$, we want to find the first program q of length j s.t. $x' = U(q)$ is a neighbor of p, and make a list with the x's.

- Such a list can be enumerated.

- x is on the list.

- The list may contain $\leq n$ other strings (at most one at each complexity level larger than $C(x)$).

- Using the fingerprint $h(x)$, the decompressor distinguishes x from the other strings, and halts the enumeration when some enumerated string has the right fingerprint. This must be x, with high probability.

- q.e.d.
Thank you.

References:
B. Bauwens, M. Zimand, Linear list approximation for short programs (or the power of a few random bits), CCC 2014 (and ECCC TR15-017).