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In praise of short descriptions

Aristotle: Nature operates in the shortest way possible.

William of Ockham: “Entia non sunt multiplicanda praeter
necessitatem.” (Entities must not be multiplied beyond necessity.
-Occam’s razor)

Galileo: Nature [...] makes use of the easiest and simplest means for
producing her effects.

Newton: We are to admit no more causes of natural things than such
as are both true and sufficient to explain their appearances.
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Minimum Description Length, according to Solomonoff,
Kolmogorov, Chaitin

Fix U, universal Turing machine.

If U(p) = x , we say that p is a program (or description) for x .

CU(x) = min(|p| | p is a program for x).

For every other TM M, CU(x) ≤ CM(x) + const..

We drop the subscript, and write C (x) - the Kolmogorov complexity of x
(MDL of x).

C (x) ≤ |x |+ O(1), for every x .

A program p for x with |p| = C (x) is a shortest program for x .

A program p for x with |p| ≤ C (x) + c is a c-short program for x .
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Compression at MDL

Given x , can we compute a shortest program for x?

NO.

Given x and C (x); we can compute a shortest program for x by exhaustive
search.

The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)

Let t(n) be a computable function. If an algorithm on input (x ,C (x)) computes
in time t(n) a program p for x , then |p| = C (x) + Ω(n) for infinitely many x.
(where n = |x |).
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Compression at MDL if we allow some small error
probability

Theorem (Bauwens, Z., 2014)

There exists a probabilistic polynomial time algorithm E such that for all n-bit
strings x , for all ε > 0,

1 E on input x ,C (x) and 1/ε, outputs a string p of length ≤ C (x) + log2(n/ε),

2 p is a program for x with probability 1− ε.

So, finding a short program for x , given x and C (x), can be done in
probabilistic poly. time, but any deterministic algorithm takes time larger
than any computable function!

Decompression (reconstructing x from p) cannot run in polynomial time,
when compression is done at minimum description length (or close to it).
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Relaxing the promise

The promise that the compressor knows C (x) is quite demanding.

But it’s enough if the compressor knows only an upper bound k ≥ C (x).

Theorem (Z.,2016)

There exists a probabilistic polynomial time algorithm E such that for all n-bit
strings x , for all ε > 0,

1 E on input x , C (x) k and 1/ε, outputs a string p of length
≤ C (x) k+ log3(n/ε),

2 p is a program for x with probability 1− ε, provided k ≥ C (x).
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A surprising relativization

Suppose Alice wants to send x to Bob, who has y . How many bits does Alice
need to send?

Think that x is the updated version of a file, y is the old version. If Alice
knows y , she can send diff(x,y).

But suppose Alice does not know y .

It’s possible to compress x to almost MDL conditioned by y , without
knowing y .

Theorem

There exist algorithms E and D such that E runs in probabilistic poly. time and
for all n-bit strings x and y , for all ε > 0,

1 E on input x , k and 1/ε, outputs a string p of length ≤ k + log3(n/ε),

2 D on input p, y outputs x with probability 1− ε, provided k ≥ C (x | y).
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Distributed compression of correlated sources

Alice knows a line `; Bob knows a point P ∈ `; They want
to send ` and P to Zack.

` : 2n bits of information (intercept, slope in GF[2n]).

P : 2n bits of information (the 2 coord. in GF[2n]).

Total information in (`,P) = 3n bits; mutual information
of ` and P = n bits.

`

P
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Alice knows a line `; Bob knows a point P ∈ `; They want
to send ` and P to Zack.

` : 2n bits of information (intercept, slope in GF[2n]).

P : 2n bits of information (the 2 coord. in GF[2n]).

Total information in (`,P) = 3n bits; mutual information
of ` and P = n bits.

`

P

QUESTION 1: Can Alice send 2n bits, and Bob n bits? Yes, of course. But is it
just because of the simple geometric relation between ` and P?

Ans: We have seen that it works for any x , y with the complexity profile
C(x) = 2n,C(y) = 2n,C(x | y) = n.
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` : 2n bits of information (intercept, slope in GF[2n]).

P : 2n bits of information (the 2 coord. in GF[2n]).

Total information in (`,P) = 3n bits; mutual information
of ` and P = n bits.

`

P

QUESTION 2: Can Alice send 1.5n bits, and Bob 1.5n bits? Can Alice send 1.74n
bits, and Bob 1.26n bits?

Ans: Yes (essentially, ... there is a polylog(n) overhead.) And it works for any x , y
with the given complexity profile.
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Kolmogorov complexity version of the Slepian-Wolf
Theorem- 2 sources

Theorem

There exist probabilistic poly.-time algorithms E1,E2

and algorithm D such that for all integers n1, n2 and
n-bit strings x1, x2,

if n1 + n2 ≥ C (x1, x2), n1 ≥ C (x1 | x2),
n2 ≥ C (x2 | x1),

then

Ei on input (xi , ni ) outputs a string pi of length
ni + O(log3 n), for i = 1, 2,

D on input (p1, p2) outputs (x1, x2) with
probability 1− 1/n.

x2x1

E2E1

D

x1, x2

n2n1

There is an analogous version for any constant number of sources.
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One proof sketch

Theorem (Z.,2016)

There exists a probabilistic polynomial-time algorithm E such that for all n-bit
strings x , for all ε > 0,

1 E on input x , k and 1/ε, outputs a string p of length ≤ k + log3(n/ε),

2 p is a program for x with probability 1− ε, provided k ≥ C (x).

Marius Zimand (Towson University) Compression at MDL 2016 10 / 15



Graphs with the rich owner property

Bipartite graph G , with left degree D;
parameters k , δ;

x is a rich owner w.r.t B if

small regime case: |B| ≤ 2k

x owns (1− δ) of N(x)

large regime case: |B| ≥ 2k

then x bla bla bla...not used here
(but used in the Slepian-Wolf theorem).

G has the (k, δ) rich owner property:
∀B ⊆ L,
all nodes in B except at most δ · |B| are
rich owners w.r.t. B

x
N(x)

x ’s neighbors

x
N(x)B

x
N(x)B

rich owners

poor owners
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Theorem (based on the (Raz-Reingold-Vadhan 2002) extractor)

There exists a poly.-time computable (uniformly in n, k and 1/δ ) graph with the rich
owner property for parameters (k, δ) with:
• L = {0, 1}n

• R = {0, 1}k+O(log3(n/δ))

• D(left degree) = 2O(log3(n/δ))

x

N(x)B
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Proof sketch (cont. 2)

Let x be an n-bit string, and k ≥ C (x),

Compression of x. Consider G with (k + 1, δ)-rich owner property. Pick p a
random neighbor of x (viewed as a left node).
|p| = k + O(log3(n/δ)).
Also compute a fingerprint h(x) of length O(log(n/δ)) that with prob. 1− δ
isolates x from any n strings of length n.

Decompression. We reconstruct x from p and h(x).

Take B = {u | C (u) ≤ C (x)}.
|B| < 2k+1, so B is in the small regime case.

The set of poor owners w.r.t B has size bounded by δ|B| ≤ δ2C(x)+1.

Since the poor owners can be enumerated, a poor owner u has complexity
bounded by

C (u) ≤ C (x)− log(1/δ) + 2 logC (x) + O(1)
< C (x).

So, x is a rich owner w.r.t. B.
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Decompression. We reconstruct x from p and h(x).

Take B = {u | C (u) ≤ C (x)}.
|B| < 2k+1, so B is in the small regime case.

The set of poor owners w.r.t B has size bounded by δ|B| ≤ δ2C(x)+1.

Since the poor owners can be enumerated, a poor owner u has complexity
bounded by

C (u) ≤ C (x)− log(1/δ) + 2 logC (x) + O(1)
< C (x).

So, x is a rich owner w.r.t. B.
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Proof sketch (cont. 3)

So, with prob. 1− δ:

1 p does not have neighbors with complexity < C(x).
2 p has a single neighbor with complexity C(x), namely x .
3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k, we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Proof sketch (cont. 3)

So, with prob. 1− δ:
1 p does not have neighbors with complexity < C(x).

2 p has a single neighbor with complexity C(x), namely x .
3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k, we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Proof sketch (cont. 3)

So, with prob. 1− δ:
1 p does not have neighbors with complexity < C(x).
2 p has a single neighbor with complexity C(x), namely x .

3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k, we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Proof sketch (cont. 3)

So, with prob. 1− δ:
1 p does not have neighbors with complexity < C(x).
2 p has a single neighbor with complexity C(x), namely x .
3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k, we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Proof sketch (cont. 3)

So, with prob. 1− δ:
1 p does not have neighbors with complexity < C(x).
2 p has a single neighbor with complexity C(x), namely x .
3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k , we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Proof sketch (cont. 3)

So, with prob. 1− δ:
1 p does not have neighbors with complexity < C(x).
2 p has a single neighbor with complexity C(x), namely x .
3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k , we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Proof sketch (cont. 3)

So, with prob. 1− δ:
1 p does not have neighbors with complexity < C(x).
2 p has a single neighbor with complexity C(x), namely x .
3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k , we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Proof sketch (cont. 3)

So, with prob. 1− δ:
1 p does not have neighbors with complexity < C(x).
2 p has a single neighbor with complexity C(x), namely x .
3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k , we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Proof sketch (cont. 3)

So, with prob. 1− δ:
1 p does not have neighbors with complexity < C(x).
2 p has a single neighbor with complexity C(x), namely x .
3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k , we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Proof sketch (cont. 3)

So, with prob. 1− δ:
1 p does not have neighbors with complexity < C(x).
2 p has a single neighbor with complexity C(x), namely x .
3 but p may have many neighbors with complexity > C(x).

For each j = 1, . . . , k , we want to find the first program q of length j s.t.
x ′ = U(q) is a neighbor of p, and make a list with the x ′s.

Such a list can be enumerated.

x is on the list.

The list may contain ≤ n other strings (at most one at each complexity level
larger than C (x)).

Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x , with high probability.

q.e.d.

Marius Zimand (Towson University) Compression at MDL 2016 14 / 15



Thank you.
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