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In praise of short descriptions

Avristotle: Nature operates in the shortest way possible.

William of Ockham: “Entia non sunt multiplicanda praeter
necessitatem.” (Entities must not be multiplied beyond necessity.
-Occam’s razor)

Galileo: Nature [...] makes use of the easiest and simplest means for
producing her effects.

Newton: We are to admit no more causes of natural things than such
as are both true and sufficient to explain their appearances.
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o A program p for x with |p| < C(x) 4+ c is a c-short program for x.
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Compression at MDL

o Given x, can we compute a shortest program for x?
o NO.

o Given x and C(x); we can compute a shortest program for x by exhaustive
search.

o The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)

Let t(n) be a computable function. If an algorithm on input (x, C(x)) computes
in time t(n) a program p for x, then |p| = C(x) + (n) for infinitely many x.
(where n = |x|).
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Compression at MDL if we allow some small error
probability

Theorem (Bauwens, Z., 2014)

There exists a probabilistic polynomial time algorithm E such that for all n-bit
strings x, for all ¢ > 0,

@ E on input x, C(x) and 1/e, outputs a string p of length < C(x) + log?(n/€),
@ p is a program for x with probability 1 — .

o So, finding a short program for x, given x and C(x), can be done in
probabilistic poly. time, but any deterministic algorithm takes time larger
than any computable function!

o Decompression (reconstructing x from p) cannot run in polynomial time,
when compression is done at minimum description length (or close to it).
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Relaxing the promise

o The promise that the compressor knows C(x) is quite demanding.

o But it's enough if the compressor knows only an upper bound k > C(x).

Theorem (Z.,2016)

There exists a probabilistic polynomial time algorithm E such that for all n-bit
strings x, for all ¢ > 0,
@ E on input x, € k and 1/¢, outputs a string p of length
< €0 k+log’(n/e),

@ p is a program for x with probability 1 — €, provided k > C(x).
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A surprising relativization

o Suppose Alice wants to send x to Bob, who has y. How many bits does Alice
need to send?

o Think that x is the updated version of a file, y is the old version. If Alice
knows y, she can send diff (x,y).

Marius Zimand (Towson University) Compression at MDL 2016 7/ 15



A surprising relativization

o Suppose Alice wants to send x to Bob, who has y. How many bits does Alice
need to send?

o Think that x is the updated version of a file, y is the old version. If Alice
knows y, she can send diff (x,y).

o But suppose Alice does not know y.

Marius Zimand (Towson University) Compression at MDL 2016 7/ 15



A surprising relativization

o Suppose Alice wants to send x to Bob, who has y. How many bits does Alice
need to send?

o Think that x is the updated version of a file, y is the old version. If Alice
knows y, she can send diff (x,y).

o But suppose Alice does not know y.

o It's possible to compress x to almost MDL conditioned by y, without
knowing y.

Marius Zimand (Towson University) Compression at MDL 2016 7/ 15



A surprising relativization

o Suppose Alice wants to send x to Bob, who has y. How many bits does Alice
need to send?

o Think that x is the updated version of a file, y is the old version. If Alice
knows y, she can send diff (x,y).

o But suppose Alice does not know y.

o It's possible to compress x to almost MDL conditioned by y, without
knowing y.

Theorem

There exist algorithms E and D such that E runs in probabilistic poly. time and
for all n-bit strings x and y, for all ¢ > 0,

@ E on input x, k and 1/¢, outputs a string p of length < k + Iog3(n/e),
@ D on input p, y outputs x with probability 1 — €, provided k > C(x | y).
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Distributed compression of correlated sources

o Alice knows a line ¢; Bob knows a point P € ¢; They want
to send £ and P to Zack.
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Distributed compression of correlated sources

©

Alice knows a line ¢; Bob knows a point P € ¢; They want

to send £ and P to Zack.
£ : 2n bits of information (intercept, slope in GF[2"]). P
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P : 2n bits of information (the 2 coord. in GF[2"]).

o Total information in (¢, P) = 3n bits; mutual information
of £ and P = n bits.
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Distributed compression of correlated sources

o Alice knows a line ¢; Bob knows a point P € ¢; They want

to send ¢ and P to Zack.
o ¢ :2n bits of information (intercept, slope in GF[2"]). P
@ P :2n bits of information (the 2 coord. in GF[2"]). y

o Total information in (¢, P) = 3n bits; mutual information
of £ and P = n bits.

o QUESTION 1: Can Alice send 2n bits, and Bob n bits? Yes, of course. But is it
just because of the simple geometric relation between ¢ and P?

Ans: We have seen that it works for any x, y with the complexity profile
C(x)=2n,C(y) =2n,C(x|y)=n.
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Distributed compression of correlated sources

o Alice knows a line ¢; Bob knows a point P € ¢; They want

to send £ and P to Zack.
o ¢ :2n bits of information (intercept, slope in GF[2"]). /P/
@ P :2n bits of information (the 2 coord. in GF[2"]). y
o Total information in (¢, P) = 3n bits; mutual information

of £ and P = n bits.

o QUESTION 2: Can Alice send 1.5n bits, and Bob 1.5n bits? Can Alice send 1.74n
bits, and Bob 1.26n bits?

Ans: Yes (essentially, ... there is a polylog(n) overhead.) And it works for any x, y
with the given complexity profile.
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Kolmogorov complexity version of the Slepian-Wolf

Theorem- 2 sources

Theorem
There exist probabilistic poly.-time algorithms E;, E; @
and algorithm D such that for all integers ny, n, and
n-bit strings xq, X, :
if ny+ny > Cxi,x2), m > Cx1 | x), !
n > C(x | x1), nl\\
then \\
o E; on input (x;, n;) outputs a string p; of length R
n; + O(Iog3 n), fori =1,2, @
o D on input (p1, p2) outputs (x1, x2) with
probability 1 — 1/n.

There is an analogous version for any constant number of sources.
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One proof sketch

Theorem (Z.,2016)

There exists a probabilistic polynomial-time algorithm E such that for all n-bit
strings x, for all ¢ > 0,

@ E on input x, k and 1/e, outputs a string p of length < k + log®(n/e),
@ p is a program for x with probability 1 — e, provided k > C(x).
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Graphs with the rich owner property

Bipartite graph G, with left degree D;
parameters k, J;

x's neighbors

Marius Zimand (Towson University) Compression at MDL 2016 11 /15



Graphs with the rich owner property

Bipartite graph G, with left degree D;
parameters k, J;

X is a rich owner w.r.t B if

small regime case: |B| < 2*
x owns (1 — §) of N(x)

large regime case: |B| > 2k
then x bla bla bla...not used here
(but used in the Slepian-Wolf theorem).
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Graphs with the rich owner property

Bipartite graph G, with left degree D;
parameters k, J;

X is a rich owner w.r.t B if

small regime case: |B| < 2*
x owns (1 — §) of N(x)

large regime case: |B| > 2k
then x bla bla bla...not used here
(but used in the Slepian-Wolf theorem).

G has the (k, d) rich owner property:
VB C L,

all nodes in B except at most ¢ - | B| are
rich owners w.r.t. B

poor owners
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Theorem (based on the (Raz-Reingold-Vadhan 2002) extractor)

There exists a poly.-time computable (uniformly in n, k and 1/ ) graph with the rich
owner property for parameters (k, &) with:

e L={0,1}"

o R— {071}k+0(log3(n/5))

e D(left degree) = 20(log’(n/5))
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Proof sketch (cont. 2)

o Let x be an n-bit string, and k > C(x),

o Compression of x. Consider G with (k + 1, §)-rich owner property. Pick p a
random neighbor of x (viewed as a left node).
|p| = k + O(log®(n/3)).
Also compute a fingerprint h(x) of length O(log(n/d)) that with prob. 1 —§
isolates x from any n strings of length n.
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o Let x be an n-bit string, and k > C(x),
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Proof sketch (cont. 2)

o Let x be an n-bit string, and k > C(x),

o Compression of x. Consider G with (k + 1, §)-rich owner property. Pick p a
random neighbor of x (viewed as a left node).

|p| = k + O(log®(n/3)).

Also compute a fingerprint h(x) of length O(log(n/d)) that with prob. 1 —§
isolates x from any n strings of length n.

Decompression. We reconstruct x from p and h(x).

Take B = {u | C(u) < C(x)}.

|B| < 25*1, s0 B is in the small regime case.

The set of poor owners w.r.t B has size bounded by §|B| < §2€()+1,
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Proof sketch (cont. 2)
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Let x be an n-bit string, and k > C(x),

Compression of x. Consider G with (k + 1,6)-rich owner property. Pick p a
random neighbor of x (viewed as a left node).

|p| = k + O(log®(n/3)).

Also compute a fingerprint h(x) of length O(log(n/d)) that with prob. 1 —§
isolates x from any n strings of length n.

Decompression. We reconstruct x from p and h(x).

Take B = {u | C(u) < C(x)}.

|B| < 25*1, s0 B is in the small regime case.

The set of poor owners w.r.t B has size bounded by §|B| < §2€()+1,

Since the poor owners can be enumerated, a poor owner u has complexity
bounded by

C(u) (x) — log(1/6) 4+ 2log C(x) + O(1)

<C
< C(x).
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Proof sketch (cont. 2)
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Let x be an n-bit string, and k > C(x),

Compression of x. Consider G with (k + 1,6)-rich owner property. Pick p a
random neighbor of x (viewed as a left node).

|p| = k + O(log®(n/3)).

Also compute a fingerprint h(x) of length O(log(n/d)) that with prob. 1 —§
isolates x from any n strings of length n.

Decompression. We reconstruct x from p and h(x).

Take B = {u | C(u) < C(x)}.

|B| < 25*1, s0 B is in the small regime case.

The set of poor owners w.r.t B has size bounded by §|B| < §2€()+1,

Since the poor owners can be enumerated, a poor owner u has complexity
bounded by

C(u) < C(x)—log(1/9) +2log C(x)+ O(1)
< C(x).

So, x is a rich owner w.r.t. B.
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Proof sketch (cont. 3)

o So, with prob. 1 —¢:
@ p does not have neighbors with complexity < C(x).
@ p has a single neighbor with complexity C(x), namely x.

@ but p may have many neighbors with complexity > C(x).
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Proof sketch (cont. 3)

o So, with prob. 1 —¢:
@ p does not have neighbors with complexity < C(x).
@ p has a single neighbor with complexity C(x), namely x.
@ but p may have many neighbors with complexity > C(x).

o Foreachj=1,...,k, we want to find the first program g of length j s.t.
x" = U(q) is a neighbor of p, and make a list with the x's.
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o So, with prob. 1 —¢:
@ p does not have neighbors with complexity < C(x).
@ p has a single neighbor with complexity C(x), namely x.
@ but p may have many neighbors with complexity > C(x).

o Foreachj=1,...,k, we want to find the first program g of length j s.t.
x" = U(q) is a neighbor of p, and make a list with the x's.

o Such a list can be enumerated.
o x is on the list.

o The list may contain < n other strings (at most one at each complexity level
larger than C(x)).
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Proof sketch (cont. 3)

o So, with prob. 1 —¢:

@ p does not have neighbors with complexity < C(x).
@ p has a single neighbor with complexity C(x), namely x.
@ but p may have many neighbors with complexity > C(x).

o Foreachj=1,...,k, we want to find the first program g of length j s.t.
x" = U(q) is a neighbor of p, and make a list with the x's.

o Such a list can be enumerated.
o x is on the list.

o The list may contain < n other strings (at most one at each complexity level
larger than C(x)).

o Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x, with high probability.
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Proof sketch (cont. 3)

o So, with prob. 1 —§:
@ p does not have neighbors with complexity < C(x).
@ p has a single neighbor with complexity C(x), namely x.
@ but p may have many neighbors with complexity > C(x).

o Foreachj=1,...,k, we want to find the first program g of length j s.t.
x" = U(q) is a neighbor of p, and make a list with the x's.

o Such a list can be enumerated.
o x is on the list.

o The list may contain < n other strings (at most one at each complexity level
larger than C(x)).

o Using the fingerprint h(x), the decompressor distinguishes x from the other
strings, and halts the enumeration when some enumerated string has the
right fingerprint. This must be x, with high probability.

o g.ed.
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Thank you.
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