On efficient compression at almost minimum description length

Marius Zimand
Towson University

2016 Capital Area Theory Day, May 26, 2016

In praise of short descriptions

Aristotle: Nature operates in the shortest way possible.

William of Ockham: "Entia non sunt multiplicanda praeter necessitatem." (Entities must not be multiplied beyond necessity. -Occam's razor)

Galileo: Nature [...] makes use of the easiest and simplest means for producing her effects.

Newton: We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances.

Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.

Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p)=x$, we say that p is a program (or description) for x.

Minimum Description Length, according to Solomonoff,

 Kolmogorov, Chaitin- Fix U, universal Turing machine.
- If $U(p)=x$, we say that p is a program (or description) for x.
- $C_{U}(x)=\min (|p| \mid p$ is a program for $x)$.

Minimum Description Length, according to Solomonoff,

 Kolmogorov, Chaitin- Fix U, universal Turing machine.
- If $U(p)=x$, we say that p is a program (or description) for x.
- $C_{U}(x)=\min (|p| \mid p$ is a program for $x)$.
- For every other TM M, $C_{U}(x) \leq C_{M}(x)+$ const..

Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p)=x$, we say that p is a program (or description) for x.
- $C_{U}(x)=\min (|p| \mid p$ is a program for $x)$.
- For every other TM M, $C_{U}(x) \leq C_{M}(x)+$ const..
- We drop the subscript, and write $C(x)$ - the Kolmogorov complexity of x (MDL of x).

Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p)=x$, we say that p is a program (or description) for x.
- $C_{U}(x)=\min (|p| \mid p$ is a program for $x)$.
- For every other TM M, $C_{U}(x) \leq C_{M}(x)+$ const..
- We drop the subscript, and write $C(x)$ - the Kolmogorov complexity of x (MDL of x).
- $C(x) \leq|x|+O(1)$, for every x.

Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p)=x$, we say that p is a program (or description) for x.
- $C_{U}(x)=\min (|p| \mid p$ is a program for $x)$.
- For every other TM M, $C_{U}(x) \leq C_{M}(x)+$ const..
- We drop the subscript, and write $C(x)$ - the Kolmogorov complexity of x (MDL of x).
- $C(x) \leq|x|+O(1)$, for every x.
- A program p for x with $|p|=C(x)$ is a shortest program for x.

Minimum Description Length, according to Solomonoff, Kolmogorov, Chaitin

- Fix U, universal Turing machine.
- If $U(p)=x$, we say that p is a program (or description) for x.
- $C_{U}(x)=\min (|p| \mid p$ is a program for $x)$.
- For every other TM M, $C_{U}(x) \leq C_{M}(x)+$ const..
- We drop the subscript, and write $C(x)$ - the Kolmogorov complexity of x (MDL of x).
- $C(x) \leq|x|+O(1)$, for every x.
- A program p for x with $|p|=C(x)$ is a shortest program for x.
- A program p for x with $|p| \leq C(x)+c$ is a c-short program for x.

Compression at MDL

- Given x, can we compute a shortest program for x ?

Compression at MDL

- Given x, can we compute a shortest program for x ?
- NO.

Compression at MDL

- Given x, can we compute a shortest program for x ?
- NO.
- Given x and $C(x)$; we can compute a shortest program for x by exhaustive search.

Compression at MDL

- Given x, can we compute a shortest program for x ?
- NO.
- Given x and $C(x)$; we can compute a shortest program for x by exhaustive search.
- The running time is larger than any computable function.

Compression at MDL

- Given x, can we compute a shortest program for x ?
- NO.
- Given x and $C(x)$; we can compute a shortest program for x by exhaustive search.
- The running time is larger than any computable function.

Theorem (Bauwens, Z., 2014)
Let $t(n)$ be a computable function. If an algorithm on input $(x, C(x))$ computes in time $t(n)$ a program p for x, then $|p|=C(x)+\Omega(n)$ for infinitely many x. (where $n=|x|$).

Compression at MDL if we allow some small error probability

Theorem (Bauwens, Z., 2014)
There exists a probabilistic polynomial time algorithm E such that for all n-bit strings x, for all $\epsilon>0$,
(1) E on input $x, C(x)$ and $1 / \epsilon$, outputs a string p of length $\leq C(x)+\log ^{2}(n / \epsilon)$,
(2) p is a program for x with probability $1-\epsilon$.

- So, finding a short program for x, given x and $C(x)$, can be done in probabilistic poly. time, but any deterministic algorithm takes time larger than any computable function!
- Decompression (reconstructing x from p) cannot run in polynomial time, when compression is done at minimum description length (or close to it).

Relaxing the promise

- The promise that the compressor knows $C(x)$ is quite demanding.
- But it's enough if the compressor knows only an upper bound $k \geq C(x)$.

Theorem (Z.,2016)

There exists a probabilistic polynomial time algorithm E such that for all n-bit strings x, for all $\epsilon>0$,
(1) E on input $x, C(x) k$ and $1 / \epsilon$, outputs a string p of length $\leq €(x) k+\log ^{3}(n / \epsilon)$,
(2) p is a program for x with probability $1-\epsilon$, provided $k \geq C(x)$.

A surprising relativization

- Suppose Alice wants to send x to Bob, who has y. How many bits does Alice need to send?
- Think that x is the updated version of a file, y is the old version. If Alice knows y, she can send $\operatorname{diff}(x, y)$.

A surprising relativization

- Suppose Alice wants to send x to Bob, who has y. How many bits does Alice need to send?
- Think that x is the updated version of a file, y is the old version. If Alice knows y, she can send $\operatorname{diff}(x, y)$.
- But suppose Alice does not know y.

A surprising relativization

- Suppose Alice wants to send x to Bob, who has y. How many bits does Alice need to send?
- Think that x is the updated version of a file, y is the old version. If Alice knows y, she can send $\operatorname{diff}(x, y)$.
- But suppose Alice does not know y.
- It's possible to compress x to almost MDL conditioned by y, without knowing y.

A surprising relativization

- Suppose Alice wants to send x to Bob, who has y. How many bits does Alice need to send?
- Think that x is the updated version of a file, y is the old version. If Alice knows y, she can send $\operatorname{diff}(x, y)$.
- But suppose Alice does not know y.
- It's possible to compress x to almost MDL conditioned by y, without knowing y.

Theorem

There exist algorithms E and D such that E runs in probabilistic poly. time and for all n-bit strings x and y, for all $\epsilon>0$,
(1) E on input x, k and $1 / \epsilon$, outputs a string p of length $\leq k+\log ^{3}(n / \epsilon)$,
(2) D on input p, y outputs x with probability $1-\epsilon$, provided $k \geq C(x \mid y)$.

Distributed compression of correlated sources

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell: 2 n$ bits of information (intercept, slope in GF[$\left.2^{n}\right]$).
- $P: 2 n$ bits of information (the 2 coord. in GF[2n $]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information
 of ℓ and $P=n$ bits.

Distributed compression of correlated sources

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell: 2 n$ bits of information (intercept, slope in GF[$\left.2^{n}\right]$).
- $P: 2 n$ bits of information (the 2 coord. in GF[$\left.2^{n}\right]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information
 of ℓ and $P=n$ bits.

Distributed compression of correlated sources

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell: 2 n$ bits of information (intercept, slope in GF[$\left.2^{n}\right]$).
- $P: 2 n$ bits of information (the 2 coord. in GF[$\left.2^{n}\right]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information

Distributed compression of correlated sources

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell: 2 n$ bits of information (intercept, slope in GF[$\left.2^{n}\right]$).
- $P: 2 n$ bits of information (the 2 coord. in GF[$\left.2^{n}\right]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information
 of ℓ and $P=n$ bits.

Distributed compression of correlated sources

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell: 2 n$ bits of information (intercept, slope in GF[$\left.2^{n}\right]$).
- $P: 2 n$ bits of information (the 2 coord. in GF[2n $]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information
 of ℓ and $P=n$ bits.
- QUESTION 1: Can Alice send $2 n$ bits, and Bob n bits? Yes, of course. But is it just because of the simple geometric relation between ℓ and P ?

Ans: We have seen that it works for any x, y with the complexity profile $C(x)=2 n, C(y)=2 n, C(x \mid y)=n$.

Distributed compression of correlated sources

- Alice knows a line ℓ; Bob knows a point $P \in \ell$; They want to send ℓ and P to Zack.
- $\ell: 2 n$ bits of information (intercept, slope in GF[$\left.2^{n}\right]$).
- $P: 2 n$ bits of information (the 2 coord. in GF[$\left.2^{n}\right]$).
- Total information in $(\ell, P)=3 n$ bits; mutual information
 of ℓ and $P=n$ bits.
- QUESTION 2: Can Alice send $1.5 n$ bits, and Bob $1.5 n$ bits? Can Alice send $1.74 n$ bits, and Bob $1.26 n$ bits?

Ans: Yes (essentially, ... there is a polylog(n) overhead.) And it works for any x, y with the given complexity profile.

Kolmogorov complexity version of the Slepian-Wolf Theorem- 2 sources

Theorem

There exist probabilistic poly.-time algorithms E_{1}, E_{2} and algorithm D such that for all integers n_{1}, n_{2} and n-bit strings x_{1}, x_{2},
if $n_{1}+n_{2} \geq C\left(x_{1}, x_{2}\right), n_{1} \geq C\left(x_{1} \mid x_{2}\right)$, $n_{2} \geq C\left(x_{2} \mid x_{1}\right)$,
then

- E_{i} on input $\left(x_{i}, n_{i}\right)$ outputs a string p_{i} of length $n_{i}+O\left(\log ^{3} n\right)$, for $i=1,2$,
- D on input $\left(p_{1}, p_{2}\right)$ outputs $\left(x_{1}, x_{2}\right)$ with probability $1-1 / n$.

There is an analogous version for any constant number of sources.

One proof sketch

Theorem (Z.,2016)

There exists a probabilistic polynomial-time algorithm E such that for all n-bit strings x, for all $\epsilon>0$,
(1) E on input x, k and $1 / \epsilon$, outputs a string p of length $\leq k+\log ^{3}(n / \epsilon)$,
(2) p is a program for x with probability $1-\epsilon$, provided $k \geq C(x)$.

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;
x's neighbors

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B| \geq 2^{k}$ then x bla bla bla...not used here (but used in the Slepian-Wolf theorem).

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B| \geq 2^{k}$ then x bla bla bla...not used here (but used in the Slepian-Wolf theorem).
G has the (k, δ) rich owner property:
 $\forall B \subseteq L$, all nodes in B except at most $\delta \cdot|B|$ are rich owners w.r.t. B

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B| \geq 2^{k}$ then x bla bla bla...not used here (but used in the Slepian-Wolf theorem).
G has the (k, δ) rich owner property:
 $\forall B \subseteq L$, all nodes in B except at most $\delta \cdot|B|$ are rich owners w.r.t. B

Graphs with the rich owner property

Bipartite graph G, with left degree D; parameters k, δ;
x is a rich owner w.r.t B if
small regime case: $|B| \leq 2^{k}$
x owns $(1-\delta)$ of $N(x)$
large regime case: $|B| \geq 2^{k}$ then x bla bla bla...not used here (but used in the Slepian-Wolf theorem).
G has the (k, δ) rich owner property:
$\forall B \subseteq L$,
all nodes in B except at most $\delta \cdot|B|$ are
 rich owners w.r.t. B

Theorem (based on the (Raz-Reingold-Vadhan 2002) extractor)
There exists a poly.-time computable (uniformly in n, k and $1 / \delta$) graph with the rich owner property for parameters (k, δ) with:

- $L=\{0,1\}^{n}$
- $R=\{0,1\}^{k+O\left(\log ^{3}(n / \delta)\right)}$
- $D($ left degree $)=2^{O\left(\log ^{3}(n / \delta)\right)}$

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,
- Compression of x. Consider G with $(k+1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).
$|p|=k+O\left(\log ^{3}(n / \delta)\right)$.
Also compute a fingerprint $h(x)$ of length $O(\log (n / \delta))$ that with prob. $1-\delta$ isolates x from any n strings of length n.

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,
- Compression of x. Consider G with $(k+1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).
$|p|=k+O\left(\log ^{3}(n / \delta)\right)$.
Also compute a fingerprint $h(x)$ of length $O(\log (n / \delta))$ that with prob. $1-\delta$ isolates x from any n strings of length n.
- Decompression. We reconstruct x from p and $h(x)$.

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,
- Compression of x. Consider G with $(k+1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).
$|p|=k+O\left(\log ^{3}(n / \delta)\right)$.
Also compute a fingerprint $h(x)$ of length $O(\log (n / \delta))$ that with prob. $1-\delta$ isolates x from any n strings of length n.
- Decompression. We reconstruct x from p and $h(x)$.
- Take $B=\{u \mid C(u) \leq C(x)\}$.

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,
- Compression of x. Consider G with $(k+1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).
$|p|=k+O\left(\log ^{3}(n / \delta)\right)$.
Also compute a fingerprint $h(x)$ of length $O(\log (n / \delta))$ that with prob. $1-\delta$ isolates x from any n strings of length n.
- Decompression. We reconstruct x from p and $h(x)$.
- Take $B=\{u \mid C(u) \leq C(x)\}$.
- $|B|<2^{k+1}$, so B is in the small regime case.

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,
- Compression of x. Consider G with $(k+1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).

$$
|p|=k+O\left(\log ^{3}(n / \delta)\right)
$$

Also compute a fingerprint $h(x)$ of length $O(\log (n / \delta))$ that with prob. $1-\delta$ isolates x from any n strings of length n.

- Decompression. We reconstruct x from p and $h(x)$.
- Take $B=\{u \mid C(u) \leq C(x)\}$.
- $|B|<2^{k+1}$, so B is in the small regime case.
- The set of poor owners w.r.t B has size bounded by $\delta|B| \leq \delta 2^{C(x)+1}$.

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,
- Compression of x. Consider G with $(k+1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).

$$
|p|=k+O\left(\log ^{3}(n / \delta)\right)
$$

Also compute a fingerprint $h(x)$ of length $O(\log (n / \delta))$ that with prob. $1-\delta$ isolates x from any n strings of length n.

- Decompression. We reconstruct x from p and $h(x)$.
- Take $B=\{u \mid C(u) \leq C(x)\}$.
- $|B|<2^{k+1}$, so B is in the small regime case.
- The set of poor owners w.r.t B has size bounded by $\delta|B| \leq \delta 2^{C(x)+1}$.
- Since the poor owners can be enumerated, a poor owner u has complexity bounded by

$$
\begin{aligned}
C(u) & \leq C(x)-\log (1 / \delta)+2 \log C(x)+O(1) \\
& <C(x) .
\end{aligned}
$$

Proof sketch (cont. 2)

- Let x be an n-bit string, and $k \geq C(x)$,
- Compression of x. Consider G with $(k+1, \delta)$-rich owner property. Pick p a random neighbor of x (viewed as a left node).

$$
|p|=k+O\left(\log ^{3}(n / \delta)\right)
$$

Also compute a fingerprint $h(x)$ of length $O(\log (n / \delta))$ that with prob. $1-\delta$ isolates x from any n strings of length n.

- Decompression. We reconstruct x from p and $h(x)$.
- Take $B=\{u \mid C(u) \leq C(x)\}$.
- $|B|<2^{k+1}$, so B is in the small regime case.
- The set of poor owners w.r.t B has size bounded by $\delta|B| \leq \delta 2^{C(x)+1}$.
- Since the poor owners can be enumerated, a poor owner u has complexity bounded by

$$
\begin{aligned}
C(u) & \leq C(x)-\log (1 / \delta)+2 \log C(x)+O(1) \\
& <C(x) .
\end{aligned}
$$

- So, x is a rich owner w.r.t. B.

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:
(1) p does not have neighbors with complexity $<C(x)$.

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:
(1) p does not have neighbors with complexity $<C(x)$.
(2) p has a single neighbor with complexity $C(x)$, namely x.

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:
(1) p does not have neighbors with complexity $<C(x)$.
(2) p has a single neighbor with complexity $C(x)$, namely x.
(3) but p may have many neighbors with complexity $>C(x)$.

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:
(1) p does not have neighbors with complexity $<C(x)$.
(2) p has a single neighbor with complexity $C(x)$, namely x.
(3) but p may have many neighbors with complexity $>C(x)$.
- For each $j=1, \ldots, k$, we want to find the first program q of length j s.t. $x^{\prime}=U(q)$ is a neighbor of p, and make a list with the x^{\prime} s.

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:
(1) p does not have neighbors with complexity $<C(x)$.
(2) p has a single neighbor with complexity $C(x)$, namely x.
(3) but p may have many neighbors with complexity $>C(x)$.
- For each $j=1, \ldots, k$, we want to find the first program q of length j s.t. $x^{\prime}=U(q)$ is a neighbor of p, and make a list with the $x^{\prime} \mathrm{s}$.
- Such a list can be enumerated.

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:
(1) p does not have neighbors with complexity $<C(x)$.
(2) p has a single neighbor with complexity $C(x)$, namely x.
(3) but p may have many neighbors with complexity $>C(x)$.
- For each $j=1, \ldots, k$, we want to find the first program q of length j s.t. $x^{\prime}=U(q)$ is a neighbor of p, and make a list with the x^{\prime} s.
- Such a list can be enumerated.
- x is on the list.

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:
(1) p does not have neighbors with complexity $<C(x)$.
(2) p has a single neighbor with complexity $C(x)$, namely x.
(3) but p may have many neighbors with complexity $>C(x)$.
- For each $j=1, \ldots, k$, we want to find the first program q of length j s.t. $x^{\prime}=U(q)$ is a neighbor of p, and make a list with the x^{\prime} s.
- Such a list can be enumerated.
- x is on the list.
- The list may contain $\leq n$ other strings (at most one at each complexity level larger than $C(x))$.

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:
(1) p does not have neighbors with complexity $<C(x)$.
(2) p has a single neighbor with complexity $C(x)$, namely x.
(3) but p may have many neighbors with complexity $>C(x)$.
- For each $j=1, \ldots, k$, we want to find the first program q of length j s.t. $x^{\prime}=U(q)$ is a neighbor of p, and make a list with the x^{\prime} s.
- Such a list can be enumerated.
- x is on the list.
- The list may contain $\leq n$ other strings (at most one at each complexity level larger than $C(x)$).
- Using the fingerprint $h(x)$, the decompressor distinguishes x from the other strings, and halts the enumeration when some enumerated string has the right fingerprint. This must be x, with high probability.

Proof sketch (cont. 3)

- So, with prob. $1-\delta$:
(1) p does not have neighbors with complexity $<C(x)$.
(2) p has a single neighbor with complexity $C(x)$, namely x.
(3) but p may have many neighbors with complexity $>C(x)$.
- For each $j=1, \ldots, k$, we want to find the first program q of length j s.t. $x^{\prime}=U(q)$ is a neighbor of p, and make a list with the x^{\prime} s.
- Such a list can be enumerated.
- x is on the list.
- The list may contain $\leq n$ other strings (at most one at each complexity level larger than $C(x)$).
- Using the fingerprint $h(x)$, the decompressor distinguishes x from the other strings, and halts the enumeration when some enumerated string has the right fingerprint. This must be x, with high probability.
- q.e.d.

Thank you.

References:

B. Bauwens, M. Zimand, Linear list approximation for short programs (or the power of a few random bits), CCC 2014 (and ECCC TR15-017).
M. Zimand, Kolmogorov complexity version of Slepian-Wolf coding, arXiv:1511.03602.
J. Teutsch, M. Zimand, A brief on short descriptions, SIGACT News, 47(1):42-67, March 2016,

