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This is a brief summary on finite fields. The document is a based on some notes written by

Clifford Bergman.

INFORMAL DEFINITION: A field is a set of “numbers” that can be added, subtracted, multi-

plied, and divided.

Examples:

• Q = rational numbers

• R = real numbers

• C = compleXnumbers

• Zp when p is prime (the set of integers with addition and multiplication modulo 5)

Many applications require finite fields, because computers do not handle well infinite objects since

they can only store an approximation of an infinite object. Only Zp in the above list is a finite field.

Definition 1. A field is a structure (F,+, ·, 0, 1) in which F is a nonempty set, 0, 1 ∈ F are some

some special elements and such that for every X, y, z ∈ F ,

1. (x+ y) + z = x+ (y + z)

2. x+ y = y + x

3. x+ 0 = x

4. there is −x such that x+ (−x) = 0

5. (x · y) · z = x · (y · z)

6. x · y = y · x

7. x · 1 = x

8. if x 6= 0, there is x−1 such that x · x−1 = 1

9. x · (y + z) = (x · y) + (x · z)
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In what follows, F denotes a finite field.

POLYNOMIALS

Polynomials are used to extend a field F to a larger field F ′, so that F ⊂ F ′.

Let F be a field. A polynomial over F looks as follows:

g(X) = akX
k + ak−1X

k−1 + . . .+ a1X + a0,

where ao, a1, . . . , ak ∈ F .

If ak 6= 0, then g has degree k.

If ak = 1, then g is monic.

F [X] denotes the set of all polynomials over F .

Polynomials can be added, subtracted, and multiplied in the usual way.

Ex: Take F = Z5:

(X4 + 3X − 4) + (X4 − 4X − 2) = (2X4 −X − 1)

(X4 + 3X − 4)(X3) = (X7 + 3X4 − 4X3)

Note that the exponents are not reduced modulo 5.

Let’s look at division of polynomials. We try to divide 3X3 + 2X2 + 1 by X2 + 2X − 1.

3X3 + 2X2 + 1 = (3X + 1)(X2 + 2X − 1) + (X + 2).

In general:

If f(X), g(X) ∈ F [X] and g(X) 6= 0

then there are unique polynomials q(X), r(X) ∈ F [X] such that

f(X) = q(X)g(X) + r(X) and deg(r) < deg(q).

Let f(X), g(X) ∈ F (X). We say that g(X) divides f(X) (notation g(X)|f(X)) if there is q(X)

such that f(X) = q(X)g(X).

Theorem 2. Let f(X) ∈ F [X] and a ∈ F . Then (X − a)|f(X)⇔ f(a) = 0.

Definition 3. A polynomial f(X) is irreducible if its only divisors are of the form a and af(X) for

some a ∈ F . (In other words, f(X) cannot be written as the product of two polynomials of degree

≥ 1.)
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Irreducible polynomials are similar to prime numbers.

Let f(X), g(X), h(X) ∈ F [X]. We say

f(X) = g(X)(mod h(X))⇔ h(X)|(f(X)− g(X)).

It is easy to see that f(X) = g(X) (mod h(X)) iff f and g leave the same remainder when

divided by h.

Example (over Z5)

2X2 + 3X = X2 + 3X + 4 (mod X + 2)

F [X]/(h(X)) = the set of remainder polynomials upon division by h (this is similar to Zn).

If deg(h(X)) = k, then F [X]/h(X) consists of all polynomials of degree less than k.

Thus, |F [X]/h(X)| = |F |k, because there are |F |k many polynomials of degree < k (make sure

you understand this).

Theorem 4 (FIELD EXTENSION THEOREM). F [X]/h(X) with addition and multiplication mod-

ulo h(X) is a field if and only if h(X) is irreducible.

The FIELD EXTENSION THEOREM tells us how to extend a field F : take an irreducible

polynomial h and then F ′ = F [X]/h(X) is a larger field that contains F as a subfield.

In particular: Let p be a prime number and let h(X) be irreducible of degree k over Zp. It can

be whown that there exists such a polynomial for every natural number k ≥ 2. Then Zp[X]/h(X)

is a field of order pk.

Example: We take F = Z3[X]/(X2 + 1). The polynomial X2 + 1 is irreducible over Z3, and

thus F is a field. F consists of {aX + b | a, b ∈ Z3} (there are 9 elements in F ) and addition and

multiplication is done modulo X2 + 1. For example

(2X + 1)(X + 1) = (2X2 + 3X + 1) = 2(mod X2 + 1).

The last equality holds because X2 = −1 in F and thus 2X2 + 3X + 1 = 2 · (−1) + 0 + 1 = −1 = 2

(recall that the arithmetic of coefficients is in Z3).

Let F1 = Z3[X]/(X2 + X + 2) and F2 = Z3[X]/(X2 + 1). Do the addition table and the

multiplication table of F1 and F2. What do we observe? We have an isomorphism aX + b 7→

aX + b + 2a from F1 into F2. (An isomorphism is an application h : F1 7−→ F2 that is 1-to-1 and

that ”‘preserves”’ the operations, i.e., for all x, y ∈ F1, h(x+ y) = h(x) +h(y), h(x · y) = h(x) ·h(y),

h(0) = 0 and h(1) = 1.)

Theorem 5. Any two finite fields of the same cardinality are isomorphic. (I.e., essentially they are

the same).
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The fundamental theorem about finite fields:

Theorem 6 (FUNDAMENTAL THEOREM OF FINITE FIELDS). For every prime number p and

for every positive integer k there is one and only one field with exactly pk elements. If n is a number

which is not the power of a prime number, then there is no field with n elements.

Example: There is a field (and only one) with 125 elements, because 125 = 53. There is no field

with 30 elements because 30 is not the power of aprime number.

The unique field with pk element is usually denoted GF(pk) (GF stands for Galois field).

For example, say we need a field with 8 elements. First of all, there is such a field because 8 is a

power of 2. How do we get it? Note that 8 = 23. Thus we need an irreducible polynomial over Z2

of degree 3. h(X) = X3 +X + 1 is such a polynomial. So we take F = Z2[X]/(X3 +X + 1).

TESTING IRREDUCIBILITY

Let p be a prime number and f(X) ∈ Zp[X] has degree n.

1. If deg(f(X)) ≤ 3 then f(X) is irreducible if and only iff no element in Zp is a root of f .

2. f is irreducible over Zp if and only for every k < n, gcd(f(X), Xpk −X) = 1. (The gcd can

be calculated fast with the Euclidean algorithm).

Let F be a finite field. F ∗ = F − {0}.

F ∗ with the multiplication operation inherited from F is a group (i.e., multiplication is commu-

tative, associative, each element has an inverse).

Let a ∈ F . The cyclic subgroup generated by a is

〈a〉 = {ak | k = 0, 1, 2, . . .}

Example. Let F = GF (9) = Z3[X]/(X2 +X + 2), α = X + 1, β = 2X + 1. Then

〈α〉 = {1, X + 1, X + 2, 2X, 2, 2X + 2, 2X + 1, X} = F ∗.

〈β〉 = {1, 2X + 1, 2, X + 2}.

Definition 7. The order of an element α ∈ F is the smallest k such that αk = 1.

Theorem 8. Let F be a field with pn elements. Then the order of any element of F ∗ is a divisor

of pn − 1. Also for every α ∈ F ∗, αpn−1 = 1.

This implies the roots of the polynomial Xpn −X are exactly the pn elements of the field F .
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Definition 9. α ∈ F is called primitive (or a generator) if 〈α〉 = F ∗. This is the same as saying

that α has order |F ∗|, which recall is pn − 1

Theorem 10. Every finite field has a primitive element (a generator).

Theorem 11. GF (pm) is a subfield of GF (pn) if and only if m divides n.

Minimal polynomials

Definition 12. Let F be a field of order pn, let β ∈ F . The minimal polynomial of β is the

polynomial g, which is the monic polynomial of smallest degree in Zp[X] such that g(β) = 0.

g the minimal polynomial of β has the following properties:

• for any polynomial h(X), h(β) = 0⇔ g(X)|h(X).

• g(X) is irreducible.

• deg(g(X)) ≤ n.

If α is a primitive element of GF (pn), then the minimal polynomial for α is called a primitive

polynomial of GF (pn).

Theorem 13. Let f ∈ Zp[X] be a polynomial of degree n. Then f is a primitive polynomial

of GF (pn) if and only if f is irreducible and the smallest m such that f(X) divides Xm − 1 is

m = pn − 1.

Some examples of finite fields, representations, primitive element, etc.

Example 14. The multiplication tables of the field GF (4) obtained as GF (2)[X]/X2 +X + 1.

addition table

+ 0 1 X X+1

0 0 1 X X+1

1 1 0 X+1 X

X X X+1 0 1

X+1 X+1 X 1 0

multiplication table

× 0 1 X X+1

0 0 0 0 0

1 0 1 X X+1

X 0 X X+1 1

X+1 0 X+1 1 X
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For instance: X(X + 1) = X2 +X = X + 1 +X = 1

(X + 1)(X + 1) = X2 + 2X + 1 = X2 + 1 = X + 1 + 1 = X.

Example 15. Representations of the field GF (8) obtained as GF (2)[X]/(1 +X +X3):

GF(8) admits the following three representations, given in the columns of the table below. α is

a generator (meaning that α0, α1, α2, α3, α4, α5, α6 are all the non-zero elements of GF(8). In this

example, we have taken α = X, and the last column shows that indeed α is a generator of GF(8).

To give just one example, α6 = X6 = (X3)2 = (1 +X)2 = 1 +X2.

polynomial binary α powers

0 0,0,0 -

1 0,0,1 α0

X 0,1,0 α1

1 +X 0,1,1 α3

X2 1,0,0 α2

1 +X2 1,0,1 α6

X +X2 1,1, 0 α4

1 +X +X2 1,1,1 α5
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