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Abstract 

     There is an increasing need for new Web server architectures that are application-centric, 

simple, small, and pervasive in nature. In this paper, we present a novel architecture for a bare 

PC Web server that meets most of these requirements. A bare PC Web server runs on any Intel 

386 (or above) based architecture with no operating system in the machine. The application 

object or program contains all the necessary code to run in the bare machine including its boot 

and load programs. This approach to building Web servers has many notable features including 

optimized task scheduling, zero copy memory buffering, minimal interrupt intervention, 

concurrency control avoidance, minimal resource dependence, and potential scalability via a 

cluster of bare PC Web servers. The bare PC Web server executable is small, self-contained, and 

fits on a single floppy disk. The server does not use a local hard disk and the resource files are 

located on the network. We compare performance measurements for the bare PC Web server 

with three other optimized commercial Web servers: Microsoft IIS, Apache, and Tux. It is found 

that the bare PC Web server achieves an average first response time that is 3.9 – 5.4 times better, 

and a connection time that is 1.4 – 2.8 times better than the other servers. We also discuss 

alternative designs for bare PC Web servers and compare their performance.  
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1.  Introduction  

     With the increasing reliance on the Internet worldwide, there is a need for innovative Web 

server architectures that continue to perform well under higher traffic demands, allow easy 

maintenance, do not depend upon fast changing environments, and run on a variety of devices. 

Popular Web servers support millions of users who access the Internet daily for a variety of 

reasons including reading the news, searching for information, or making a purchase. To cope 

with the demand, Web sites such as Google [4] employ a cluster of Web servers to handle large 

volumes of traffic. Many users also choose to have their own Web sites hosted on a server run by 

their Internet Service Provider (ISP).  

     In addition to running on high-end server machines and ordinary desktops, Web servers run 

on network devices such as switches or routers, and on network appliances, enabling technicians 

or users to remotely monitor these devices using a browser. Given these diverse needs, it would 

be useful to create a generic and cheap Web server architecture and design for multiple 

application domains. 

     Extensive research on Web servers has been undertaken in the past, and we will only give a 

few examples here. The impact on Web server performance of new socket functions, per-byte 

optimizations (to reduce or eliminate data reading operations), and per-connection optimizations 

(to reduce the number of packets exchanged during connection establishment or termination) is 

investigated in [27]. Buffering and caching systems by themselves are shown to improve Web 

server performance by 40 to 80% [24, 28]. Other directions in Web server research include the 

use of a simple embedded Web server library (SWILL) to build Web applications [25], the 

AutoTune agent framework based on intelligent agents and control theory for automatic 



 3 

performance tuning of a Web server [7], and queuing models to study the behavior of the Apache 

Web server as in [1]. 

     There are also many projects that focus on the operating system (OS) with a view towards 

improving application performance or giving more control to applications. Server operating 

systems using exokernel [17] demonstrate the feasibility of building servers at the application 

level. For example, by moving networking functions to applications, it was shown that 

application-level servers can achieve 3-8 times more throughput than servers running on 

OpenBSD systems [13]. However, it should be noted that in these studies the exokernel was 

compared with much less optimized OpenBSD systems resulting in a dramatic improvement in 

performance. Today’s Web servers are designed for performance and implement many 

optimization techniques such as single copy buffering, direct API to networking, direct access to 

Ethernet buffers, caching Web pages, and other performance enhancements, and so it is not 

possible to achieve performance levels similar to exokernel in comparative studies of Web 

servers. The Fluke kernel [11] provides an API characterized by fully interruptible and 

restartable (“atomic”) kernel operations that has many advantages for applications. Application-

specific operating systems and embedded systems [12] generate an OS for a given application, 

thus avoiding unnecessary operating system functions. IO-Lite [28], Flash [29] and bare-metal 

Linux [35] attempt to directly communicate with the hardware by using special mechanisms in 

the kernel to bypass the OS. The Tux Web server, which is integrated into the Linux kernel and 

incorporates several optimizations, improves its throughput by up to 36% as a result of fine-

tuning its strategy for accepting connections under conditions of high load [6].  

     Most research prototypes and commercial Web server architectures, including the above, are 

based on some form of an underlying operating system. The significant improvement in Web 
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server performance using exokernel resulted from moving network operations into the 

application [13]. However, this approach still requires some OS components. Similarly, the 

OSKit approach [31] avoids using a conventional OS but needs kernel libraries. Most embedded 

and mobile servers also require an OS, such as Tiny OS [32], which is embedded with its 

application. The removal of all operating system abstractions and operating system inefficiencies 

is discussed in [9, 10].    

     In contrast to previous Web server architectures that retain at least some elements of an OS, 

we propose a novel approach to building Web servers that completely eliminates the OS. The 

basic idea is to disperse the necessary operating environment functionality into applications, 

which results in the dispersed operating system computing (DOSC) paradigm [18]. DOSC is a 

general purpose computing paradigm that decouples hardware and software through direct 

application programming interfaces (API) to the hardware. As such, it is not an embedded 

approach. In DOSC, there is no software running in a system other than the application itself, 

which is in total control of the hardware.  

     It might seem that this approach is similar to the one used in the early days of computing 

when application programs could not be decoupled from the underlying system and hardware. 

However, the DOSC paradigm differs from the historical approach to computing as it is based on 

the premise that today’s computer memory sizes could be close to the logical address space (for 

example, 4 gigabytes in 32-bit systems) and software is capable of communicating to the 

hardware through direct APIs. It will be seen in Section 3 that the direct API to hardware in 

DOSC is not too complex and reasonably easy to use. The present technological advancements 

make it possible to use the DOSC paradigm to build computer applications that are lean, 
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efficient, and application-centric. This approach could not be have been used with the large non-

programmable hardware units and primitive technology of the past. 

     Today’s application specific integrated circuits (ASIC) and embedded systems are different 

from the DOSC paradigm. An ASIC does not provide any general purpose API for application 

programs to execute in its environment. Instead, it is tightly integrated with a given application 

and hardware. An embedded system is similar in that it includes a lean operating system kernel 

with its application. The cell phone and iPod are examples of embedded and ASIC systems, 

which clearly have no API. The DOSC paradigm is an application programming concept wherein 

applications can communicate with the hardware directly. The hardware API in DOSC could be 

integrated with the hardware in the future. At present, we encapsulate the API into its application 

object, which allows the bare hardware to be used without any changes.  

     When the necessary operating environment is dispersed into an application program, the 

application programmer has to be more knowledgeable about the hardware. In effect, it requires 

the programmer to be both a systems programmer and an application programmer. Thus, in the 

DOSC paradigm, we are trading off less system complexity and improved performance versus 

increased programmer skills and knowledge.  

     In this paper, we describe a bare PC Web server that is designed and implemented using the 

DOSC paradigm, and compare its performance with three optimized commercial Web servers 

that run on a conventional OS. As Web servers are domain-specific applications and designed for 

high performance, there is no need to provide any non-essential operating system features 

including script files, non-administrative logins, and debug facilities. Thus, a Web server 

application can be designed as a domain-specific Application Object (AO) [20], which consists 

of all the code necessary to run the application. This includes code for booting, loading, task 
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switching, I/O management, and networking. The AO concept is analogous to service-oriented 

computing [30], in which service-oriented application-specific objects perform relevant Web 

services; however, unlike an AO, service-oriented objects do not carry the entire computing 

environment needed to run on a bare machine. Service-oriented computing is also a paradigm 

that utilizes services as the constructs to support the development of rapid, low-cost and easy 

composition of distributed services. In contrast, an AO encapsulates its services within itself and 

communicates with other AOs through message passing.  The bare PC Web server application is 

a single AO that runs on a bare PC without any OS or other software. The general AO 

architecture concept was introduced in [21, 22].   

     The architecture of the bare PC Web server is simple and robust, and does not require any 

other environment such as an OS, or boot and load facilities. It can be made pervasive, if the 

underlying device uses an Intel 386 (or above) based processor architecture (or some standard 

CPU architecture) for the currently designed API. To maintain simplicity, the Web server AO 

uses the keyboard, display, floppy drive, and an Ethernet connection. It does not use any other 

I/O. As a bare PC system does not use a hard disk, only allows connections to port 80, and does 

not allow software other than its AO to run on the system, it is attractive from a security 

viewpoint. Moreover, it is capable of high performance in spite of its simplicity. Bare PC 

applications are also small in size, extensible, flexible, and easy to maintain. A final point to note 

is that many of the general techniques proposed in the literature for improving Web server 

performance, some of which were mentioned above, can be easily implemented in the bare PC 

Web server to further improve its performance.  
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     The rest of this paper is organized as follows. Section 2 describes the architectural 

components of a bare PC Web server. Section 3 provides more details on its design and 

implementation. Section 4 contains performance measurements comparing a bare PC Web server 

with IIS, Apache [2] and Tux [34] Web servers, and also comparing alternative designs of bare 

PC Web servers. Section 5 contains the conclusion.   

 

2.  Architecture  

     The novel bare PC Web server architecture differs in many respects from that of a 

conventional Web server running on an OS. The server design is based on the DOSC paradigm 

implying that only the Web server AO runs on the system, while no other application runs at the 

same time (unless the applications are closely related to each other such as a Web browser, an 

email client, and a VoIP soft-phone running as a single AO on a bare PC). The basic hardware 

elements currently used in the bare PC Web server are CPU, memory, floppy drive, Ethernet 

network interface card (NIC) or onboard network chip (3Com 905CX or Intel 82540EM), 

keyboard, and display. The Web server AO controls the CPU and memory available in the bare 

PC (there is no OS).  Thus, an application programmer designs and builds this AO, and decides 

on the CPU and memory requirements needed for the application.  

     In fact, the owner of the Web server has total control of the application on a bare PC and 

manages the above mentioned resources for which we have developed standard interfaces and 

drivers. We have written C++ interfaces (an API) [19] for managing tasks, interrupts, exceptions, 

and debugging facilities. As these interfaces are simple and robust, we are able to run a variety of 

common applications on a bare PC including an editor, email and VoIP softphone [23]. (A bare 

PC running the latter application connects to the Internet in the usual manner through an Internet 
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Service Provider at home, or through an office or campus LAN, providing peer-to-peer 

communication without requiring a third-party server or any other software.)  

     A bare PC and a conventional PC connected to the router can coexist serving their own 

applications without interference. All users can thus run their own bare PC Web servers (and 

host their Web sites) at any location without the need for a platform or an environment. A bare 

PC Web server can also be used for other custom applications under the control of the user as the 

Web server AO and all the resources of the bare PC are owned by the user. The entire code for 

the Web server AO (including an implementation of the necessary communication protocols) fits 

on a single floppy disk (bare PC applications can also be made to work with flash memory).  

     The main elements of the bare PC Web server architecture are shown in Figure 1. HTTP 

requests that have arrived are placed in the Ethernet buffer and the device driver for the Ethernet 

card (or chip) stores them in a circular list known as an upload pointer descriptor (UPD). 

Likewise, responses (data) leaving the Web server are kept in a circular list known as a 

download pointer descriptor (DPD) by the application. The UPD and DPD structures are located 

in user memory. In our system, user space and system space are one and the same as the AO 

programmer controls the memory map for the entire application.  

     Figure 2 illustrates the task structure for the Web server, which consists of three types of 

tasks: Main, RCV and HTTP. The RCV task and the HTTP task return back to the Main task 

whenever they are idle. After the system starts, it runs the Main task. A receive task (RCV task) 

waits for a message to be placed in the UPD (receive list). When a message arrives, the RCV 

task will handle the request through the phases of Ethernet, IP/ARP, and TCP processing (an 

ARP request is handled separately and is not shown in the figure). It processes a TCP message 

by creating a new table entry in the TCB (TCP control block), or updating an existing entry in 



 9 

the TCB. The TCP processing is done to either establish a connection (SYN, SYN-ACK, and 

ACK messages), or to process a GET message by initiating an HTTP request (if the connection 

is already established). The initiation of an HTTP request involves popping an idle task from the 

stack consisting of a task pool and inserting it into the run list as an HTTP task. The HTTP task 

does the TCP, IP, and Ethernet processing needed to send the requested file to the client. 

     A separate HTTP task is invoked for each client request and its TCB entry is updated once a 

GET message is received by the server. Thus, there can be many concurrent HTTP tasks running 

in the system. As TCP requires a task to be suspended for the duration of an RTT (round-trip-

time), the tasks are interleaved in time to provide a maximum level of concurrency. After 

sending the data, connection termination is done as usual through TCP as shown in Figure 3 

(FIN, FIN-ACK, and ACK messages), and the entry in the TCB table is deleted thus completing 

a single client request. When the Web server is loaded, there will be a Main task running in the 

system. When a client (HTTP) request arrives, the RCV task will be running, and when it is done 

as described above, it will return to the Main task. Similarly, when a GET request arrives, the 

RCV task initiates an HTTP task, so it can be placed in the run list. When choosing between the 

two types of tasks, the RCV task always has higher priority. There could be many HTTP tasks in 

the run list (each associated with a client request) waiting to be processed. They are handled on a 

first-come-first-serve (FCFS) basis. Whenever an HTTP task gets suspended (RTT delay), it will 

return to the Main task; and when a HTTP task is done processing a client request, it will be 

placed in the stack pool of idle tasks. The Main task is more like a dispatcher and the time spent 

in this task can be considered as CPU idle time. 

   



 10 

     The Web server architecture and task structure is simple as it is customized for this 

application. There is no unnecessary functionality in the system and no inherent system 

complexity due to an underlying OS. Some significant novel features of this architecture are 

described below.  

 

 

 

 
2.1 Network Protocol Design  

     Cross-layer design [8], which is becoming popular in wireless networks, enables traditionally 

independent protocol layers to share information and optimize performance. Protocol design in a 
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bare PC Web server is similar to cross-layer design in that it is not bound by strict network 

layering conventions. As shown in Figure 1, when a packet arrives in the UPD buffer it can be 

accessed by the TCP layer for processing in one step. Similarly, when the TCP layer sends a 

segment, the pointer for the packet is directly placed in the DPD buffer. In general, layers are 

designed as objects that can be invoked by a single higher level protocol to add lower layer 

headers to outgoing data or to strip off all headers from incoming data. Header manipulation is 

efficient since it is done by the RCV task and HTTP tasks in a single step before returning to the 

Main task.  

     Furthermore, the bare PC Web server implements lean versions of networking protocols and 

uses additional techniques to improve protocol performance. For instance, it includes a TCP 

optimization in which the FIN is piggybacked with the last data packet [27], as shown in Figure 

3. In view of the simple bare PC protocol design, it would be easy to add other enhancements 

such as the loss recovery and congestion control mechanisms included in the TCP-INT 

implementation [3]. 

 

2.2 Optimized task scheduling 

     Initially, the Web server was equipped with a 3Com 509B external Ethernet card. We used 

interrupts and interrupt service routines to process HTTP requests; and round robin scheduling 

for task management [14]. The Ethernet driver for this card does not support the storing of data 

packets in user memory (no UPD and DPD buffers), and requires synchronous interrupts to send 

and receive messages. The original prototype was developed to demonstrate the feasibility of a 

bare PC Web server (it was not a performance driven design). When we attempted to build a 

“close to optimal” Web server on a bare PC, we found that traditional interrupt driven 
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mechanisms and scheduling techniques suitable for OS-based systems do not yield the best 

performance for a bare PC. In the latter, task scheduling is controlled by an AO i.e., an AO 

programmer decides on the task structure during AO construction. In this case, novel approaches 

to scheduling become possible. When an application is written, an AO programmer has prior 

knowledge of the application’s behavior, and a simple scheduling approach can be used instead 

of a general-purpose mechanism. The principle that justifies the scheduling approach in a DOSC 

machine is the following: when a task is not doing useful work (CPU processing only), then it 

should return to the Main task. In the Web server, the RCV task will return to the Main task after 

processing a received request. Similarly, an HTTP task will return to the Main task if it is 

suspended. Thus, the entire scheduling issue becomes simple and results in a task structure that is 

optimized for a Web server. The performance measurements given in Section 4 reflect the 

optimality of our task scheduling strategy.  

 

2.3 Zero copy memory buffering 

     In a conventional system, the user space is virtual and controlled by an operating system. Data 

stored in an application program’s buffer needs to be transferred to an Ethernet card buffer, and 

vice-versa. Modern Ethernet cards allow their buffers to reside in user address space. In 

conventional systems, it is sometimes possible to do one copy between buffers [27]. However, 

such techniques require special instruction support, or shared memory [5] from the OS, which 

are not available in all systems. Web servers such as IO-Lite [28] or Tux [34] claim to achieve 

zero copy memory buffering, but they require specific interfaces and modifications to cut 

through OS layers introducing complexity in design and operation. Relevant issues that need to 

be addressed in this context include immutable buffers, buffer aggregate support, impact of 
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virtual memory, paging, caching, cache validation and replacement, file cache, and early de-

multiplexing in the Ethernet driver [28].   

     The bare PC Web server architecture inherently provides a zero copy buffering scheme 

without any special efforts. The Ethernet card stores the incoming data packets in the UPD 

buffers asynchronously until the circular list buffers are full. The RCV task processes a packet 

from the UPD buffer and keeps it in the buffer for as long as necessary. The resource files are 

stored in memory to serve client requests; during the send process, the DPD data buffer pointers 

are linked with the resource file data pointers in memory and kept until a transmit packet 

interrupt arrives from the Ethernet card. The DPD and UPD buffers are circular lists with a 

maximum size of 10,000 (this size was found to be sufficient during maximum stress tests). 

Thus, copying data is avoided during Web server operation in this architecture.   

 

2.4 Minimal interrupt intervention 

     As mentioned earlier, we initially investigated a bare PC Web server architecture based on 

interrupts. OS-based Web servers use interrupts to indicate that a packet has arrived, or to 

indicate that a packet is available for transmission. They commonly use an interrupt service 

routine to process a request as soon as it arrives. This approach (as opposed to polling) obviously 

provides a better response time.  However, if the packets arrive at a faster rate, then there is a 

large interrupt processing overhead, and task processing is delayed. Interrupts are needed in a 

conventional system, because the system is running many other unrelated tasks, and a given 

application has no control. In a bare PC, an AO has total control of the machine, and each task is 

always performing productive work (otherwise, it returns to the Main task). Thus, if the Main 

task checks for message arrivals and dispatches the RCV task, and also checks for pending 
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HTTP requests and schedules an HTTP task, it is possible to achieve optimal performance in the 

Web server. By avoiding receive interrupts for the NIC, and processing transmit interrupts to 

acknowledge the interrupt controller, we found that Web server performance was much better 

than with interrupts, and furthermore, the resulting design is much simpler. The only interrupts 

needed in the bare PC Web server are transmit interrupts from the NIC, and hardware timer 

interrupts for measuring time.  

 

2.5 Concurrency control avoidance 

     In the preliminary version of the bare PC Web server [14], many data structures and resources 

for serving client requests were shared. This approach required locking and synchronization 

points, and resulted in the serialization of tasks. In addition, locking contributed additional 

complexity when coding and testing the server. In a bare PC Web server, client requests are 

independent of each other, and each request goes through successive protocol processing; once a 

request is done, the entry is removed from the TCB table. Thus, it is possible to keep all the 

necessary resource attributes in the TCB entry, so that each request only operates within its own 

TCB entry. There is no need for any critical section as each TCB entry handle can be used 

throughout. The only cost is an increase in TCB entry size from 120 bytes to 320 bytes. This 

approach simplified our programs and resulted in a scalable design for Web servers.  

 

2.6 Minimal resource dependence 

     In a bare PC, it is crucial to reduce resource dependencies in order to design a simple low-cost 

system. In case of the Web server application, this is easy to do since it does not require complex 

interfaces. The HTTP resource files are read from a network and stored in memory for fast 

access during execution.  This reduces I/O dependencies and simplifies the scheduling structure. 
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As memory is now abundant and cheap, there is no need to conserve its usage. A bare PC Web 

server uses real memory to avoid paging and other overhead. A floppy interface is used to boot 

and load an AO, because this is the simplest interface to start and run the system. We avoided 

writing a graphics device driver as it is not essential in a Web server.  

 

2.7 Single address space   

     The Web server AO is a single monolithic executable. It contains all the necessary code and 

hardware interfaces provided as a C++ API.  There are no system calls or system libraries needed 

to run the Web server application. The system also runs in one mode (i.e., user mode). This 

design results in simplicity and gives system control directly to the user avoiding the need for 

middleware or other layers.   

  

3.  Design and Implementation  

3.1 Alternate Designs  

     Three different designs for a bare PC Web server are discussed in this paper. As shown in 

Figure 1, the Web server architecture is implemented using C++ and a direct API to hardware, 

which is encapsulated with the application program. The Ethernet, IP, TCP and HTTP protocols 

are implemented without adhering to strict layering conventions so that any layer can 

communicate with any other layer. The Web server can operate with an internal chip or external 

NIC. Their respective drivers are encapsulated into the Web server application program.   

     The first design used an external NIC and multi-tasking, and is referred to as the EMT 

(External MultiTasking) server. It incorporates many of the features discussed in Section 2 such 

as spawning a separate task that runs to completion for each HTTP request.   
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     The Web server based on the second design, which assumes an internal (onboard) NIC, is 

referred to as the IMT (Internal MultiTasking server). The IMT server is similar to the EMT 

server except that the device driver for the NIC is based on the internal Intel chip.  

     The third design, which also assumes an internal NIC, includes a novel task structure that 

relies on a single HTTP task to process all requests thus avoiding task switching overhead. When 

this task runs, it processes all requests that are waiting to be served and continues processing all 

the requests in the run list before returning to the Main task. If a new request arrives while this 

task is processing current HTTP requests, the new request will wait until the HTTP task returns 

to the Main task. The Web server based on this design is referred to as the IST (Internal Single 

Task server). In essence, the IMT server has multiple tasks for multiple requests, whereas the 

IST server has a single task for multiple requests. Thus, the IST design avoids creating multiple 

tasks, management of multiple tasks, and task related overhead.  

 

3.2 Hardware API 

     The hardware API [19] consists of interfaces to keyboard, display, tasks, floppy drive, and 

NIC. There are also interfaces for boot, load, memory dump, memory search, debug, and trace 

that are not described here. Examples of the C++ API calls for the keyboard include 

AOAgetCharacter(), AOAgetCharacterBuffer(), AOAgetDecimal(), AOAgetHex(), and 

AOAgetString(). These interfaces allow data to be read from the keyboard either synchronously 

or asynchronously. An interface task is used to invoke these methods directly from a C++ 

program to avoid synchronous waiting in the program, as this task can be suspended while 

waiting for the keyboard data. Software interrupts are used to implement these interfaces using 
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assembly language.  This code is written as a hardware API and an application programmer has 

no need to understand or modify this code. 

     The examples of display interfaces include AOAprintHex(), AOAprintDecimal(), 

AOAprintCharacter(), and AOAprintText(). These interfaces are implemented in assembly 

language and use the video buffer for controlling the screen display. There are many other cursor 

interfaces to manage the screen output.  

      The task interface examples for the Intel 386 (or above) CPUs include AOAcreateTask(), 

AOAinitTask(), AOAsuspendTask(), AOAswapTask(), AOAinsertTask(), and 

AOAcompleteTask().  These interfaces are implemented in a single class, where the internal 

implementation uses assembly code to control and manage task segments as well as global and 

local descriptor tables. An AO programmer simply uses the above interfaces in a C++ program 

and does not need to have any knowledge of the Intel CPU architecture. The programmer can 

define a single C++ class with task methods, where each method can be defined as a separate 

task that can be managed using the above functions. In our experience, we have found that 

programmers writing bare PC applications are able to successfully use the hardware API without 

having any knowledge of assembly code or the internal architecture of the Intel CPU.  

     The file interface examples include AOAreadFromFloppy() and AOAwriteToFloppy() for 

communicating with the floppy drive. These interfaces use INT 13H internally to access the 

floppy drive using call gates in the Intel CPU architecture.  The call gate code written in 

assembly is hidden in the interface.  We have also written similar interfaces for a flash drive 

(these can be directly invoked from a C++ program).  

     As described above, the direct API to hardware is simple and easy to use. The Web server 

only encapsulates the needed interfaces in its AO. An AO programmer can use these interfaces in 
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the C++ program without any knowledge of the machine architecture. As DOSC is based on an 

application-oriented approach, it only carries the necessary operating environment thus making it 

simple, robust, and extensible. It only carries functionality essential for the given application.  

Since the basic design of the bare Web server is based on the DOSC paradigm, it can be 

conveniently extended to incorporate graphics, security, or other desired functionality. This is 

possible because the AO is not dependent on any OS environment.   

 

3.3 Code Size     

     Most of the code for a bare PC server is written in C++; the API for hardware and the 

Ethernet drivers involves Microsoft assembler code. The development is done in the DOS 

window environment using batch files so that no system libraries are included in the executable. 

Code size as well as executable size for each server is not significantly different. For example, 

the IMT server has about 8751 executable statements including the C++ code for the hardware 

interfaces. The external NIC driver has about 1506 lines of assembly code including comment 

lines; the internal NIC driver has 26 executable statements of assembly code (most of its code is 

written in C and C++). The C++ API to hardware has about 1656 lines of assembly code 

including comments (much of this API is used for printing, testing, and debugging the code). 

Executable size is 139,264 bytes not including the boot code and loader. All executables 

including boot and load modules fit on a single floppy disk so that the Web server is portable and 

easily run on older PCs (or PCs that are discarded due to upgrades) anywhere in the world with 

no OS requirement. This could significantly reduce the cost of deploying Web servers (and 

clusters of Web servers) in areas of the world where the cost of buying newer PCs and high-end 

server machines is prohibitive.  
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     The bare PC Web server currently supports requests for static files only. It hosts HTML files 

(there is no limit to the number of files other than the PC’s 512 MB memory limit, which can be 

expanded to 2 GB if needed).  In general, as a bare PC Web server uses real memory, its memory 

capacity can be increased to any desired level. For a single CPU system, memory is not an issue 

when designing a single Web server (for a cluster of servers, the memory available in multiple 

PCs provides the required capacity). Conventional Web servers such as Apache and IIS use hard 

disk and cache memory to decrease memory latency. They incur overhead in paging and virtual 

memory translations that is avoided in the bare PC Web server.  

 

3.4 Real World Applications  

     The approach used to build the bare PC Web server has already been used to build other bare 

PC real world applications. For example, we have built a VoIP softphone [23] and an email 

client that run on a bare PC. These applications have been tested and found to perform 

successfully in both LAN and Internet environments. The bare PC Web server has been 

operational since 2005 on a 24/7 basis at http://dosc.towson.edu and receives numerous hits per 

day. A bare PC Web server has additional benefits compared to a conventional OS-based Web 

server. As the former is smaller in size, simpler in design and easier to extend, it can be used as a 

personal Web server without requiring any commercial software. It can also be conveniently 

carried by the user on a flash drive and deployed on any bare PC. Furthermore, the ability to host 

the server on any Intel 386 (or above) based PC helps to reduce the wastage due to discarding old 

machines.   
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4.  Performance Measurements 

     There are many ways to measure Web server performance [3, 26, 33]. The performance 

studies we have conducted, and the results presented in this paper are intended to complement 

the preceding discussion concerning the potential advantages of a bare PC Web server. They 

suffice to demonstrate the significant performance benefits of the bare PC Web server 

architecture, design, and implementation. However, these studies should not be viewed as the 

focus of the paper. 

     The bare PC Web server used for these tests is a static HTML server with full functionality. 

Its performance was compared with that of a Microsoft IIS server running Microsoft Windows 

Server 2003 OS, and Apache 2.2.3 [2] and Tux 2.0 [34] servers running Red Hat Linux 8.0. To 

ensure fair comparison, we used the recommended settings for maximum performance on the 

conventional Web servers. We also disabled unnecessary services on these servers because when 

a simple action such as opening a new window, or moving a mouse was attempted, their 

performance dropped dramatically. All experiments used a dedicated 100 Mbps Ethernet LAN in 

which client PCs connect to the server via a Netgear FS 608.v2 switch. The tools used for 

workload generation were http_load-12mar2006 [16] and httperf-0.8 [15]. The latter was also 

used in the performance studies done in [33]. The PC used for running the servers is a Dell 

Optiplex GX260, 2.4GHZ, with 512MB memory (this is an ordinary PC with a single CPU, not a 

server machine as our focus is on any bare PC). Four client PCs with similar clock speeds and 

hardware configurations were used: GX 200 (A), GX110 (B), Optiplex GX1 (C), and Optiplex 

GXa (D). They all ran Red Hat Linux 2.4.20-8. 

     The http_load generator is able to run up to 1000 fetches (HTTP requests) per second. It 

provides measurements for first-response time, connection time, throughput in bytes (number of 
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fetches * bytes transferred per fetch), and max parallel (the maximum number of connections at 

any given point).  It also reports minimum, maximum, and average values for each measurement, 

and shows how many requests timed out or had no response. We compare performance 

measurements of the servers with respect to first-response time and connection time while 

varying the number of fetches or the file size. We also measured task utilization for the bare PC 

Web server and tested the different bare PC server designs and examined their tradeoffs. The key 

performance results are summarized in Table 1. We discuss the results in more detail in the 

following sections.  

     Figure 3 illustrates a typical client server message exchange during a single fetch, which 

consists of connection, data transfer, and termination phases. It also shows the points at which 

RTT measurements can be made.   

 

4.1 First Response Time  

     These measurements used an image file containing 3593 bytes. Client PC A was used to 

generate 1000 fetches per second, and client PCs B, C, and D were added to increase the load. 

Figure 4 shows the first-response time for the servers. The response time for the bare PC server 

configuration used in this set of experiments, referred to as the IMT server (integrated NIC with 

multiple tasks for multiple requests), is about 3.55 times better than the IIS server, 3.57 times 

better than the Apache server and 2.41 times better than the Tux server at 2500 fetches. The IIS 

and Apache servers do not run without errors or timeouts after 2500 fetches. On the other hand, 

the Tux server and bare PC server can handle up to 2833 fetches. The limit for the number of 

fetches per second may be estimated as follows:   

bandwidth = 100,000,000 bits/sec 

filesize = 3593 bytes 
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hdrsize = 58 bytes (18 (ETH)  + 20 (IP)  + 20 (TCP)) 

numPackets = 7 (SYN-ACK, GET-ACK, Data  (4), ACK)  

maximum number of fetches/sec = bandwidth/((filesize+hdrsize*numPackets)*8) = 3126. 

     Thus, Tux and the bare PC server both achieve results close to the upper bound. However, the 

bare PC server has the lowest first response time due to its simple task management scheme and 

minimal request processing overhead. The server is designed so that each task only performs 

essential work and returns to Main task, ensuring efficient use of the CPU. In contrast, the OS-

based servers use interrupt-service routines and special instructions to process client requests, but 

they still incur kernel level overhead and delay that are absent in a bare PC system.  

     Figure 5 compares the bare PC server response times with a varying number of fetches 

obtained for a 3593-byte file using the http_load and httperf tools workload generators. It can be 

seen that both generators yield similar results.   

 

4.2 Connection Time  

     Figure 6 shows the average connection time for the servers. For 2500 fetches, the bare PC 

server connection time is 1.444 times better than the IIS server, 1.26 times better than Apache 

server and 1.237 times better than the Tux server. Note that the connection time at the client side 

is composed of the various RTTs shown in Figure 3. One of these is the delay that elapses 

between receiving the client’s ACK and the subsequent GET request at the server. This delay is 

plotted with respect to the number of fetches in Figure 7, and it varies between 0.2 and 0.8 

milliseconds. This delay makes a significant contribution to the measured total connection time, 

and limits the performance improvement that can be achieved by the server.  
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Table 1. Summary of Web Server Performance 

 

Measurement IMT IST Tux IIS Apache 

AverageResponseTime (ms) 
1000 fetches  

FileSize 3593 bytes 0.168 0.182 0.569 0.536 0.662 

AverageConnect 
Time (ms) 

1000 fetches FileSize 3593 bytes 0.155 0.147 0.313 0.32 0.319 

AverageResponseTime (ms) 
143 fetches  FileSize 79722 bytes 

0.738 2.03 1.74 3.2 0.87 

AverageConnect 
Time (ms) 

143 fetches FileSize 79722 bytes 0.7 5.44 1.589 1.93 1.06 

MaxNumberOf 
Fetches 

FileSize 3593 bytes 
2833 2833 2833 2500 2500 

 
 

4.3 File Size Variation  

     Figure 8 shows the average response time for each server when file sizes are varied from 

3593 bytes to 79,722 bytes. For the largest “filesize” of 79,722 bytes, using a calculation similar 

to that given in Section 4.1, the maximum number of fetches is estimated to be 150. The bare PC 

server is able to handle up to 143 fetches, which is again close to the limit. Its average first-

response time for a 36,016 byte file is 4.345 times better than the Apache server, 3.85 times 

better than Tux server, and 5.43 times better than the IIS server. Moreover, as seen in Figure 9, 

the bare PC server’s average connection time is 1.88 times better than the Apache server, 1.86 

times better than the Tux server, and 2.516 times better than the IIS server. For large file sizes, 

the Apache server has better results than the IIS and Tux servers. However, the bare PC server 

has better response time and connection time up to a file size of 60,000 bytes. 
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     We also measured the average response time for a 79,722-byte file by varying number of 

fetches. The results, shown in Figure 10, indicate that for 143 fetches, the bare PC server 

outperforms the other servers and is more stable with respect to load variation. The efficiency of 

the bare PC server is due to its streamlined design. There is little delay in processing a request 

since all the packets to be sent are placed in the DPD buffer if the client window size is large 

enough. Subsequent packets are sent with minimum delay since the waiting task is activated as 

soon as an acknowledgement is received from the client. This resume action is instantaneous as 

the acknowledgement changes the state of the TCB entry which in turn starts the execution of a 

suspended HTTP task.  

 

4.4 Utilization  

     Figure 11 shows utilization for the RCV and HTTP tasks with a varying number of HTTP 

requests and a file size of 3593 bytes. Recall that there are three types of tasks as shown in 

Figure 2: the RCV task, HTTP tasks (many) and the Main task. The results indicate that the RCV 

task always consumes more time than the HTTP tasks for small file sizes. This is because the 

RCV task handles a request all the way from UPD buffer till the TCP connection is established 

and the HTTP request is initiated. On the other hand, an HTTP task simply performs work to 

send data packets to the NIC (which only involves adding the header followed by DPD 

insertion); it then returns to the Main task for the duration of the RTT while waiting for a 

response. The percentages of time used by the RCV task, HTTP tasks, and Main task 

respectively are 23%, 15%, and 62% respectively. Note that the time used by the Main task is the 

idle time of the server. The results indicate that the bare PC server consumes minimal CPU time 

and is thus able to process more requests.  
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     Figure 12 shows the task utilization percentages for a file size of 79,722 bytes and 143 

fetches. The percentages of time used by the RCV, HTTP, and Main tasks are 8%, 16%, and 

76% respectively. In this case, the RCV task utilization is less than the HTTP task utilization 

because there are few packets received and a large number of packets to be transmitted due to the 

large file size.  

     Figure 13 shows the maximum number of tasks run and maximum number of TCB entries 

used at any time for the bare PC server. The bare PC server only used a maximum of 17 tasks 

and a maximum of 25 TCB entries to handle requests. Figure 14 shows the values reported by 

http_load for “max parallel”. We observed that these values are not consistent as a different 

value is obtained for the same run at different times. 

 

4.5 Alternative Server Designs  

     Figure 15 shows the first response time for three alternative designs of the bare PC Web 

server. These measurements use a file of 3593 bytes, and the number of fetches varies from 100 

to 1000 fetches. The results shown were obtained using a hub instead of a switch. Figure 16 

shows the connection time for three designs. The bare PC Web server referred to as the EMT 

server has an external NIC (3com 905CX card). The servers referred to as the IMT and IST 

servers use an internal NIC (Intel chip 82540EM). We investigated three designs to compare 

their respective tradeoffs. As different PCs use different NIC chips on the motherboard, if we 

have two drivers (for the motherboard NIC and external NIC respectively), it is possible to run 

the bare Web server in any Intel 386 (or above) based PC.   

     The results indicate that the IMT and IST servers have almost identical performance up to 

1000 fetches. Although the EMT server with an external NIC also has reasonable performance, 

an internal NIC on the motherboard provides better results. Figure 17 shows that when the hub 



 26 

was replaced by a switch, the IMT and IST server designs exhibited similar performance up to 

2500 fetches, but the IMT server performs better after 2500 fetches. Figure 18 and Figure 19 

show the first response time, and connection time of the IST and IMT designs for various file 

sizes. A single task handling multiple requests has a greater response time for file sizes larger 

than 50,000 bytes as it requires more time to transmit a larger file. In this case, one task also has 

to check the state of all other tasks to send files. This limits its ability to receive more requests 

from the client and results in an increased response time. Note that a single task serving multiple 

requests has comparable performance to multiple tasks serving multiple requests. This means 

that the simple IST design can be used under moderate load conditions without a significant loss 

in performance but with the benefit of a simpler task structure (Main task, RCV task, and one 

HTTP task) and simpler overall server design. Thus, it is possible to trade off simplicity versus 

complexity when designing a bare PC Web server.   

 

5.  Conclusion  

     This paper presents a novel approach to building bare PC Web servers using the dispersed 

operating system computing paradigm. A bare PC Web server inherently provides single copy 

buffering, avoids concurrency control, and minimizes interrupts. It also has certain intrinsic 

features in its design such as simplicity and smaller code size that are much harder to achieve in 

a commercial Web server. 

     Three variations of bare PC Web server designs are studied: a server with an external NIC, a 

server with an internal NIC and single task structure, and a server with an internal NIC and 

multi-tasking structure. It is shown that the multi-tasking server design performs better than the 

IIS, Apache and Tux servers, and also better than the single tasking server when the number of 
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fetches exceeds 2000. The multi-tasking server and the Tux server can handle up to 2833 fetches, 

which is close to the upper bound for a 100 Mbps network. In contrast, the IIS server and Apache 

server can only handle up to 2500 fetches. The response time and connection times for the multi-

tasking server are much better than those for the other servers. The single task server design 

under normal load conditions also performs better than the IIS, Apache, and Tux servers.  

     We are presently developing a bare PC Web server to handle dynamic content. We are also 

investigating bare PC Web server scalability, including the use of bare PC Web server clusters. 

A topic for future research is that of security issues relevant to bare PC Web servers and bare PC 

applications in general. 
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