

A VoIP Softphone on a Bare PC

Gholam H. Khaksari, Alexander L. Wijesinha,
Ramesh K. Karne, Qi Yao, and Ketan Parikh
Department of Computer & Information Sciences

Towson University
Towson, Md 21252

Abstract - We describe the architecture, design,
and implementation of a VoIP softphone that runs
on a bare Intel-386 (or above) based PC. We
compare the performance of bare PC and WinRTP
softphones on the Internet by determining call
quality and measuring the values of jitter, delay,
and packet loss. We also conduct experiments on a
LAN to test the limits of the bare PC softphone
under heavy load conditions, and investigate the
use of voice packets with Ethernet headers only
(Voice over Ethernet) to minimize voice bandwidth.
The results indicate that a bare PC softphone on the
Internet is associated with less jitter than the
WinRTP softphone. It is also able to sustain a
heavier load on a LAN than the WinRTP softphone
while maintaining acceptable call quality. We
obtained excellent to good call quality with bare PC
softphones running Voice over Ethernet.

Keywords: VoIP, bare PC, softphone, call quality,
network protocols.

1 Introduction
 Existing VoIP systems are dependent on
operating system (OS) services. For example, both
the Skype softphone [1] and the user agents for the
peer-to-peer VoIP adaptor [2] require Windows,
Linux, or some specialized OS. In view of OS
complexity and overhead, it is difficult to fully
optimize these VoIP phones to improve performance
and call quality. They also inherit security
weaknesses that result from OS vulnerabilities and
their complexity.

1.1 Bare PC Computing

 Bare PC computing [3], which is an alternative
approach for general purpose computing, eliminates
the OS allowing the programmer direct access to
(and complete control over) the underlying
hardware. It is thus very convenient for testing and
evaluating VoIP optimizations that require changes

to low-level system elements such as device drivers,
the CPU task scheduler, or the networking
subsystem. Bare PC computing has many
advantages for applications including performance
benefits due to its low overhead, as well as
simplicity, and the likelihood of being more secure
due to elimination of the OS and unnecessary
services. Briefly, the idea in bare PC or dispersed
operating system computing (DOSC) is that an
operating system is unnecessary as the essential
operating environment elements for execution of
applications can be dispersed into the application
itself. Such an application is referred to as an
application object (AO) [4]. An AO is a self-
contained and self-managed object that inherits all
the benefits of the object oriented programming
paradigm.

 Embedded systems and bare PCs share some
common features. For example, both types of
systems do not use a disk drive, minimize use of
hardware resources, eliminate unnecessary
functionality, and have an optimized design.
However, a bare PC is different from common types
of embedded systems because a bare PC is capable
of running any application and it has no OS. The
only element of OS functionality in a bare PC is
intrinsic to its application and determined by the
application (i.e., a bare PC is truly bare outside of its
application and an application only includes
elements of the operating environment that are
essential for its execution). Also, since the bare PC
approach eliminates the OS altogether, it goes
further than earlier work on minimal OSs including
Tiny OS [5], Exokernel [6], and OSKit [7].

1.2 Bare PC Softphone

 In this paper, we describe the design and
implementation of a softphone that runs on any
Intel-386 (and above) based bare PC with no
operating system, and investigate the effect of
several optimizations on call quality and both
network and system performance. This work is part
of an effort to develop bare PC applications

including Web servers, Email clients, and SIP
clients and servers together with supporting security
protocols. The bare PC VoIP softphone application
is designed as an AO. It fits on and is stored on a
floppy disk, although in principle, any type of
portable storage media such as a CD or USB flash
drive can be used. An AO can boot, load, and run on
any bare PC. It directly communicates with the
hardware and does not use any hard disk. The AO
programmer, who is in complete control of the bare
PC and manages system resources, can design an
application for performance, security, or with other
desired features.

 The bare PC softphone can run alone, or
concurrently with other bare PC applications. Also,
the bare PC softphone is capable of functioning like
a softphone on an OS-based PC, since a bare PC is
able to connect seamlessly to an existing home,
business or campus network and thus to the Internet.
Furthermore, since the bare PC softphone can run on
older Intel-386 based PCs, it could serve as a basic
communication tool in situations where high-speed
Internet connectivity is available, but PCs capable of
supporting a modern OS such as Windows XP
required to run today’s multi-featured softphones are
scarce. It should also be noted that, in principle, the
AO for a bare PC softphone can be run on any
device with an Intel 386 (or above) based
architecture. An added benefit from a security
viewpoint is that when a bare PC softphone is
connected to the Internet, the only open ports are
those required by RTP and they would be the only
means for a prospective attacker to send packets that
would even be accepted by the softphone. We do
not consider VoIP security issues in this paper.

 In [8], we presented a prototype of a bare PC
VoIP client and preliminary results from using it in a
small test LAN in our laboratory. The bare PC
softphone described in this paper has been enhanced
for performance with the addition of a simple but
efficient task-scheduling scheme. Furthermore, it
uses a jitter buffer to improve call quality, and can
continuously monitor performance at all levels of
the system during a call. We also evaluated its
performance by making calls over the Internet. In
addition, we investigated the impact on performance
due to generating a heavy load on the softphone
(similar to one that would result from running
several applications concurrently), without and with
background traffic on a LAN. We also tested the
feasibility of voice over Ethernet and its effect on
call quality by using a MAC header only to transfer
voice packets within a switched Ethernet LAN with
no routers.

 The rest of the paper is organized as follows.
Section 2 describes the architectural features of the
bare PC VoIP softphone, and Section 3 provides
design and implementation details. Section 4
presents the experimental results. Section 5
discusses related work, and Section 6 contains the
conclusion.

2 System Architecture
 The bare PC VoIP softphone application
system architecture shares many features with bare
PC (OS-less) computing in general. A bare PC
provides direct interfaces to the hardware and all
other necessary operating elements are built-in to the
application itself.

2.1 Hardware Interfaces

 The basic hardware elements that support the
bare PC softphone are CPU, memory, floppy drive,
and Ethernet card (external 3Com 905CX network
interface card or onboard Network Chip Intel
82540EM), onboard audio chip (AD1981B),
keyboard, headphones, and display. The softphone
AO manages the CPU and the memory available in
the bare PC. We have developed the necessary
standard interfaces to the above hardware elements,
and drivers for the network cards and sound cards.
In addition, we also have C++ interfaces [9] to tasks,
interrupts, and exceptions. As these interfaces are
simple and robust, they are used to support the bare
PC VoIP softphone application as well as other bare
PC applications such as an email client and a Web
server [3]. These interfaces also enable the
softphone to be run concurrently with other
applications on the bare PC by adding more tasks.

2.2 Architecture

 In a bare PC softphone, voice packets arrive
into the Ethernet buffer and wait for the receive task
to process them. The device drivers for the Ethernet
card/chip receive incoming voice packets and store
them in a circular list. Similarly, outgoing voice
packets are kept in a circular list by the application.
The circular lists are located in user address space.
In this system, user space and system space are one
and the same as the AO programmer controls the
memory map for the softphone application.

 Figure 1 shows the architecture for the bare PC
VoIP softphone application. The main task (not
shown) checks for arrival of network packets in the
receive circular list and activates the receive (RCV)
task to process these packets. The receive task does
the Ethernet, IP, UDP, and RTP processing, and

places the audio frame pointers (to payload and RTP
header) in the jitter buffer. The audio task requests a
frame from the jitter buffer, does the G.711
decoding, and writes the decoded frame to the
circular playout buffer. It also checks for voice
frames in the microphone recording buffer, does the
G.711 encoding followed by RTP, UDP, IP, and
Ethernet processing before writing the outgoing
Ethernet frame to the send circular buffer to be
transmitted on the network.

 Currently, we use only one audio task since
there is only a single client on the bare PC.
Additional tasks can be easily added for other
softphone functions such as call waiting. The task
structure is depicted in Figure 2, where softphone
tasks are stored in the stack and then placed in run
list when needed. Once the call is ended, the task is
replaced in the stack. We use the same technique to
add other tasks into the run list in order to provide a
multi-tasking architecture. The programmer has total
control over task management and is able to simplify
scheduling by limiting the tasks running in the
system.

 It can be seen that the above architecture is
very simple, and customized for the bare PC
softphone; there is no functionality in the system
that is not relevant to this application. In addition,
this architecture enables many novel features
(described below) to be incorporated in the
softphone. Many of these features are difficult to
implement in an OS-based system.

2.3 Optimizations

 Implementation of network protocols such as
RTP, UDP and IP are integrated with Ethernet
processing. In particular, strict layering rules are not
followed since the goal is optimal performance. For
example, all the protocol processing for sending an
outgoing packet is accomplished in a single step.
Task scheduling in a bare PC is controlled by the
AO, and the AO programmer chooses the scheduling
technique.

 The idea in optimal scheduling is as follows:
when a task is not doing a useful work (no CPU
processing), it should be suspended or returned to
the main task. Thus, in the softphone, the receive
task will return to main task after processing a
received request. Similarly, the audio task will
return to the main task after the audio frame pointers
are placed in the jitter buffer. Upon activation, each
task is allowed unlimited CPU time. When
suspending itself, a task requests to be scheduled at
a future time by specifying a suspension time. The

main task executes a task if and only if only its
suspension time as requested by the task itself has
expired. The scheduling mechanism is implemented
using a Karnaugh map table, in which the inputs are
the tasks, and the output is the task to be scheduled.
For example, the receive task and audio task have
00, 01, 10, 11 combinations. Its output combinations
may be none, audio, receive, and receive, which
indicates that the receive task has more priority than
the audio task (a priority scheme is easily changed).
This simple scheduling approach is efficient and
enables optimal performance in a bare PC
softphone.

 Another novel feature in the bare PC
architecture is a zero-copy buffering scheme in
which incoming packets are stored in the
receive/UPD (upload pointer descriptor) buffer, and
the same pointer is used until packets are played out.
Likewise, zero copy buffering is achieved for
outgoing packets by using the same pointer for the
audio driver and the send/DPD (download pointer
descriptor) buffer. We also avoid receive interrupts
for the network card and process transmit interrupts
to acknowledge the interrupt controller. This
improves performance and simplifies the design.
The VoIP softphone described in [10] also avoids
data copying and implements other optimizations.
However, since it relies on OS support unlike the
bare PC, the optimizations are necessarily limited by
the underlying OS design.

3 Design and Implementation
 The softphone application uses APIs for audio
controller, network protocols, screen output, and
keyboard input. The record and playback for this
softphone are synchronized using the audio card
recording and playback timing.

3.1 Audio Task

 The audio task monitors the recording of the
microphone data. It processes the data whenever the
microphone buffer is filled, and then checks if there
are packets in the jitter buffer to be processed. So
every time a buffer is recorded, a frame (possibly a
“silence” frame) is played out as well. This
technique helps with minimizing the intrinsic delay
by minimizing the distance between the read and
write pointers in the playback buffer. It also
simplifies the synchronization of the microphone
buffer read pointer and the speaker buffer write
pointer.

Figure 1: Softphone system architecture

Figure 2. Softphone task structure

 While synchronizing the playback and the
recording, the audio task also monitors the condition
of the jitter buffer. If no packets are arriving due to
network conditions or any other failures, it will
restore the audio task to its start state. The audio
task is designed and implemented as a state machine
with start, record, play, and suspend states. The
audio task processes an entire frame of recorded
voice data per activation before suspending itself.

 The audio card produces two 16-bit (stereo)
voice samples every 125µs. The 16-bits for the right
channel are ignored resulting in 16 bytes of raw
voice data per ms. The G.711 codec performs 2:1
compression leaving 8 bytes of data per ms. Thus,
each t ms voice sample is equivalent to 8*t bytes of
voice data. During playback, the right channel is
restored by copying the left channel data after G.711
decompression. The time stamp field of the RTP

header is computed using the system timer and the
audio card PCM data rate. Every tick of the system
timer is equal to 250 µsec, and the audio card
generates 8 bytes of data per ms as seen above,
which is equivalent to two bytes of data per timer
tick. Therefore, multiplying system timer units by 2
converts them into PCM byte units.

3.2 Jitter Buffer

 Voice packets are inserted in a jitter buffer and
queued for playback by the audio task. The jitter
buffer consists of an array of voice payload
descriptors. Each payload descriptor has fields
corresponding to RTP header fields. In addition,
each descriptor has a field for the size of the
received voice packet, a field that contains a pointer
to the actual voice packet stored in the DPD
memory, and the playout time field for each packet.
The values stored in each field except for the playout
time field are obtained from the RTP handler. The
number of entries in the jitter buffer payload
descriptor array is set during initialization of the
code that is responsible for managing the jitter
buffer. A description of the voice packet is inserted
into the jitter buffer at any open slot when a packet
arrives, and packets are removed for playback using
the playout delay and the sequence number.

 We have implemented both fixed delay and
adaptive jitter buffer algorithms in the bare PC
softphone. Jitter calculations are done as in [11].
The bare PC softphone continually monitors
performance and reports the values of network
delay, end-to-end (total) delay, jitter, and the
maximum inter-arrival gap (max delta) between
packets. The end-to-end delay is measured from the
time voice data for a packet is extracted from the
sender’s microphone buffer till it is copied to the
receiver’s speaker buffer. The bare PC also reports
the percentage of lost (or late) packets. We validated
jitter and max delta values by comparing them with
the values reported by an Ethereal sniffer [12]. Note
that synchronized sender and receiver clocks are not
needed to compute jitter and max delta.

4 Performance Measurements
 In order to evaluate the performance impact of
bare PC optimizations, we conducted several
experiments over the Internet and within a LAN in
our laboratory. We also implemented a voice over
Ethernet service that minimizes voice bandwidth on
a LAN and studied its call quality.

Run List

Stack (Idle List)

Complete

Get Request

Main
Task

Audio
Task

RCV
Task

RCV
Task

NIC

 ETH

RTP

IP

UDP

Upload Pointer
Descriptor (UPD)

Playing

Rate

Rate

Recording

G.711Codec

Jitter Buffer

Speaker

Speaker Buffer

Microphone

Audio
Task

Microphone Buffer

Download Pointer
Descriptor (DPD)

PTR

PTR

4.1 Internet Measurements

 To make calls over the Internet, we tested the
bare PC softphone application in typical home and
campus/business environments. The distance
between end points on the Internet was between 16-
22 hops. In a home, the bare PC softphone was
tested using both DSL and cable modem
connections to an ISP. On a campus network, the
bare PC was directly connected to the campus LAN
through a 100 Mbps Ethernet switch or hub. For all
our experiments, the bare PC ran on a 2.4 GHz Dell
Optiplex GX260 with 512MB of memory. In order
to compare bare PC softphone performance with
that of a conventional softphone, we used WinRTP
[13] on an identical machine running Windows XP
with unnecessary services disabled. A fixed delay
jitter buffer was used in our experiments. We do not
show packet loss as we did not observe significant
packet loss (except in a LAN under conditions of
heavy system load when testing the limits of a bare
PC; in this case, the reported values of packet loss
were unreliable since the systems were unstable).
We also did not measure WinRTP-to-WinRTP
performance as this was observed to be worse than
WinRTP-to-bare PC performance in earlier studies
conducted over a test LAN in our laboratory [8].

 Figure 3 shows the maximum packet inter-
arrival gap (max delta), the maximum jitter, and
mean jitter for a bare PC-to-bare PC connection and
a bare PC-to-WinRTP connection as the packet size
is varied. The jitter values for the bare PC-to-bare
PC connection are always smaller than those for the
WinRTP-to-bare PC connection. This is due to the
efficient task scheduling and low processing
overhead on the bare PC softphone. Note that the
larger differences in the values of max delta (60 ms
for 10 ms packet for example), maximum jitter (6
ms for 30 ms packets for example), and mean jitter
(2.5 ms for 50 ms packets for example) reflect the
variation in Internet conditions during the
experiments.

 Figure 4 shows the variation in the maximum
packet inter-arrival gap (max delta) and maximum
and mean jitter values over a period of 1 hour for a
bare PC-to-bare PC connection with a fixed packet
size of 20 ms and fixed delay jitter buffer size of
100 ms. Notice that the network conditions
remained relatively stable during this period.

 In Figure 5, we show the end-to-end delays
over the Internet for various voice packet sizes with
a fixed delay jitter buffer size of 100 ms. The end-
to-end delays vary from between 100 ms to 450 ms.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

m
s

Max Delta (Two Bare PCs) Max Delta (BPC-WinRTP)

Max Jitter (Two Bare PCs) Mean Jitter (Two Bare PCs)

Max Jitter (BPC-WinRTP) Mean Jitter (BPC-WinRTP)

Figure 3. Maximum packet inter-arrival gap (max
delta), and maximum and mean jitter with varying
voice packet sizes for a bare PC-to-bare PC and a
WinRTP-to-bare PC connection.

 It is generally accepted that delays over 400 ms
are unacceptable, while those under 150 ms are not
noticeable. During these experiments, we had the
participants rate the quality of the calls as poor,
acceptable, good or excellent, which roughly
correspond to MOS (mean opinion score) ratings of
less than 2, 2-2.5, 3-3.5, 4 or greater, respectively
(this scale assumes implicit rounding of MOS
values). However, they did not observe a significant
drop in voice quality even with the larger delays and
typically assigned ratings ranging from good to
acceptable. In this case, we were unable to compare
the performance of the WinRTP softphone under the
same conditions. This experiment suggests that
voice quality achieved by a bare PC softphone under
marginal to poor network conditions is adequate,
although more studies are needed to reach a definite
conclusion.

4.2 Performance under Heavy Load

 Next, we conducted experiments on a LAN to
test the call quality of the bare PC softphone when it
is performing other tasks. For example, these
experiments can simulate a situation when other
applications are running on the bare PC concurrently
with the softphone. The experiments consisted of
interleaving 20 ms voice packets and dummy packets
of 1038 bytes containing an Ethernet header only.
The number of packets was increased from 1 to 30.
We found that CPU utilization was very low and the
call quality ranged from good to acceptable for up to
20 dummy packets. When 30 dummy packets were
sent, the call quality was poor. We repeated the
experiment while flooding the network with
background traffic by using the MGEN tool. In this
case, call quality became poor with only 20
interleaved dummy packets. Although we could not

interleave dummy packets in this manner on the
Windows machine, we found that the call quality of
the WinRTP softphone was unacceptable with an
increased load on the system when the CPU
utilization reached 30%. These results indicate that a
bare PC can sustain a heavier load while running a
softphone with or without background traffic.

4.3 Voice over Ethernet

 Finally, we studied the performance of a bare
PC softphone in an Ethernet LAN with no routers.
In this case, we used bare PC softphones to
investigate the feasibility of using voice packets that
only had an Ethernet header (i.e., we eliminated the
RTP, UDP and IP headers). We believe that it is
much easier to incorporate such a Voice over
Ethernet service using a bare PC rather than an
embedded system, exokernel, custom Linux kernel,
or a Linux or Windows OS. We are not aware of any
published studies that have used voice over
Ethernet. In this case, packets are delivered by using
the MAC address (a packet carries no IP address,
sequence number, timestamp, or port numbers).

0
5

10
15
20
25
30
35
40
45
50

0 10 20 30 40 50 60 70

Time (minutes)

m
s

Max Delta Max Jitter Mean Jitter

Figure 4: Maximum packet inter-arrival gap (max
delta), maximum jitter, and minimum jitter versus
time for a bare PC-to-bare PC connection with 20
ms packets and a 100 ms fixed delay jitter buffer.

 Of course, this voice over Ethernet service has
several drawbacks. For example, packet loss cannot
be detected and no ordering of packets is possible,
so packets are played in the order of arrival.
Moreover, packets cannot be forwarded across IP
subnets by routers (or across the Internet) due to
lack of IP addresses. However, in a pure switched
Ethernet LAN environment, there is virtually no
packet loss or out of order packets. The tradeoff is
that these packets reduce VoIP bandwidth
consumption in a LAN environment thus enabling
increased call capacity (or more room for other
traffic on the LAN). In our experiments, we found
that call quality ranged from excellent to good.
Packet size is reduced from 213 bytes to 174 bytes,
and the savings in bandwidth is about 19%. Voice
over Ethernet may be feasible in a small

organization or an in-building LAN. More studies
are needed to determine the applicability of this
approach and the ability to integrate it with IPv6
link local addresses.

0
100
200
300
400
500

0 20 40 60 80 100

Voice Packet Size (ms)

m
s

End-to-End Delay (ms)

Figure 5. End-to-end delay for a bare PC-to-bare PC
connection as packet size is varied with a 100 ms
fixed delay jitter buffer.

5 Related Work
 To the best of our knowledge, there are no
VoIP systems that run on a bare PC. The tool
described in [10], uses several optimizations similar
to ours to improve call quality. However, unlike our
softphone, it is built on top of an OS, and does not
include an optimal task scheduling technique. The
peer-to-peer VoIP architecture in [2] has many
desirable features. The associated SIP (Session
Initiation Protocol) adaptor works with existing SIP
phones, is capable of supporting seamless addition
of new services such conferencing and voice mail,
and is essentially plug-and-play. Yet, it may be
harder to optimize such a system for performance
since the user agents that are required in order to use
the adaptor rely on an OS. Another SIP-based VoIP
architecture that also offers mobility support is
discussed in [15]. Again, this architecture is
implemented on a conventional OS and the overall
performance of the system is therefore bound by OS
limitations. In contrast, a bare PC softphone may be
fully optimized since the AO programmer has total
control of the system and its hardware resources.

 Many attempts to improve call quality in VoIP
systems have also been made. In [16], different
paths through the network are used in order to
improve call quality. Playout buffer algorithms that
incorporate jitter and packet loss compensation are
given in [17]. In [18], Skype and MSN VoIP
systems are compared with respect to throughput,
packet inter-arrival statistics, and MOS (mean
opinion score). Finally, in [19], MOS ratings are

used to evaluate effects of bursty packet loss on call
quality, and a method to maximize call quality by
optimizing the packet interval is proposed. Addition
of such optimizations to a bare PC may further
improve performance since it has less intrinsic
overhead than a conventional system. In essence, the
main difference between existing softphones and a
bare PC softphone is that the latter runs directly on
the hardware with no OS, and is therefore simpler to
optimize and control.

6 Conclusion
 In this paper, we described the architecture
design and implementation of a bare PC (OS-less)
VoIP softphone. We discussed several architectural
and design features unique to a bare PC softphone
including zero copy buffering and optimized task
scheduling. On the Internet, a bare PC-to-bare PC
connection is associated with smaller values of jitter
than a WinRTP to bare PC connection even for
larger voice packet sizes. A bare PC softphone also
provides better call quality than a WinRTP
softphone under heavy system load conditions on a
LAN. Finally, it is possible to obtain excellent to
good call quality on a switched Ethernet LAN with
no routers by using packets containing only an
Ethernet header. The resulting savings in bandwidth
could be used to support more calls or run other
applications on the LAN.

7 References
[1] S. A. Baset and H. Schulzrinne. An Analysis of

the Skype Peer-to-Peer Internet Telephony
Protocol. In Proc. of the INFOCOM '06,
Barcelona, Spain, April 2006.

[2] K. Singh and H. Schulzrinne. Peer-to-Peer
Internet Telephony using SIP. In Proc.
NOSDAV’05, Stevenson, WA, June 2005.

[3] R. K. Karne, K. Venkatasamy and T. Ahmed.
Dispersed Operating System Computing
(DOSC). In Proc. OOPSLA 2005 (Onward
Track), San Diego, CA, October 2005.

[4] R. K. Karne. Application-oriented Object
Architecture: A Revolutionary Approach. In
Proc 6th International Conference, HPC Asia
2002, December 2002.

[5] TinyOS Community Forum.
http://www.tinyos.net

[6] D. R. Engler. The Exokernel Operating System
Architecuture. Ph.D. thesis, MIT, October 1998.

[7] The OS Kit Project.
http://www.cs.utah.edu/flux/oskit

[8] G. H. Khaksari, A. L. Wijesinha, R. K. Karne,
L. He and S. Girumala. A Peer-toPeer Bare PC
VoIP Application. In Proc. IEEE CCNC 2007,
Jan 2007.

[9] R. K. Karne, K. Venkatasamyand T. Ahmed, T.
How to run C++ applications on a Bare PC. In
Proc. 6th ACIS International Conference on
Software Engineering, Artificial Intelligence,
Networking, and Parallel / Distributed
Computing, May 2005.

[10] O. Hagsand, I. Marsh and K. Hanson.
Sicsophone: A low-delay Internet telephony
tool. In Proc. of the 29th EUROMICRO Conf.
(EUROMICRO’04), 2003.

[11] H. Schulzrinne, S. Casner, R. Frederick and V.
Jacobson. RTP: A Transport Protocol for Real-
Time Applications. RFC 3550,
http://www.ietf.org/rfc/rfc3550.txt

[12] Ethereal Network Analyzer.
http://www.ethereal.com

[13] WinRTP. http://www.vovida.org

[14] Multi-Generator (MGEN).
http://cs.itd.nrl.navy.mil/work/mgen/index.php

[15] S. Zeadally and F. Siddiqui. Design and
Implementation of a SIP-based VoIP
Architecture. In Proc. 18th Intnl. Conf. on
Advanced Information Networking and
Application (AINA’04), 2004.

[16] M. Ghanassi and P. Kabal. Optimizing Voice-
over-IP Speech Quality using Path Diversity. In
2006 International Workshop on Multimedia
Signal Processing, October 2006.

[17] J. Rosenberg, L. Qiu, and H. Schulzrinne.
Integrating Packet FEC into Adaptive Voice
Playout Algorithms on the Internet. In Proc.
Infocom 2000, 2000.

[18] W. H. Chiang, W. C. Xiao and C. F. Chou. A
Performance Study of VoIP Applications: MSN
vs. Skype. In Proc. MULTICOMM 2006, 2006.

[19] W. Jiang and H. Schuzrinne. Comparison and
Optimization of Packet Loss Repair Methods on
VoIP Perceived Quality under Bursty Loss. In
Proc. NOSSDAV’02, 2002.

