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Abstract - We describe the architecture, design, 
and implementation of a VoIP softphone that runs 
on a bare Intel-386 (or above) based PC. We 
compare the performance of bare PC and WinRTP 
softphones on the Internet by determining call 
quality and measuring the values of jitter, delay, 
and packet loss. We also conduct experiments on a 
LAN to test the limits of the bare PC softphone 
under heavy load conditions, and investigate the 
use of voice packets with Ethernet headers only 
(Voice over Ethernet) to minimize voice bandwidth. 
The results indicate that a bare PC softphone on the 
Internet is associated with less jitter than the 
WinRTP softphone. It is also able to sustain a 
heavier load on a LAN than the WinRTP softphone 
while maintaining acceptable call quality. We 
obtained excellent to good call quality with bare PC 
softphones running Voice over Ethernet.    

Keywords: VoIP, bare PC, softphone, call quality, 
network protocols. 

 

1 Introduction 
  Existing VoIP systems are dependent on 
operating system (OS) services. For example, both 
the Skype softphone [1] and the user agents for the 
peer-to-peer VoIP adaptor [2] require Windows, 
Linux, or some specialized OS. In view of OS 
complexity and overhead, it is difficult to fully 
optimize these VoIP phones to improve performance 
and call quality. They also inherit security 
weaknesses that result from OS vulnerabilities and 
their complexity. 

1.1 Bare PC Computing 

 Bare PC computing [3], which is an alternative 
approach for general purpose computing, eliminates 
the OS allowing the programmer direct access to 
(and complete control over) the underlying 
hardware. It is thus very convenient for testing and 
evaluating VoIP optimizations that require changes 

to low-level system elements such as device drivers, 
the CPU task scheduler, or the networking 
subsystem. Bare PC computing has many 
advantages for applications including performance 
benefits due to its low overhead, as well as 
simplicity, and the likelihood of being more secure 
due to elimination of the OS and unnecessary 
services. Briefly, the idea in bare PC or dispersed 
operating system computing (DOSC) is that an 
operating system is unnecessary as the essential 
operating environment elements for execution of 
applications can be dispersed into the application 
itself. Such an application is referred to as an 
application object (AO) [4]. An AO is a self-
contained and self-managed object that inherits all 
the benefits of the object oriented programming 
paradigm. 

 Embedded systems and bare PCs share some 
common features. For example, both types of 
systems do not use a disk drive, minimize use of 
hardware resources, eliminate unnecessary 
functionality, and have an optimized design. 
However, a bare PC is different from common types 
of embedded systems because a bare PC is capable 
of running any application and it has no OS. The 
only element of OS functionality in a bare PC is 
intrinsic to its application and determined by the 
application (i.e., a bare PC is truly bare outside of its 
application and an application only includes 
elements of the operating environment that are 
essential for its execution). Also, since the bare PC 
approach eliminates the OS altogether, it goes 
further than earlier work on minimal OSs including 
Tiny OS [5], Exokernel [6], and OSKit [7].  

1.2 Bare PC Softphone 

 In this paper, we describe the design and 
implementation of a softphone that runs on any 
Intel-386 (and above) based bare PC with no 
operating system, and investigate the effect of 
several optimizations on call quality and both 
network and system performance. This work is part 
of an effort to develop bare PC applications 



 

including Web servers, Email clients, and SIP 
clients and servers together with supporting security 
protocols. The bare PC VoIP softphone application 
is designed as an AO. It fits on and is stored on a 
floppy disk, although in principle, any type of 
portable storage media such as a CD or USB flash 
drive can be used. An AO can boot, load, and run on 
any bare PC. It directly communicates with the 
hardware and does not use any hard disk. The AO 
programmer, who is in complete control of the bare 
PC and manages system resources, can design an 
application for performance, security, or with other 
desired features. 

 The bare PC softphone can run alone, or 
concurrently with other bare PC applications. Also, 
the bare PC softphone is capable of functioning like 
a softphone on an OS-based PC, since a bare PC is 
able to connect seamlessly to an existing home, 
business or campus network and thus to the Internet. 
Furthermore, since the bare PC softphone can run on 
older Intel-386 based PCs, it could serve as a basic 
communication tool in situations where high-speed 
Internet connectivity is available, but PCs capable of 
supporting a modern OS such as Windows XP 
required to run today’s multi-featured softphones are 
scarce. It should also be noted that, in principle, the 
AO for a bare PC softphone can be run on any 
device with an Intel 386 (or above) based 
architecture. An added benefit from a security 
viewpoint is that when a bare PC softphone is 
connected to the Internet, the only open ports are 
those required by RTP and they would be the only 
means for a prospective attacker to send packets that 
would even be accepted by the softphone. We do 
not consider VoIP security issues in this paper. 

 In [8], we presented a prototype of a bare PC 
VoIP client and preliminary results from using it in a 
small test LAN in our laboratory. The bare PC 
softphone described in this paper has been enhanced 
for performance with the addition of a simple but 
efficient task-scheduling scheme. Furthermore, it 
uses a jitter buffer to improve call quality, and can 
continuously monitor performance at all levels of 
the system during a call. We also evaluated its 
performance by making calls over the Internet. In 
addition, we investigated the impact on performance 
due to generating a heavy load on the softphone 
(similar to one that would result from running 
several applications concurrently), without and with 
background traffic on a LAN. We also tested the 
feasibility of voice over Ethernet and its effect on 
call quality by using a MAC header only to transfer 
voice packets within a switched Ethernet LAN with 
no routers. 

 The rest of the paper is organized as follows. 
Section 2 describes the architectural features of the 
bare PC VoIP softphone, and Section 3 provides 
design and implementation details. Section 4 
presents the experimental results. Section 5 
discusses related work, and Section 6 contains the 
conclusion. 

2 System Architecture 
 The bare PC VoIP softphone application 
system architecture shares many features with bare 
PC (OS-less) computing in general. A bare PC 
provides direct interfaces to the hardware and all 
other necessary operating elements are built-in to the 
application itself. 
  

2.1 Hardware Interfaces 

 The basic hardware elements that support the 
bare PC softphone are CPU, memory, floppy drive, 
and Ethernet card (external 3Com 905CX network 
interface card or onboard Network Chip Intel 
82540EM), onboard audio chip (AD1981B), 
keyboard, headphones, and display. The softphone 
AO manages the CPU and the memory available in 
the bare PC. We have developed the necessary 
standard interfaces to the above hardware elements, 
and drivers for the network cards and sound cards. 
In addition, we also have C++ interfaces [9] to tasks, 
interrupts, and exceptions. As these interfaces are 
simple and robust, they are used to support the bare 
PC VoIP softphone application as well as other bare 
PC applications such as an email client and a Web 
server [3]. These interfaces also enable the 
softphone to be run concurrently with other 
applications on the bare PC by adding more tasks. 
   

2.2 Architecture 

 In a bare PC softphone, voice packets arrive 
into the Ethernet buffer and wait for the receive task 
to process them. The device drivers for the Ethernet 
card/chip receive incoming voice packets and store 
them in a circular list. Similarly, outgoing voice 
packets are kept in a circular list by the application. 
The circular lists are located in user address space. 
In this system, user space and system space are one 
and the same as the AO programmer controls the 
memory map for the softphone application. 

 Figure 1 shows the architecture for the bare PC 
VoIP softphone application. The main task (not 
shown) checks for arrival of network packets in the 
receive circular list and activates the receive (RCV) 
task to process these packets. The receive task does 
the Ethernet, IP, UDP, and RTP processing, and 



 

places the audio frame pointers (to payload and RTP 
header) in the jitter buffer. The audio task requests a 
frame from the jitter buffer, does the G.711 
decoding, and writes the decoded frame to the 
circular playout buffer. It also checks for voice 
frames in the microphone recording buffer, does the 
G.711 encoding followed by RTP, UDP, IP, and 
Ethernet processing before writing the outgoing 
Ethernet frame to the send circular buffer to be 
transmitted on the network. 

 Currently, we use only one audio task since 
there is only a single client on the bare PC.  
Additional tasks can be easily added for other 
softphone functions such as call waiting. The task 
structure is depicted in Figure 2, where softphone 
tasks are stored in the stack and then placed in run 
list when needed. Once the call is ended, the task is 
replaced in the stack. We use the same technique to 
add other tasks into the run list in order to provide a 
multi-tasking architecture. The programmer has total 
control over task management and is able to simplify 
scheduling by limiting the tasks running in the 
system. 
  
 It can be seen that the above architecture is 
very simple, and customized for the bare PC 
softphone; there is no functionality in the system 
that is not relevant to this application. In addition, 
this architecture enables many novel features 
(described below) to be incorporated in the 
softphone. Many of these features are difficult to 
implement in an OS-based system. 
  

2.3 Optimizations 

 Implementation of network protocols such as 
RTP, UDP and IP are integrated with Ethernet 
processing. In particular, strict layering rules are not 
followed since the goal is optimal performance. For 
example, all the protocol processing for sending an 
outgoing packet is accomplished in a single step. 
Task scheduling in a bare PC is controlled by the 
AO, and the AO programmer chooses the scheduling 
technique. 
 
 The idea in optimal scheduling is as follows: 
when a task is not doing a useful work (no CPU 
processing), it should be suspended or returned to 
the main task. Thus, in the softphone, the receive 
task will return to main task after processing a 
received request. Similarly, the audio task will 
return to the main task after the audio frame pointers 
are placed in the jitter buffer. Upon activation, each 
task is allowed unlimited CPU time. When 
suspending itself, a task requests to be scheduled at 
a future time by specifying a suspension time. The 

main task executes a task if and only if only its 
suspension time as requested by the task itself has 
expired. The scheduling mechanism is implemented 
using a Karnaugh map table, in which the inputs are 
the tasks, and the output is the task to be scheduled. 
For example, the receive task and audio task have 
00, 01, 10, 11 combinations. Its output combinations 
may be none, audio, receive, and receive, which 
indicates that the receive task has more priority than 
the audio task (a priority scheme is easily changed). 
This simple scheduling approach is efficient and 
enables optimal performance in a bare PC 
softphone. 
 
 Another novel feature in the bare PC 
architecture is a zero-copy buffering scheme in 
which incoming packets are stored in the 
receive/UPD (upload pointer descriptor) buffer, and 
the same pointer is used until packets are played out. 
Likewise, zero copy buffering is achieved for 
outgoing packets by using the same pointer for the 
audio driver and the send/DPD (download pointer 
descriptor) buffer. We also avoid receive interrupts 
for the network card and process transmit interrupts 
to acknowledge the interrupt controller. This 
improves performance and simplifies the design. 
The VoIP softphone described in [10] also avoids 
data copying and implements other optimizations. 
However, since it relies on OS support unlike the 
bare PC, the optimizations are necessarily limited by 
the underlying OS design. 
 

3 Design and Implementation 
 The softphone application uses APIs for audio 
controller, network protocols, screen output, and 
keyboard input. The record and playback for this 
softphone are synchronized using the audio card 
recording and playback timing.  
 

3.1 Audio Task 

 The audio task monitors the recording of the 
microphone data. It processes the data whenever the 
microphone buffer is filled, and then checks if there 
are packets in the jitter buffer to be processed. So 
every time a buffer is recorded, a frame (possibly a 
“silence” frame) is played out as well. This 
technique helps with minimizing the intrinsic delay 
by minimizing the distance between the read and 
write pointers in the playback buffer. It also 
simplifies the synchronization of the microphone 
buffer read pointer and the speaker buffer write 
pointer. 
 



 

 

 
 

Figure 1:  Softphone system architecture 

 
Figure 2.  Softphone task structure 

 
 While synchronizing the playback and the 
recording, the audio task also monitors the condition 
of the jitter buffer. If no packets are arriving due to 
network conditions or any other failures, it will 
restore the audio task to its start state. The audio 
task is designed and implemented as a state machine 
with start, record, play, and suspend states. The 
audio task processes an entire frame of recorded 
voice data per activation before suspending itself. 
 
 The audio card produces two 16-bit (stereo) 
voice samples every 125µs. The 16-bits for the right 
channel are ignored resulting in 16 bytes of raw 
voice data per ms. The G.711 codec performs 2:1 
compression leaving 8 bytes of data per ms. Thus, 
each t ms voice sample is equivalent to 8*t bytes of 
voice data. During playback, the right channel is 
restored by copying the left channel data after G.711 
decompression. The time stamp field of the RTP 

header is computed using the system timer and the 
audio card PCM data rate. Every tick of the system 
timer is equal to 250 µsec, and the audio card 
generates 8 bytes of data per ms as seen above, 
which is equivalent to two bytes of data per timer 
tick. Therefore, multiplying system timer units by 2 
converts them into PCM byte units. 
 

3.2 Jitter Buffer 

 Voice packets are inserted in a jitter buffer and 
queued for playback by the audio task. The jitter 
buffer consists of an array of voice payload 
descriptors. Each payload descriptor has fields 
corresponding to RTP header fields. In addition, 
each descriptor has a field for the size of the 
received voice packet, a field that contains a pointer 
to the actual voice packet stored in the DPD 
memory, and the playout time field for each packet. 
The values stored in each field except for the playout 
time field are obtained from the RTP handler. The 
number of entries in the jitter buffer payload 
descriptor array is set during initialization of the 
code that is responsible for managing the jitter 
buffer. A description of the voice packet is inserted 
into the jitter buffer at any open slot when a packet 
arrives, and packets are removed for playback using 
the playout delay and the sequence number. 

 
 We have implemented both fixed delay and 
adaptive jitter buffer algorithms in the bare PC 
softphone. Jitter calculations are done as in [11]. 
The bare PC softphone continually monitors 
performance and reports the values of network 
delay, end-to-end (total) delay, jitter, and the 
maximum inter-arrival gap (max delta) between 
packets. The end-to-end delay is measured from the 
time voice data for a packet is extracted from the 
sender’s microphone buffer till it is copied to the 
receiver’s speaker buffer. The bare PC also reports 
the percentage of lost (or late) packets. We validated 
jitter and max delta values by comparing them with 
the values reported by an Ethereal sniffer [12]. Note 
that synchronized sender and receiver clocks are not 
needed to compute jitter and max delta.  
 

4 Performance Measurements 
 In order to evaluate the performance impact of 
bare PC optimizations, we conducted several 
experiments over the Internet and within a LAN in 
our laboratory. We also implemented a voice over 
Ethernet service that minimizes voice bandwidth on  
a LAN and studied its call quality. 
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4.1 Internet Measurements 

 To make calls over the Internet, we tested the 
bare PC softphone application in typical home and 
campus/business environments. The distance 
between end points on the Internet was between 16-
22 hops. In a home, the bare PC softphone was 
tested using both DSL and cable modem 
connections to an ISP. On a campus network, the 
bare PC was directly connected to the campus LAN 
through a 100 Mbps Ethernet switch or hub. For all 
our experiments, the bare PC ran on a 2.4 GHz Dell 
Optiplex GX260 with 512MB of memory. In order 
to compare bare PC softphone performance with 
that of a conventional softphone, we used WinRTP 
[13] on an identical machine running Windows XP 
with unnecessary services disabled. A fixed delay 
jitter buffer was used in our experiments. We do not 
show packet loss as we did not observe significant 
packet loss (except in a LAN under conditions of 
heavy system load when testing the limits of a bare 
PC; in this case, the reported values of packet loss 
were unreliable since the systems were unstable). 
We also did not measure WinRTP-to-WinRTP 
performance as this was observed to be worse than 
WinRTP-to-bare PC performance in earlier studies 
conducted over a test LAN in our laboratory [8].  
 
 Figure 3 shows the maximum packet inter-
arrival gap (max delta), the maximum jitter, and 
mean jitter for a bare PC-to-bare PC connection and 
a bare PC-to-WinRTP connection as the packet size 
is varied. The jitter values for the bare PC-to-bare 
PC connection are always smaller than those for the 
WinRTP-to-bare PC connection. This is due to the 
efficient task scheduling and low processing 
overhead on the bare PC softphone. Note that the 
larger differences in the values of max delta (60 ms 
for 10 ms packet for example), maximum jitter (6 
ms for 30 ms packets for example), and mean jitter 
(2.5 ms for 50 ms packets for example) reflect the 
variation in Internet conditions during the 
experiments. 

 Figure 4 shows the variation in the maximum 
packet inter-arrival gap (max delta) and maximum 
and mean jitter values over a period of 1 hour for a 
bare PC-to-bare PC connection with a fixed packet 
size of 20 ms and fixed delay jitter buffer size of 
100 ms. Notice that the network conditions 
remained relatively stable during this period.   

 In Figure 5, we show the end-to-end delays 
over the Internet for various voice packet sizes with 
a fixed delay jitter buffer size of 100 ms. The end-
to-end delays vary from between 100 ms to 450 ms. 
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Figure 3. Maximum packet inter-arrival gap (max 
delta), and maximum and mean jitter with varying 
voice packet sizes for a bare PC-to-bare PC and a 
WinRTP-to-bare PC connection. 

 It is generally accepted that delays over 400 ms 
are unacceptable, while those under 150 ms are not 
noticeable. During these experiments, we had the 
participants rate the quality of the calls as poor, 
acceptable, good or excellent, which roughly 
correspond to MOS (mean opinion score) ratings of 
less than 2, 2-2.5, 3-3.5, 4 or greater, respectively 
(this scale assumes implicit rounding of MOS 
values). However, they did not observe a significant 
drop in voice quality even with the larger delays and 
typically assigned ratings ranging from good to 
acceptable. In this case, we were unable to compare 
the performance of the WinRTP softphone under the 
same conditions. This experiment suggests that 
voice quality achieved by a bare PC softphone under 
marginal to poor network conditions is adequate, 
although more studies are needed to reach a definite 
conclusion.   
 

4.2 Performance under Heavy Load 

 Next, we conducted experiments on a LAN to 
test the call quality of the bare PC softphone when it 
is performing other tasks. For example, these 
experiments can simulate a situation when other 
applications are running on the bare PC concurrently 
with the softphone. The experiments consisted of 
interleaving 20 ms voice packets and dummy packets 
of 1038 bytes containing an Ethernet header only. 
The number of packets was increased from 1 to 30. 
We found that CPU utilization was very low and the 
call quality ranged from good to acceptable for up to 
20 dummy packets. When 30 dummy packets were 
sent, the call quality was poor. We repeated the 
experiment while flooding the network with 
background traffic by using the MGEN tool. In this 
case, call quality became poor with only 20 
interleaved dummy packets. Although we could not 



 

interleave dummy packets in this manner on the 
Windows machine, we found that the call quality of 
the WinRTP softphone was unacceptable with an 
increased load on the system when the CPU 
utilization reached 30%. These results indicate that a 
bare PC can sustain a heavier load while running a 
softphone with or without background traffic.  
 

4.3 Voice over Ethernet 

 Finally, we studied the performance of a bare 
PC softphone in an Ethernet LAN with no routers. 
In this case, we used bare PC softphones to 
investigate the feasibility of using voice packets that 
only had an Ethernet header (i.e., we eliminated the 
RTP, UDP and IP headers). We believe that it is 
much easier to incorporate such a Voice over 
Ethernet service using a bare PC rather than an 
embedded system, exokernel, custom Linux kernel, 
or a Linux or Windows OS. We are not aware of any 
published studies that have used voice over 
Ethernet. In this case, packets are delivered by using 
the MAC address (a packet carries no IP address, 
sequence number, timestamp, or port numbers).  
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Figure 4:  Maximum packet inter-arrival gap (max 
delta), maximum jitter, and minimum jitter versus 
time for a bare PC-to-bare PC connection with 20 
ms packets and a 100 ms fixed delay jitter buffer.  

 Of course, this voice over Ethernet service has 
several drawbacks. For example, packet loss cannot 
be detected and no ordering of packets is possible, 
so packets are played in the order of arrival. 
Moreover, packets cannot be forwarded across IP 
subnets by routers (or across the Internet) due to 
lack of IP addresses. However, in a pure switched 
Ethernet LAN environment, there is virtually no 
packet loss or out of order packets. The tradeoff is 
that these packets reduce VoIP bandwidth 
consumption in a LAN environment thus enabling 
increased call capacity (or more room for other 
traffic on the LAN). In our experiments, we found 
that call quality ranged from excellent to good. 
Packet size is reduced from 213 bytes to 174 bytes, 
and the savings in bandwidth is about 19%. Voice 
over Ethernet may be feasible in a small 

organization or an in-building LAN. More studies 
are needed to determine the applicability of this 
approach and the ability to integrate it with IPv6 
link local addresses.  
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Figure 5. End-to-end delay for a bare PC-to-bare PC 
connection as packet size is varied with a 100 ms 
fixed delay jitter buffer. 

   

5 Related Work 
 To the best of our knowledge, there are no 
VoIP systems that run on a bare PC. The tool 
described in [10], uses several optimizations similar 
to ours to improve call quality. However, unlike our 
softphone, it is built on top of an OS, and does not 
include an optimal task scheduling technique. The 
peer-to-peer VoIP architecture in [2] has many 
desirable features. The associated SIP (Session 
Initiation Protocol) adaptor works with existing SIP 
phones, is capable of supporting seamless addition 
of new services such conferencing and voice mail, 
and is essentially plug-and-play. Yet, it may be 
harder to optimize such a system for performance 
since the user agents that are required in order to use 
the adaptor rely on an OS. Another SIP-based VoIP 
architecture that also offers mobility support is 
discussed in [15]. Again, this architecture is 
implemented on a conventional OS and the overall 
performance of the system is therefore bound by OS 
limitations. In contrast, a bare PC softphone may be 
fully optimized since the AO programmer has total 
control of the system and its hardware resources. 
 
 Many attempts to improve call quality in VoIP 
systems have also been made. In [16], different 
paths through the network are used in order to 
improve call quality. Playout buffer algorithms that 
incorporate jitter and packet loss compensation are 
given in [17]. In [18], Skype and MSN VoIP 
systems are compared with respect to throughput, 
packet inter-arrival statistics, and MOS (mean 
opinion score). Finally, in [19], MOS ratings are 



 

used to evaluate effects of bursty packet loss on call 
quality, and a method to maximize call quality by 
optimizing the packet interval is proposed. Addition 
of such optimizations to a bare PC may further 
improve performance since it has less intrinsic 
overhead than a conventional system. In essence, the 
main difference between existing softphones and a 
bare PC softphone is that the latter runs directly on 
the hardware with no OS, and is therefore simpler to 
optimize and control. 

 

6 Conclusion 
 In this paper, we described the architecture 
design and implementation of a bare PC (OS-less) 
VoIP softphone. We discussed several architectural 
and design features unique to a bare PC softphone 
including zero copy buffering and optimized task 
scheduling. On the Internet, a bare PC-to-bare PC 
connection is associated with smaller values of jitter 
than a WinRTP to bare PC connection even for 
larger voice packet sizes. A bare PC softphone also 
provides better call quality than a WinRTP 
softphone under heavy system load conditions on a 
LAN. Finally, it is possible to obtain excellent to 
good call quality on a switched Ethernet LAN with 
no routers by using packets containing only an 
Ethernet header. The resulting savings in bandwidth 
could be used to support more calls or run other 
applications on the LAN. 
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