
Design Issues in a Bare PC Web Server

Long He, Ramesh K. Karne, Alexander L. Wijesinha,
Sandeep Girumala, and Gholam H. Khaksari

Department of Computer & Information Sciences, Towson University, 7800 York Rd, MD 21252
lhe@towson.edu

Abstract

 We present a bare PC Web server design that runs on
any Intel 386 based PC without any hard disk and other
supporting software. This server design is based on
simplicity and minimal functionality. We identify design
issues related to such server and provide our preliminary
performance measurements in comparison with IIS and
Apache servers. We have found that our Web server
performs comparable to commercial servers and it can be
enhanced to perform even better when it is optimized for
certain design factors. This work also has motivated us to
pursue further research in building bare PC Web servers
that can be scalable to run large applications. In
addition, as the Web server is self-contained with all
necessary code, it inherently provides ubiquity on the
network, which allows for moving the server dynamically
on the network during emergency and catastrophic
situations. Furthermore, bare PC software may also
provide alternate ways of building secure systems for
critical applications.

1. Introduction

Bare PC applications are not a new in concept. In fact,
when computing started, all applications were designed
for bare hardware, and were loaded and executed using
toggle switches. Since then operating systems have
provided elegant application services and transparency to
hardware. Over the years, operating systems (OS) have
grown in size, complexity, and hence are prone to errors
and have become difficult to maintain. The unwarranted
software and hardware releases have caused tremendous
waste in cost, productivity, people resources, and
environment damage [8]. The original purpose of OS and
its useful intentions have faded away due to their
inefficiency, complexity, and massive size. Some
researchers suggest that operating systems should be
exterminated [1] and their functionality should be moved
to applications.

Web server designs are interleaved with operating
systems as their functionality is driven by heavy system
calls. Our bare-PC Web server, based on dispersed
operating system computing (DOSC) [3] is the first step
towards eliminating operating systems thus constructing
applications that directly communicate with hardware.
The DOSC concepts are based on dispersing the
necessary OS functionalities to application programs, and
making the application programmer aware of underlying
hardware interfaces. Each application program in this
environment will be denoted as an application object
(AO) [6, 7], and each AO communicates with hardware
using AO Interfaces [5], or API for the hardware. The
AO interfaces do not change for a long period of time.
When new interfaces such as “tasks” are added, the AO
interfaces can be extended to add the new interfaces.
Details of C++ API for direct communication to Intel
386-based processors are described in [4].
The bare PC Web server is designed as a single AO. This
AO is self-contained, self-controlled, and self-executed
(SSS) similar to autonomic world. The AO contains all
the necessary codes including: boot, loader, memory
management, task management, scheduling, and I/O. It is
a single entity that can reside on a network, or a storage
media. It carries its own device driver. An AO is an entity
that is based on an application and inherits SSS
properties.

2. Description

The bare PC DOSC Web server (DS) is currently running
at http://dosc.towson.edu. It runs on a Pentium II
processor with 350MHZ, and 128MB of memory. It
contains 3COM 509B device driver running on bare PC.
This server is designed for simplicity and minimal
functionality.

The DS is designed to run the HTTP 1.1 protocol. The
AO for DS requires HTTP, TCP, IP, ARP, and Ethernet
networking protocols and their implementation stack. The
dataflow for DS is shown in Figure 1. All tasks are shown
in circles, processing blocks are shown in rectangles, and

http://dosc.towson.edu/

locks indicate synchronization points. Network Interface
Card (NIC) receives packets, and stores them in its local
FIFO (first-in first-out). The “Ethernet Receive” task
periodically checks (polling) for a received message and
if a message arrives, it will insert it in an Ethernet circular
buffer (ECB). Task scheduling is done every time a
hardware timer causes an interrupt. The scheduling of
tasks is done using a round robin algorithm. Once a
packet is in ECB, a “Poll Task” will read this packet and
process it appropriately as a single string until it is
complete. An HTTP process will take this request from
HTTP table and processes it until all data packets are sent
to the client. As the “Poll Task” processes packets and put
them into TCP and HTTP lists, HTTP processes will
process them concurrently to serve client requests. We

have separate tasks for serving HTTP requests after the
TCP connections are established. TCP related messages
are processed as part of a single task in “Poll Task”. Also,
resources such as HTTP list, TCP list, and ECB have
contention with other tasks, thus they use locks for
synchronization.
HTTP files are stored on a different network node. The
server loads these files into memory using an ad-hoc (our
own) ftp protocol. The DS hosts PI’s Web site with 673
files on 40MB file storage. The Web clients can access
our Web server from standard Web browsers. The size of
the executable files for DS is 77,824 bytes, and number of
lines of C++ code is 6587. The number of lines of ASM
code is not measured and included in the above count.

Figure 1

3. Design Issues

It is not possible to go through this vast literature in
this paper; however, a comprehensive bibliography of
this research is posted at author’s web site
http://www.towson.edu/~karne. As per our knowledge,
there is no one looking at building servers on a bare
machine environment. As Web servers are application
specific entities, they are excellent candidates for
DOSC implementation.
Current research directions in design issues on DS Web
servers are mostly focus on operating system related
improvements and network related optimizations. In
this Web server architecture, there is no hard disk,
paging, virtual memory, cache, and graphical user
interfaces. We identified the following issues related to
bare machine Web server and provide our research
findings.

3.1. File Storage

Usually a large number of HTML files are stored in an
HTTP Web server. Our DOSC Web server runs on a
bare PC and it are not convenient to carry all the HTTP
files in the AO. HTTP Files are stored on the network;
DOSC Web server fetches the files during
initialization. Currently, all files are fetched into
memory as there is plenty of memory to support file
storage. That character helps server’s mobility when
moved from one location to another on the Internet.

3.2. Memory

As simplicity is the main objective of DS in design, we
avoid OS, paging, and virtual memory. We can fairly
assume that there is full address space of 4GB memory
in the system as our DOSC Web server only needs
128MB of memory for its operation and nearly all the
memory is available for applications. For applications
needing more memory, several bare PCs can be
connected to achieve higher throughput. This scalable
parallel bare PC architecture is currently under
investigation.

3.3 Ethernet Driver

When an AO runs on a bare PC, it carries all the
programs and controls necessary to execute on a bare
PC including device driver interfaces. We have
designed a device driver for 3COM509B Ethernet card
that works with our server. This driver provides API
calls in C++ to communicate directly to Network

Interface Card (NIC) and has been developed as a C++
class object. This class can be instantiated in the
program’s required calls such as init, read, and can be
written directly from other part of application. We
select this particular NIC as its programming reference
manual is available on the Web. We also have
developed a new device driver for 3COM905CX NIC
by collaborating with 3COM, which is more recent and
has enhanced functionality. Our experiences with both
drivers for NIC indicate that 3COM could have
designed an extensible NIC to support downward
compatibility. Each NIC and each I/O card has its own
interface thus causing a myriad of drivers and
interfaces in a PC environment. We also found that the
C++ API designed for the above two drivers are very
similar and they can be easily extended for the next
generation of NIC devices.

3.4 Network Stack

Only the necessary functionalities required for Web
server application are implemented in the network
stack. The stack protocols including Ethernet, ARP, IP,
UDP, TCP, and HTTP are designed and implemented
as API calls. Each protocol is a C++ class object and
can be instantiated anywhere in a C++ program. All
classes can directly communicate with Ethernet class,
that provides a robust foundation for testing new
network architectures and protocols.

3.5 Task Scheduling

The DS tasks are provided as C++ API calls. Each
task is a member function in a task object. We can
design as many tasks as needed by simply adding new
member functions in the task class, and control the task
scheduling. Currently a simple round robin algorithm is
used to schedule tasks. Tasks are scheduled when a
hardware timer interrupt comes at a periodic rate of 55
milliseconds. We can also vary this clock rate by
dividing the rate in multiples of 2.

3.6 Concurrency

We use locking mechanisms to implement
synchronization. However there are many design
options to exploit concurrency to achieve maximum
throughput and minimum response time.

3.7 Response Times

Interrupt service routine (ISR) implementation for
receiving and sending messages to NIC will improve
response time. However, this approach needs to be

http://www.towson.edu/%7Ekarne

studied in combination of ISRs and Tasks. ISRs make
the system more complex and hard to debug in a bare
PC environment.

3.8 Throughput

In our driver design, we wait and check status of the
transmitted message to make sure the packet be sent
successfully. Using ISRs to process the status will
improve the performance. However, that make the
system more complex and ISRs will interfere with task
processing. The HTML file size will also play a major
role in the throughput outcome, which needs to be
studied further.

3.9 Robustness

The DS design is very robust. Task scheduling,
sending and receiving messages, concurrency and
synchronization, network protocols, and API to bare
machine are very flexible and easy to maintain. It also
provides more robustness for designing new
applications.

3.10 Pervasiveness

The DOSC concept is based on bare machine API and
single programming language such as C++. If we can
use Intel 386-based CPU architecture in pervasive
devices, then the same Email client, POP server, and
Web server code can run on any device. As the code is
small, it is quite possible to make it fit in any devices.
If we make pervasiveness in application as a
requirement and use same architecture for a variety of
devices, we will provide a pervasive solution.

3.11 Mobility

DS AO is a small and complete entity, which can
execute on a bare PC. The AO can easily be made
mobile under emergency or catastrophic situations.
When an AO is mobile, it detects the situation,
communicates with the remote bare PC, and moves to a
remote node. We have all the mechanisms designed for
the mobility of AO, and its implementation is in
progress.

4. Measurements

Our testing platform for making measurements
includes 3 similar PCs on a LAN each with 350MHZ
Pentium II processor and 128MB memory. PC-1 is
loaded with the DS server only. PC-2 is loaded with

Windows 2000 Server OS, the Microsoft IIS server and
the Apache Tomcat server, and Web stress tool
“http_load” is [2] installed on PC-3 with Windows
2000. We compare DS with IIS and Apache servers,
where each server hosts a Web site with 673 files
including: HTML, PDF, and GIF files, totaling 40MB
of storage. When tests are run, “http_load” uses a
single file to access and measure the performance. At
the end of a run, the “http_load” provides measured
data, which is directly used in the following charts.
We first compare the throughput and first response
time of DS with IIS and Apache server based on
different fetches. We make measurements on file size
3593 bytes for 10 minutes. We select DS running on
55/48 ms and 55/16 ms time slot. The measurement
result is shown in figure 2 and figure 3. The chart
figure 2 shows DS server has the same throughput
performance as IIS and Apache, figure 3 shows that the
first response time of DS in 55/48 ms time slot is better
than Apache and IIS.
We also use three files to make the measurements on
DS, IIS and Apache server. The results are shown on
figure 4. The file sizes are 3593 bytes, 9652 bytes and
18007 bytes. The measurements are based on 10
fetches / sec for 10 minutes. DS server runs with time
slot of 55/48 ms. The measurement result shows that
DS server has roughly the same throughput
performance as IIS and Apache server with the change
of file sizes.

File Size 3593 bytes

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30 35 40 45

Fetches

Th
ro

ug
hp

ut

IIS

Apache

DOSC

Figure 2

File Size 3593 Bytes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30 35 40 45

Fetches

Fi
rs

t R
es

po
ns

e
Ti

m
e

DOSC 55/48

IIS

Apache

DOSC 55/16

Figure 3

In DS ,the time slot can be changed by 55/1, 55/2,
55/4, 55/8, 55/10, 55/16, 55/20, 55/24, 55/28, 55/32,
55/36, 55/40, 55/44, 55/48, 55/56, 55/64 and 55/72 ms,
we make measurement based on different time slot, the
measurement result shows that the shorter the time slot,
the better performance for DS. The measurement
results are shown in figure 5. That measurement is
based on one fetch on file size 3593 bytes for 10
minutes. It shows that with the time slots less than
55/20 ms, DS server’s first response time is better than
IIS and Apache server.

5. Further Research

The measurements on this DOSC server show
promising results and provide insight into further
research to build a Web server that runs on latest PCs
with PCI (Peripheral Component Interface) bus. As
NIC 3COM905CX provides better performance and
different memory interfaces, we have designed a new
device driver for 3COM905CX NIC. Currently, we
integrate this driver with Web server AO. We will also
conduct measurements with new changes made to AO

with the design issues studied in this paper. Our long
range plans for this Web server is to study the
scalability in a parallel environment, and assess this
system for reliability and security.

10 Fetches

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

File Size

Th
ro

ug
hp

ut

Apache
IIS

DOSC

Figure 4

 File Size 3593 Bytes, 1 Fetch

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70

Scheduling Period / Polling Frequency

Fi
rs

t R
es

po
ns

e
Ti

m
e

80

DOSC

Apache

IIS

Figure 5

6. Conclusions

This paper presented a novel concept for Web server
design, which runs on a bare PC. A Web server
description based on dispersed operating system
concept is presented including its design details and
interfaces. This Web server directly communicates to
hardware through application programming interfaces
for timer, CPU, tasks, memory, network card
interfaces, and so on. When these interfaces become a
standard, it has a potential of providing bare machine
architecture for pervasive devices. Design issues
related to building a bare PC Web server are identified
and a brief description of each issue is presented.
Performance measurements of this server and
comparison with IIS and Apache server are presented.

Further research in bare PC Web server research is
outlined.

References

[1] Engler, D. R., M.F. Kaashoek, “Exterminate all
operating system abstractions,” FifthWorkshop on Hot
Topics in Operating Systems, p. 78, 1995.
[2] http://www.acme.com/software/http_load.
[3] Karne, R.K., Jaganathan, K. V., Ahmed, T. “DOSC:
Dispersed Operating System Computing”, OOPSLA
’05, 20th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
Onward Track, October 2005, Sandiego, CA, p55-p61.

http://www.acme.com/software/http_load

[4] Karne, R.K., Jaganathan, K. V., Ahmed, T. “How to
run C++ Applications on a bare PC”, SNPD 2005,
Proceedings of SNPD 2005, 6th ACIS International
Conference, May 2005, p50-p55.
[5] Karne, R.K., Gattu, R., Dandu, R., and Zhang, Z.,
“Application-oriented Object Architecture: Concepts
and Approach,” 26th Annual International Computer
Software and Applications Conference, IASTED
International Conference, Tsukuba, Japan, NPDPA
2002, October 2002.
[6] Karne, R.K. “Application-oriented Object
Architecture: A Revolutionary Approach,” 6th
International Conference, HPC Asia 2002, December
2002.
[7] Karne, R.K., “Object-oriented Computer
Architectures for New Generation of Applications,”
Computer Architecture News, December 1995, Vol. 23,
No. 5, pp. 8-19.
[8] Whitley, J., “A Study of Computer Obsolescence
and Its Impact,” M.S Thesis, Department of Computer
and Information Sciences, Towson University, Towson,
MD 21252, December 2001.

	
	
	Abstract
	1. Introduction
	2. Description
	
	
	
	
	3. Design Issues
	3.1. File Storage
	3.2. Memory
	3.3 Ethernet Driver
	3.4 Network Stack
	
	3.5 Task Scheduling
	3.6 Concurrency
	3.7 Response Times
	3.8 Throughput
	3.9 Robustness
	3.10 Pervasiveness
	3.11 Mobility
	4. Measurements
	5. Further Research
	6. Conclusions
	References

