
How to run C++ applications on a bare PC?

Dr. Ramesh K. Karne
Towson University

rkarne@towson.edu

Karthick V. Jaganathan
Towson University

kvenka1@towson.edu

Tufail Ahmed
Towson University

tahmed3@towson.edu

Abstract

Most of the computer applications today run on a

given operating system environment. The application
programs written in a programming language such as
C++ are intertwined with operating system and
environment to run on a given machine. Thus, a C++
program requires a processor such as an Intel
Pentium and an Operating system such as a Microsoft
Windows. Why do we have to run applications in such
a constrained environment? It may be because, that is
how evolution of computing happened since the
inception of personal computers in the 80’s. In this
paper, we describe details on how to run C++
applications on a bare machine. We provide some
benefits of running applications on a bare machine
without any operating system. We present some sample
applications that are built to demonstrate the
capability of running C++ applications on a bare
machine. Finally, we describe our future research
direction that may potentially offer a revolution in
computing architecture and application development.

1. Introduction

Running computer applications on a bare machine
is not a new concept. That is how computing started
decades ago, where a program is loaded manually with
toggle switches, and run by pushing a run button. We
are not talking about that in this paper! However, our
computer systems are complex and they have grown
out-of proportion creating a large semantic-gap
between applications and hardware. For example,
latest Microsoft XP operating system (OS) has 40
million lines of code. It is time now to revisit the
computing evolution and seek solutions using new
paradigms. The OS and environments have been
changing rapidly since last 30 years thus making things
obsolete before they can be even productive in their
life span. For example, Microsoft released more than
20 primary releases of OS in last 25 years. Each
language and environment goes through a new release
every six months. When an OS, or its environment

changes, it has ripple effect resulting in legacy
applications. How could we stop such proliferation of
products and technologies and make applications
stable? Without providing any validation, one possible
approach is to avoid operating system and its
environments. This is being done slowly in some areas
of computing without being noticed. For example,
Exokernel [2] approach indicates that current operating
systems are inefficient and some applications such as
server operating systems [4] run faster when kernel
code is moved into applications. Microkernel [3],
nano-kernel [14], OSKit [11], and other similar
approaches were also motivated by improving
performance by making the OS lean. However, none of
these techniques volunteer to remove OS completely!

In addition to the pioneering research of Exokernel

architecture [2], there are many efforts in research to
develop efficient operating environment for running
applications. Most recently, sandboxing mechanisms
[10] are proposed that allow applications to configure
and deploy services at user level. Individual efforts [1]
provided free operating system resources and code to
de-emphasize the role of commercial OS, but they
were not successful in eliminating the centralized OS
architecture. The OS-Kit [11] approach advocates
running applications on a bare PC, but still requires a
minimal kernel to assist the applications and they do
not provide C++ API for the user. The Choices [12]
project indicates that, it is possible to develop an
object-oriented operating system that runs on a bare
machine across many hardware platforms including:
Intel and Sun. In Choices, the object-oriented OS
provides the resource sharing and multiplexing of
applications. Similar ideas have been around with
Embedded ADA programming language [13], where
the language provides OS constructs such as process,
timer, and memory management functions. This
approach reduces the dependency of centralized OS,
thus providing programming capabilities to the user at
the language level. The SWILL [8] project developed a
lightweight programming library that adds a simple
embedded web server capability to C and C++

programs, but still requires OS. This programming
library provides efficient API to build server
applications.

When an OS is completely removed, now a

computer application can directly communicate with
the hardware. There are many applications that need
such computing paradigm where they have a total
control of their program. Some of the common
applications such as email, Web server, text
processing, spreadsheets, VoIP Phone, gateways,
routers, and so on can be run on bare machine. We
have presented an application object (AO) architecture
[5] to build computer applications that run on a bare
machine. Our research was partially funded by NSF to
explore possibility to develop the application-oriented
object architecture (AOA) [5, 6]. The original concept
of this idea was presented in [7]. In this paper, we
focus our discussion on how to run C++ applications
on a bare PC. The rest of the paper is organized as
follows. The Section 2 will provide a full description
of our approach, Section 3 describes the benefits of
running bare PC applications, Section 4 illustrates
some sample applications, Section 5 narrates our
current and future research, Section 6 mentions
acknowledgements, and Section 7 provides
conclusions of this paper.

2. Description

Running C++ applications on a bare machine is not
a trivial task. The bare machine used in this work a
desktop or a personal computer (PC). You will run
into numerous problems and issues in attempting such
a daunting task. To simply put this problem in
perspective, first you need to avoid all *.h files in your
C++ program to run your application with out using an
OS. How about loading your program into the
machine? You need to build your own boot and load
program as there is OS running in the system. The
following subsections present some of these problem
areas and provide a brief overview on how we
accomplished running some applications such as
sorting, and email using C++ programming language.

2.1. Boot and Load

In order to get a control of the machine without
loading a conventional OS, you need to write your
own boot program in assembly or C. This boot
program when it is complete will enable you to jump
to your own program after the boot. You need to
follow standard boot procedures for PCs, preferably

from a floppy disk (some PCs today don’t have
floppy), and power up the machine with this boot disk
in the floppy drive. This is simpler to do than booting
from a hard disk, as hard disk requires more
sophistication in its organization and file system. We
have used Turbo assembler to create our own boot
code using a floppy disk. There are many samples of
boot code available on the Web, but most of them need
some modifications and they may not work! Once your
system is booted, you need to load your own program
from another disk which may be written either in
assembly or C. After the boot, you need to jump (long
JMP) to this program so that you can accomplish what
you want to do with the PC after the boot. In our case,
after the boot, we jump to an assembly program which
displays a menu where some operations can be
performed on the PC such as: loading a program,
running a program, checking memory, and so on. You
also need a loader program which is part of your boot
to load this initial program. This loader has to be small
(called a mini-loader) so that it fits in one boot sector
code including the boot code. You also need a
sophisticated or bigger loader later, if you want to load
your large C++ programs in memory.

2.2. Modes of PC

Once the PC is booted, it is in a real mode, where
the addressing is limited to 1MB and there is no
protection of your code. It is simply in the disk
operating system (DOS) mode. In order to load and run
larger programs and have access to bigger memory,
you need to learn how to switch to protected mode
using assembly language instructions. However, all
basic input/output system (BIOS) calls are only
available in real mode. If you want to use BIOS for
I/O, you need to have a mechanisms to switch from
protected to real mode to perform BIOS calls. Thus,
your C++ program or some sort of control program
needs to do this switching that is transparent to the
user. If you plan to use software interrupts (255 of
them), instead of BIOS interrupts, then you need to
write your own code in assembly to address all I/O
operations. We have used both BIOS and software
interrupts and have written a protected to real mode
switch to operate in both modes. This is not a trivial
thing to do in assembly which requires you to be
familiar with Intel’s architecture specification
document, which is available on their Web site. This
document is a useful resource for understanding and
implementing interrupts, addressing schemes, task
facilities, traps, and exceptions.

2.3. Input/Output

Instead of switching back and forth to real mode, it
is more efficient to write software interrupts for all I/O.
There are 255 software interrupts available in a PC
environment, where you need to setup this in a table
called interrupt descriptor table (IDT). Hardware
interrupts are also part of these and they are
automatically invoked by the hardware. For example,
when a timer interrupt comes, it will be pointed to IDT
location 08h. All the software interrupts will be
invoked by your program in assembly language. Each
IDT entry will be pointing to a global descriptor table
(GDT) which keeps the address of the interrupt to be
executed. Interrupts can also be used to run
applications. Intel architecture specification document
provides more detailed description of the architecture
facilities. This is a very long learning process for
software people as it involves understanding of some
hardware facilities, and architecture facilities in the
Intel microprocessor.

2.4. Compiling Environments

In a conventional C++ program, we include *.h
files, which are OS specific libraries that will be
included in the executable. If we use any C++ builders,
then they will automatically include these libraries
which have no meaning in an OS less environment.
Thus, the compiling environment should be using
batch files to compile and link the needed modules. As
application programmer codes at C++ language level,
we have developed an interface file which has all the
interfaces needed for these programs. This file has
API including: input/output, tasks, memory, timer,
shared memory, locks, and so on. We use Visual
Studio C++ compiler (batch mode), MASM 6.11
assembler, and Turbo assembler compilers to create
executable modules. We have written all batch files to
do compilation and linking for boot, initial programs,
and for application programs. These batch files are
simple and easy to understand and use.

The API is a C++ call, which in turn invokes a C

call, and that in turn invokes an assembly call. A C++
programmer only sees the API. If an interface can be
accomplished at C++ level, then the code will be
implemented in the C++ level itself. We avoid using
any direct assembly calls in the C++ program;
however, such invocation is permitted by the compiler.

2.5. Memory Map

As you are running applications on a bare machine
with out OS, you need to keep track of your own
memory so that your program runs properly. Memory
map should organize initial program, application
program, stack, network data area, shared memory
area, task area, and so on. The memory size interface
provides the limits of the memory available, which can
be used to map memory areas.

2.6. Memory and Disk Usage

We assume that all the memory available in the PC
is available to the application. We do not provide any
file management other than read and write a sector
from a floppy disk. The application program has to
manage its own disk space and memory space in the
program. As application programmer has full
knowledge of PC hardware resources, he/she can
allocate and de-allocate them appropriately based on
the available storage. Assuming full address-space of
memory (for example, 4GB in 32 bit architecture), an
AO programmer has to manage this volatile memory
during execution, and any persistent storage should be
stored on the network (server disk). The AOs could
also be stored on the network server and loaded upon
demand at a client site.

2.7. Tasks and Scheduling

We developed an innovative task interface to the
user. A user can define a C++ class as task object, and
define methods inside the class which represent
individual tasks. Each task address (or member
function address) must be passed to the task object
during the creation of a task. The created tasks can be
placed in a list or queue and a given scheduling
algorithm can be used to run these tasks. We provide a
hardware timer to the application programmer to use it
for scheduling at a given time intervals. When
hardware timer occurs, the IDT will return the control
to a timer task in C++ which in turn can manage the
scheduler and scheduling of processes in a given
period. Due to space limitations in this paper, we
could not provide more details of our approach with
examples..

2.8. Debugging

Debugging a C++ program is very difficult task in a
bare machine environment without any OS support.
We have written several tools to help debug the
programs. A user can write a trace string to memory in
his/her program and later print this string in case of an

error. A user can also invoke an interrupt directly in
his/her program, which can be used to print registers,
memory, and other flags to identify the source of an
error. We provide a facility to dump memory onto
screen and also search a string in memory. All the
error and exception conditions are handled over to a
C++ application program by the hardware by setting
up appropriate IDT entry and a procedure in the
program. The above debug facilities are quite useful in
software development. In addition, a programmer can
still write their own trace and debugging messages in
their program..

2.9. Ethernet

Ethernet interfaces provide direct communication to
network card to check for a message arrival, to read a
message, and to write a message. This is an Ethernet
frame interface directly from a C++ program, which
avoids all other layers including TCP (transmission
control protocol), and IP (internet protocol). This
allows two AO to communicate at Ethernet level.
Some messages such as ARP (address resolution
protocol), which are small and within the packet size
limit of Ethernet (~1500), they can be directly received
by a C++ program. We have written a polling task do
exactly that, which polls the Ethernet card and discards
all unnecessary messages and responds to valid ARP
requests.

2.10. IP

IP interface provides send, and receive facilities.
The TCP/UDP (unreliable datagram protocol) layer
accesses these interfaces.

2.11. TCP/UDP

TCP interface provides connect, send, receive, and
close connection facilities. Similarly, UPD provides
send, and receive facilities. These interfaces are
accessed by applications.

2.12. ARP

ARP interface provides functions to resolve and
process ARP requests. These interfaces can be used by
applications or TCP/UDP/IP layers.

2.13. SMTP

The SMTP (simple message transmission protocol)
client interfaces provide open-connection, send mail,

and close connection for an application. These
interfaces are used to build an Email client application.
We have also built an email receive client application,
which connects to a mail server, and enables you to
read messages received for a given user.

3. Benefits

There are many advantages of running a computer
application on a bare machine. Some of the advantages
can be illustrated as follows.

1. Simplicity: As programs communicate directly
to the hardware, there is no middle layer such as OS,
thus the program can run on any Intel Pentium based
processor. A user can simply put a disk or a CD and
run his/her program.

2. Closed System: When you run an application
directly on a bare machine, it is a closed system. It
does not depend on any other systems or
environments. It is harder for an intruder to get into
such a closed system, where as in an open system, one
could always find a hole in some layer to exploit the
system.

3. Less Prone to Errors: All the errors are
predictable and containable with in the program.
Hardware and software exceptions are handled with in
the same program. In a conventional system, OS errors
are not visible to application programmers. For
example, an application programmer has no knowledge
of memory exception until it happens, which may be
too late to correct it.

4. No Layers: Application program is one layer.
There is no overhead in communicating between
layers. There is also no need for intermediate API to
communicate from one layer to another.

5. No Environments: There is a single
programming language environment. If we choose,
C++ as the language of choice for applications, then
that is the only environment needed to develop and run
applications. There is no need for separate execution
environment to run applications.

6. Forces Extensibility: When applications are
written to run directly on hardware, software and
hardware vendors are forced to provide extension from
previous releases, instead of abandoning the previous
release and replace it with a new one. When vendors
follow extensibility instead of an evolutionary path
where extensibility may or may not be provided,
products can last longer and less prone to
obsolescence.

7. Pervasive: When application programs are
directly communicating with hardware, they can be
used commonly in many application domains. For

example, if a cell phone and PC has Intel Pentium
based processors (may vary in size, and performance),
then the same application can run in both domains.
Today, an email application is same in a cell phone or
in a PC, but the actual software is different. A bare PC
and a bare cell phone with the same email application
object can offer a homogeneous architecture for
pervasive computing [9].

8. Autonomous: When an application program is a
closed system, it can be more autonomous or self-
controllable and self-manageable.

9. More Secure: When an application is self-
contained as there is no other OS or environment, then
its security may be better controlled. Secure
authentication and privacy mechanisms can be
encapsulated right into the application object. As the
current systems are complex, open and layered, it is
very difficult to enforce security in many component
systems and layers. Many of the security problems
today point to OS and its internals.

10. More Mobile: When applications are written as
self-contained entities and autonomous, then they can
be mobile. An application can run on any PC, and it
can be anywhere in the network. One does not have to
be concerned about the platform issues. Mobility can
be achieved physically or through the Internet.

4. Sample Applications

Using the C++ API presented above and some
additional API such as string functions, type
conversion functions, random number generator, we
have developed a variety of application objects
including: bubble sort, text editor, send/receive
messages using UDP, TCP, Ethernet/within a local
network, and send mail using SMTP (Email Client).
The I/O devices used in our applications are keyboard,
monitor, floppy drive, and Pentium processor with
64MB of memory. The Email client has 2666 lines of
code without including comments, and the size of the
executable is 32,768 bytes. Notice that the AO is very
small and it does not require any other environment or
libraries. We did not implement fragmentation in
TCP/IP as most of the email messages are small.

Developing bare PC applications was a daunting

task for us as it requires in depth knowledge and
experience with PC hardware and architecture. Most of
all, there are no debugging tools available that can run
on a bare PC. Thus, we first started our mission with a
development of “hello” program and slowly
progressed to Email Client. Now, we have a
comprehensive C++ API, which can be used to

develop complex applications such as a Web server,
which is currently in progress.

The construction of Email client was also a difficult

problem due to the network layers and communication
between an OS less PC and a conventional mail server.
Initially, we developed communication between two
PCs where both of them are bare machines. Our first
step and hurdle was development of a device driver for
a network card running Ethernet. Ethernet device
drivers are specific to a particular OS. We developed
an Ethernet driver for 3Com 509B card that has basic
functions to send and receive messages in synchronous
manner. Finally, we have developed the full-blown
functions to write the Email Client AO.

As the TCP/IP communication protocols are robust

and implementation independent, we are able to build a
lean and mean network stack that is needed for the
email client. Due to space limitations, the details of
these protocols are not described here.

When an application is built, it includes all the

necessary program and data needed for its execution.
For example, sorting application consists of random
number generator, data in a file, keyboard input and
output display. The size of this code module is 16 KB.
Similarly, an Email application consists of all
communication protocols, device driver, and all C++
API. Notice that, most of these applications are small
in size and easy to manage them on a floppy drive.

5. Current and Future Research

Currently, we are developing a Web server that can
run on a bare machine. This presents challenging
problems and issues related to our networking code,
which should be extended to run Web server
application. Most of the changes are needed in TCP/IP
and a new protocol HTTP (hypertext transmit
protocol). We are also investigating a computer
architecture that is amicable to application objects and
bare machine environment. Once the Web server is
built, we will be able to conduct performance
benchmarks on the bare PC server and compare it with
other commercially available servers such as Apache.
We are also seeking to develop new application objects
that make our approach suitable for other application
domains. Finally, we are investigating securing aspects
of the application objects, bare machine computing,
and their role in commercial computing.

6. Acknowledgements

We sincerely thank NSF and in particular late Dr.
Frank Anger who initially supported this work by
funding SGER CCR-0120155. With out this support,
our work could not have reached to this level.

7. Conclusions

We described detailed knowledge that is required to
build bare PC applications using C++ programming
language. The C++ API illustrated consists of many
interfaces including: boot-up, loading, timer, memory,
keyboard, display, disk, tasks, TCP/IP stack, SMTP,
and others. We have presented the benefits of running
computer applications on a bare PC. Current state of
research and further work needed is also briefly
outlined. When the Web server under construction is
operational, this may be the first Web server on the
Internet as per our knowledge, which will be running
on a bare machine with no conventional OS. When this
concept becomes successful, it will spur research in
pervasive computing devices that can use our approach
to build homogeneous devices that run on bare
machines. Semiconductor vendors such as Intel and
others should be interested in this idea as they can now
build microprocessors that are common to a variety of
pervasive devices.

8. References

[1] “A complete 32-bit C/C++ development system for Intel
80386 (and higher) PCs running DOS,”
 http://www.delorie.com/djgpp.

[2] Engler, D. R., The Exokernel Operating System
Architecuture, Ph.D. thesis, MIT, October 1998.

[3] Ford, B., Hibler, M., Lepreau, J., McGrath, R., and
Tullman, P., “Interface and execution models in the Fluke
Kernel,” Proceedings of the Third Symposium on Operating
Systems Design and Implementation,” 1999, pp. 101-115.

[4] Kaashoek, M.F., Engler, D.R., Ganger, G.R., and
Wallach, D.A. Server Operating Systems, In the Proceedings

of the 7th ACM SIGOPS European Workshop: Systems
support for worldwide applications, Connemara, Ireland,
September 1996, pages 141-148.

[5] Karne, R.K., Gattu, R., Dandu, R., and Zhang, Z.,
“Application-oriented Object Architecture: Concepts and
Approach,” 26th Annual International Computer Software
and Applications Conference, IASTED International
Conference, Tsukuba, Japan, NPDPA 2002, October 2002.

[6] Karne, R.K. Application-oriented Object Architecture: A
Revolutionary Approach, 6th International Conference, HPC
Asia 2002, December 2002.

[7] Karne, R.K., “Object-oriented Computer Architectures
for New Generation of Applications,” Computer Architecture
News, December 1995, Vol. 23, No. 5, pp. 8-19.

[8] Lampoudi, S., and Beazley. D.M. SWILL: A Simple
Embedded Web Server Library, Proceedings of the
FREENIX Track: 2002 USENIX Annual Technical
Conference, Monterey, California, June 10-15, 2002.

[9] Oxygen Project, MIT, http://oxygen.lcs.mit.edu.

[10]Qi, X., Parmer, G., West, R. An Efficient End-host

Architecture for Cluster Communication Services, to

appear in Cluster 04.

[11] “The OS Kit Project,”
http://www.cs.utah.edu/flux/oskit.

[12] The Choices: Object-Oriented Operating System,
http://choices.uiuc.edu/choices/choices.html.

[13] Turn any IBM compatible PC into a Preliminary Target
Board, High Quality, Real-Time, Embedded Ada for PCs,
http://www.ddci.com/products_pcbare.shtml.

[14] Tan, See-Mong., Raila, D.K., and Campbell, R.H. An
Object-oriented nano-kernel for operating system hardware
support, Object-orientation in Operating Systems, 1995,
Fourth International Workshop, p220-223.

http://www.delorie.com/djgpp
http://oxygen.lcs.mit.edu/
http://www.cs.utah.edu/flux/oskit
http://choices.uiuc.edu/choices/choices.html
http://www.ddci.com/products_pcbare.shtml

	1. Introduction
	2. Description
	2.1. Boot and Load
	2.2. Modes of PC
	2.3. Input/Output
	2.4. Compiling Environments
	2.5. Memory Map
	2.6. Memory and Disk Usage
	2.7. Tasks and Scheduling
	2.8. Debugging
	2.9. Ethernet
	2.10. IP
	2.11. TCP/UDP
	2.12. ARP
	2.13. SMTP

	3. Benefits
	4. Sample Applications
	5. Current and Future Research
	6. Acknowledgements
	7. Conclusions
	8. References

