
DOSC: Dispersed Operating System Computing
Ramesh K. Karne
Towson University

rkarne@towson.edu

Karthick V. Jaganathan
Towson University

kvenka1@towson.edu

Nelson Rosa Jr
Dartmouth College

nr@dartmouth.edu

Tufail Ahmed
Towson University

tahmed3@towson.edu

ABSTRACT
Over the past decade the sheer size and complexity of traditional
operating systems have prompted a wave of new approaches to
help alleviate the services provided by these operating systems.
The emergence of micro-kernels and a plethora of non-traditional
operating system models, both geared toward reducing the role of
the OS, attest to the promise of practical alternatives.

The problem with these methods is that the three-tiered system of
software, operating system, and hardware is still preserved. Even
though the operating system might find some reprieve by having
to handle less work there is a nascent notion being triggered by
these alternative approaches that the operating system as an
abstract entity is no longer a necessity. We propose a radical
method of computing where we take this notion to the extreme
and push the operating system into the software and hardware
levels. By doing so, we create a decentralized operating system
environment known as Dispersed Operating System Computing
(DOSC). We outline how the Dispersed Operating System
paradigm works, its benefits, and immediate practical applications
in today’s world.

Categories and Subject Descriptors
D.4 [Operating Systems]: Miscellaneous.

General Terms
Design

Keywords
Operating Systems, Application Object, Dispersed Operating
System Computing (DOSC), and Object-oriented.

1. INTRODUCTION
The traditional operating system has come under attack over the
last decade as an entity that is no longer providing services that
make computer systems convenient and efficient. With over thirty
million lines of code [23] and an ever increasing amount of
complexity [22], today’s popular operating systems continue to
only harm the applications they run. Each piece of functionality
not used only burdens an application with unwarranted
performance penalties, short-lived code, and adherence to a
specific operating system platform. Contrast this to the hardware
where relative to the operating system, is fast, standardized,
stable, and very cheap, the operating system as an abstract layer

comes into question. In fact, many alternative approaches to the
traditional operating system have been successfully implemented
in both hardware and software with the increasing trend that the
operating system does not have to do everything. The problem
with these approaches is that they do not go far enough. They still
preserve the concept of an operating system as a necessary
agglomeration sitting in-between hardware and software. Two
papers of note, [1] and [5], list plenty of reasons as to why the
operating system should cease to exist as a centralized unit.

Furthermore, embedded systems [2] and pervasive computing
[14] are becoming more commonplace and the traditional
operating system will not be able to adequately cover the
customized set of services needed for these varying computing
systems. We posit that in the end only a direct relationship
between hardware and software will yield the best results and that
a new paradigm has to be introduced to fully capture such a novel
environment. The Dispersed Operating System paradigm is what
will allow application-centric computing that is object-oriented to
come to fruition. The DOSC model takes full advantage of the
hardware through methods of encapsulation. Throughout the
remainder of the paper we further expand on the DOSC paradigm,
propose a viable infrastructure to support the DOSC environment
in hardware and software, current implementations of DOSC
computing, and where future research will take us.

2. RELATED WORK
The closest related works to our approach are the OSKIT [8, 19]
and the Exokernel [4, 5]. Both of these approaches break down
the operating system into its necessary components and dilute the
centralized importance of a traditional OS. Despite showing the
performance benefits of a trimmed OS there still lacks a proper
investigation into seeing how applications can benefit without an
OS present. The Service-Oriented Computing (SOC) [16]
architecture is a good conceptual model on sustaining application
governed systems. The DOSC paradigm tries to parallel the SOC
approach in the DOSC abstraction of hardware and software. The
SOC only applies to e-commerce and so has a limited scope in its
application. The feasibility of running an object-oriented
operating system on a bare machine was shown by The Choices
project [20]. This furthered the conviction that a complete object-
oriented environment was possible on a bare machine.
Sandboxing mechanisms [15] allow applications to configure and
deploy services at user level, which suggests that performance
gains are possible when functionality is moved from the OS level
to the application level. Other related works such as micro-kernels
[7], SPIN [3], server operating systems [9], embedded web server
library SWILL [13], Plan 9 [17], nano-kernel [21], VM and
Virtual PC [6], and similar concepts take advantage of the

Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

hardware and software to provide improved OS services. The
DOSC paradigm strives to improve upon all of these devices by
providing an efficient link between software and hardware, such
that their performance can only be improved by the removal of
the traditional OS.

These works have provided great motivation to take the operating
system one step further into disseminating the OS into hardware
and software. This is a necessary step because all of these
different architectures do not go far enough and have not
adequately explored the frontier of computing by removing the
OS as an entity.

3. THE DOSC PARADIGM FOR
SOFTWARE
The DOSC paradigm takes the operating system as an entity and
moves the OS services into hardware and software. The computer
is in essence a bare PC, but this makes an application the
cornerstone of the computer system. The software layer is
abstracted into an Application Object (AO), which encapsulates
the application(s) and the Application Operating Environment
(AOE) [11]. By following these tenets of DOSC computing the
hope is to design applications for long term stability, performance
improvements, and achieve savings of time and money through
code reuse and extensibility.

3.1 The Application
Applications are developed using object-oriented programming.
An object-oriented model for developing applications encourages
modularity and the use of inheritance to extend an applications
lifespan. Also, applications become components that are
encapsulated together within an AO. This allows the programmer
the necessary level of abstraction to include only the necessary
components needed to implement the final product. It is important
to stress that an Application Object is not restricted to just one
application and can encapsulate many applications at once. A
complex AO could be a banking application or a desktop
application where multiple applications can work in unison. The
AOE provides the environment, which the programmer optimizes,
to meet the demands of the enclosed applications.

3.2 The Application Operating Environment
The OS services that are moved into software are bundled
together into the Application Operating Environment. The AOE is
in charge of managing all resources needed by the applications.
The AOE may be implemented in any way the programmer sees
fit. Hence an AOE is custom-fitted to meet the demands of the
applications found in the AO. A fully adjustable AOE allows the
programmer full control of the machine. The programmer can set
up any environment that is necessary to give the user the best
experience possible. The entire design process is open and allows
for the utmost creativity in organizing and deploying an
application from the ground up. Although this places more
responsibility on the programmer, the AOE provides
unprecedented freedom to optimize the application by using the
hardware to create the proper environment for the applications.

3.3 The Application Object
In the DOSC way of computing the application and the
Application Operating Environment are encapsulated within an
Application Object [10, 12]. The AO is the entire software
package and must be self-contained, self-managed, and self-
executed (SSS) across any bare PC. An Application Object is
considered self-contained when all the necessary code, both at the
application and environment level, has been encapsulated into a
single compiled unit. The AO is self-managed when it provides
all of the needed services not found in hardware implemented in
the AOE. Finally, an AO is self-executable when it can govern its
entire execution flow. This includes loading itself into the system,
running the applications, error-handling, and termination of
applications and of itself. A concrete example of what an AO
would look like at the end of a development cycle is shown in
Figure 1. The figure depicts an e-mail AO. This e-mail
application is capable of sending and receiving messages using
the Simple Message Transfer protocol. The actual implementation
of the application is in C++. The AOE enclosed in the AO
provides for all of the resource management allowing the e-mail
AO to avoid operating system related calls.

Application
Object (AO)

Application Operating
Environment (AOE)

SMTPObj
BootObj

Application
Program
(AP)

TCPObj

ARPObj
Ethernet
Obj

IPObj

Other
Objects

Figure 1. Example AO (Email Client).

4. THE DOSC PARADIGM FOR
HARDWARE
The goal of the DOSC paradigm for hardware is to encourage
direct high-level calls of the primitives needed to interact with the
device. The hardware manufacturer is free to implement the
hardware API, but must make the API publicly available and in
addition must list all OS services found in the hardware device.
Furthermore, every device must have a processor complex. A
processor complex is comprised of a processing unit, volatile
memory, and a transceiver. A processor complex provides an easy
way to integrate all computing systems from mainframes to
pervasive computers. These requirements are quite feasible due to
the reduced costs of processors, memory, and transceivers.

4.1 Processor Complex
At the heart of the DOSC hardware paradigm is a processor
complex. The processor complex is comprised of a processing
unit, volatile memory, and a transceiver. The processing unit
determines whether the devices qualify as a computing system or
an optional I/O device. The computer architecture shown in

Figure 2 displays a computing system. Each computing system is
required to have a CPU as the processing unit. For example, a
computing system processor complex would be found in
desktops, laptops, PDAs, cell phones, and network appliances.
The optional I/O peripherals would have a device controller or
similar administrative processing unit for operating the device.
The controller can be on the hardware unit or as a separate piece
of hardware. The controller would allow for the software to
communicate with the device through the use of simple function
calls.

Figure 2. System Architecture Overview.

4.2 Hardware API
The AO to hardware interfaces provide direct communication to
hardware through the processing unit present in the hardware
device. In effect the device driver is expected to be implemented
somewhere inside the processor complex of the device. The API
is meant to help promote manufacturers to publish a listing of OS
services dispersed into hardware. The Hardware API instructs the
software developer as to what the function calls are and what
parameters to pass to operate the target device. A sample
interfaces are shown in Figure 3.

4.3 AO Control of Hardware
When an Application Object is executing the AO has sole control
of the CPU processing complex. This is to avoid the complexities
and penalties in context switching such a large amount of state.
This might seem as a setback, but the price of a adding an
additional CPU processor complex to the computing system is not
expensive. The price would conceivably be offset by the purchase
of the latest version of a commercial operating system every time
a new release became available. On the other hand I/O devices do
not need a one to one correspondence with an AO, because
arbitration algorithms can determine which AO has access to the

device. Of course this is just an implementation detail and if the
DOSC paradigm becomes an active area of research several AOs
can one day run off of the same CPU processing complex.

5. DESIGN AND IMPLEMENTATION OF
SAMPLE APPLICATION OBJECTS
Currently, we cannot expect hardware to provide direct interfaces
to AOs. Thus, we have implemented hardware interfaces using
the C++ API as shown in Figure 3 and so have resorted to
demonstrating the feasibility of the DOSC concept. The hardware
platform used for the AOs has been IBM compatible PCs with
Intel Pentium processors, a 3COM 3C509B NIC, and at least
128MB of memory. Each AO interface is written in C++ as a
method (Figure 3 shows example calls for the sample AO
interfaces). As the code is C++ compatible we can take advantage
of most standard compilers and linkers to build the Application
Object. In order to deploy the AO on a bare PC a basic interface
program was written to load the AO. This simple interface
provides total control of the system to run AO applications. We
eventually plan on removing the dependency of the AO loader
and develop the AOs to be fully compatible with the SSS
properties outlined for AOs. Initially we programmed a set of
simple AOs. These programs were the hello world program, the
merge sort and bubble sort algorithms, and an SMTP protocol
capable of sending and receiving messages. To further validate
the paradigm we have also implemented an e-mail AO and a web
server AO as examples of more complex applications in terms of
resource management. The API is provided for these AOs to serve
as a concrete example on how the DOSC paradigm can simplify
the direct communication to the hardware. The API also
demonstrates the amount of flexibility granted without a
centralized OS.

Network/
Internet

AO
Customer

Message

Messag
AO
Provider

AOs

CPU
Memory

AO

CPU
Memory

AO

Computer
System

NIC NIC

NIC: Network Interface Chip

AO

Keyboard Mous Display
Othes

5.1 An E-mail Application Object
An e-mail application object requires the implementation of the
SMTP, TCP, IP, ARP, and Ethernet protocols. All of these
protocols had to be re-implemented from scratch because
commercially available protocol suites for networking are
complex and are not meant to run on bare machines. We have
only implemented the generic facilities that are needed for the e-
mail client to function correctly. The features implemented in the
e-mail client are the typical source address, destination address,
subject fields, as well as, attachments and text-only message
content. The e-mail client is written as a single threaded model to
send messages. However, nothing precludes us to run the client as
a multithreaded program.

The e-mail client connects to the Towson University e-mail server
to forward the messages. Similarly, the e-mail client receives e-
mail messages through the same server using the Post Office
Protocol. Figure 4 shows part of the implementation and message
flow to send an e-mail. This logic includes: resolving the ARP
addresses, making connection to the server, processing packets
through Ethernet to the SMTP level, and interfacing with the user.
The client does not respond to unnecessary requests coming from
the network and simply discard messages that are not relevant to
the e-mail AO. The size of the e-mail AO executable is 32,768
bytes with 2,666 lines of C++ code. This count does not include
comments. The connection establishment time for the e-mail
client to the server is about 3.5 seconds. The connection timecan

be dramatically improved if we implemented our own e-mail
sever because the campus e-mail server’s response is very slow.

5.2 A Web Server Application Object
In the DOSC paradigm the philosophy is to customize an
application’s environment so to avoid including unnecessary
functionality. The object-oriented approach makes programming
in the DOSC environment very efficient because only necessary

services need be compiled into the Application Operating
Environment. The AOE components are expected to be reusable
for use in a variety of AOs. As can be seen from e-mail message
flow (Figure 4) and web server message flow (Figure 5) the
functionality that is required for the e-mail AO and the web server
AO are similar in some areas and different in others. For example,
the web server design overlaps with the e-mail design in its
implementation of the HTTP, TCP, IP, ARP, and Ethernet
networking protocols. Therefore these components can be reused
in the web server AO. The web server environment for which
these protocols will be used in will be very different from that

AOAIOObject:

// get a character from the keyboard

ch = io.AOAgetCharacter(); // INT 0F5h

// print a character at a given location on the screen

io.AOAprintCharacter(ch, 300); // INT 0F7H

// print a hex value at a given location on the screen

io.AOAprintHex(integ, 340); // INT 0FDH

// print a hex value at a current cursor location on the screen

io.AOAprintHex(integ); // INT 0FDH

// get a string from the keyboard

int len = io.AOAgetString(buffer); // INT 0F5H

// print a string at a given location on the screen

io.AOAprintString(buffer, len, 400); // INT 0F7H

// print a string at a current cursor location on the screen

io.AOAprintString(buffer, len); // INT 0F7H

//clear screen

io.AOAcleanScreen(); // INT 0F1H

//get cursor position

pos = io.AOAgetCursor(); // INT 0F2H

//set cursor position

io.AOAsetCursor(integ); // INT 0F3H

// read a floppy disk, one sector at a time

io.AOAreadFloppy(buffer, 21); // INT 0FAH

// get a timer value

integ = io.AOAgetTimer(); // ;INT 08H

// exit from program

io.AOAExit();

AOAEtherObject:

Init(); // Initialize device

Send(char*, int); // // Send packet

Receive(char*); // Receive pakcet

Close(); //Close device

getMac(char*); // Return MAC address

AOAUDPObject:

setTarget(char*, short); // Set target machine

setData(char*, int); // Set data to be sent

Send(); // Send data gram

Receive(char*); // Receive data gram

Close(); //Close connection

Figure 3. Sample AO Interface Calls.

Send Message

Send ARP for Server/Gateway Stage 1

Send Ethernet Frame with
ARP Request

Receive
Ethernet Frame ARP Others

ARP Request ARP Reply Discard

 Discard If reply for the sent request,
save MAC address

Send TCP Open to SMTP
Server Port # 25

Stage 2

Receive Ethernet
Packet IP Others

Other Packet TCP Packet Discard

Discard

It is not from the
SMTP port

(Others)

It is from the
SMTP port

SMTP Process Discard

Send and Receive
SMTP Messages

Figure 4. Email Message Flow.
found in the e-mail environment. A web server has to constantly
listen to the client’s requests, resolve ARPs, receive Ethernet

frames, and send the frames to the appropriate recipient. In the
end the network protocol suite is tailored to fit the web server
application.

Running a web server on a bare PC was quite a daunting task as it
posed numerous challenges in server architecture. The object-
oriented methodology used throughout the exploration helped to
achieve this milestone smoothly. The web server is fully
operational and can be accessed at http://dosc.towson.edu. The
web server runs on a Pentium II, 350 MHZ, with 128MB memory
with no hard disk and only supports HTTP requests. The server is
hosting one of the author’s web site as well as over 673 files with
over 40MB of file storage. The size of the executable is 77,824
bytes, while the number of lines of C++ code, not including
comments, is 6,587. The DOSC prototype environment and AOs
will be made available through the web server in the near future.
The next step is to conduct performance measurements and
benchmarks of the web server.

6. IMPACT OF THE DOSC APPROACH
The DOSC approach is projected to have the following impacts:

• Common applications such as sorting, e-mail, web server,
gateways, routers, web browsers, desktop applications,
network monitors, sensor networks, security monitors, and
more can be better implemented with the DOSC approach.
Since the system is bare these applications will be able to run
on older machines. This will help reduce the frequent
dumping of computers.

• Many common applications (like those mentioned above)
developed using the DOSC approach can easily be executed
on embedded systems that also adhere to the DOSC
paradigm, for example, cell phones. This will save
tremendous software development cost, reduce
heterogeneity, and avoid middleware to integrate these
systems.

• Users can set up their own servers, as the web server and e-
mail AOs are fairly small and host their own web sites, e-
mail clients, and e-mail servers. This will reduce the
tremendous load and traffic on current web and e-mail
servers.

• The DOSC approach will encourage hardware vendors to
provide standard interfaces. Thus resulting in common
interfaces for a variety of pervasive devices. This would
make pervasive computing much simpler.

• The DOSC approach can improve the performance of
computation intensive applications, as there is no OS
overhead in the system. Preliminary results with bubble sort
and merge sort on 500,000 elements have yielded that DOSC
runs the algorithms 16% faster compared to running on a
Red Hat Linux WS4.

• Simple designs that consistently use a small number of
general mechanisms [18] such as our e-mail client and web
server should be more secure than conventional systems. In
particular, the web server AO does not require any firewall
to filter ports because it only accepts messages on the
standard HTTP port. Intruders will not be able to understand
and predict the implementation details and thus making the

clients and servers less vulnerable to OS exploits and related
attacks.

• As there is no central OS running, AOs do not leave any
trace of their execution. This approach can be used to run
military or secure applications where two AOs can
communicate through their own private protocol without
publicizing them to gain more security.

Receive Ethernet Frames Thread

Others

 IP

Other
Requests

ARP Handler

ARP Others

Discard

Reply for
our request

Resolve
MAC
ADDR

Update
ARP
Table

Send ARP
Reply

UDP

Discard

TCP
Server File Transfer
 Port #5000

TCP
Process
Threads

Discard

HTTP
Port #80

Other Ports

Others

File Transfer
Handler

Update File Index
Load Files in Memory

DiscardUpdate
TCP
Table

Insert into
HTTP List

Get HTTP Data
from HTTP List

Parse HTTP
Request

Process HTTP
Request

Send HTTP File

HTTP Thread

Get HTTP Data
from HTTP List

Parse HTTP
Request

Process HTTP
Request

Send HTTP File

HTTP Thread

IP/ARP
Process
Threads

Figure 5. Web Server Message Flow.

The DOSC approach, although still under development, suffers
from the following drawbacks:

• There is redundant code in each AO; the common code
among AOs is not utilized (if the communalities utilized then
it leads into a traditional OS).

• AO programmers have to deal with more complexity in the
DOSC approach. On the other hand, it is better for the AO
programmer to deal with the nitty-gritty of a system rather
than delegating it to an OS middleware, where it may or may
not be trusted.

• Developing standards for AOs in software and hardware may
not be practical in today’s market driven world. However,
for certain applications, this approach will be ideal regardless
of trends in the market.

7. FUTURE RESEARCH
Currently, we have a complete prototype environment for
developing and testing the DOSC applications. In the near future
we plan to conduct performance benchmarks and measurements
of our web server and compare them with other commercial web
servers such as IIS, Apache and Zeus. The followinglist identifies
other future research directions:

• Identify design issues related to using the same AO
developed for the web server in a cell phone or a network
appliance.

• Study the security issues related to the web server AO.

• Develop a VoIP Phone application based on the DOSC
paradigm.

• Investigate how AOs can be used as mobile agents to address
a variety of middleware problems.

• Investigate how the DOSC paradigm will simplify the IT
industry and change the players in the IT arena. This work
requires at least the investigation of the following issues:

o How IT industry will be organized if the DOSC
paradigm becomes successful?

o How should the IT players interact with each
other?

o Who owns the rights of the AOs?

o How are AOs distributed, controlled, and managed
for users?

o How AOs work with existing applications?

o How a non-AO environment works within an AO
environment?

8. CONCLUSIONS
This paper presented the conceptual foundation for Dispersed
Operating System Computing. The DOSC approach is meant to
allow software and hardware to directly talk with one another
without the middleware operating system. The software is stored
inside a self-contained, self-managed, and self-executed
Application Objects capable of running on any bare machine.
The hardware in the DOSC paradigm contains a processor
complex, which allows for easy integration of all devices through
a processing unit, memory, and transceiver. The DOSC paradigm

can be implemented as proven by the e-mail client AO and web
server AO. The DOSC approach could usher in a new wave of
computing through its exploration of developing hardware and
software on bare systems.

9. ACKNOWLEDGMENTS
We sincerely thank NSF and in particular the late Dr. Frank
Anger who initially supported this work by funding SGER grant
CCR-0120155. Without his support, our work would have had no
opportunity for study and could not have reached this point. We
also thank Dr. Joyce C. Little for her valuable advise and input to
the paper in its contents and style. Finally, we would like to
acknowledge our Summer REU 2004 students Payal Aggarwal,
Sean O. Bender, and Mark Arthur Dencler for helping with the
initial proof of concepts of the DOSC paradigm.

10. REFERENCES
[1] Anderson, E., Thomas, The Case for Application-Specific

Operating Systems, Third Workshop on Workstation
Operating Systems, pp. 92-94, April 1992.

[2] Borriello. G., and Want, R. Embedded Computation Meets
the World Wide Web, CACM, Vol. 43, No. 5, May 2000.

[3] Bershad, B.N., Savage, S., et al. Extensibility, safety, and
performance in the SPIN operating system. In 15th ACM
SOSP, pages 267-284, December 1995.

[4] Engler, D. R., The Exokernel Operating System
Architecuture, Ph.D. thesis, MIT, October 1998.

[5] Engler, D. R., M.F. Kaashoek, “Exterminate all operating
system abstractions,” FifthWorkshop on Hot Topics in
Operating Systems, p. 78, 1995.

[6] Exploiting Virtual PC,
http://www.expresscomputeronline.com/20040607/techspace
01.shtml.

[7] Ford, B., Hibler, M., Lepreau, J., McGrath, R., and Tullman,
P., “Interface and execution models in the Fluke Kernel,”
Proceedings of the Third Symposium on Operating Systems
Design and Implementation,” 1999, pp. 101-115.

[8] Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., and
Shivers, O., “The Flux OSKit: A Substrate for OS and
Language Research.” In Proc. of the 16nth ACM Symp. on
OperatingSystems Principles, St. Malo, France, Oct. 1997,
pp. 38-41.

[9] Kaashoek, M.F., Engler, D.R., Ganger, G.R., and Wallach,
D.A. Server Operating Systems, In the Proceedings of the
7th ACM SIGOPS European Workshop: Systems support for
worldwide applications, Connemara, Ireland, September
1996, pages 141-148.

[10] Karne, R.K., Gattu, R., Dandu, R., and Zhang, Z.,
”Application-oriented Object Architecture: Concepts and
Approach,” 26th Annual International Computer Software
and Applications Conference, IASTED International
Conference, Tsukuba, Japan, NPDPA 2002, October 2002.

[11] Karne, R.K. Application-oriented Object Architecture: A
Revolutionary Approach, 6th International Conference, HPC
Asia 2002, December 2002

[12] Karne, R.K., “Object-oriented Computer Architectures for
New Generation of Applications,” Computer Architecture
News, December 1995, Vol. 23, No. 5, p. 8-19.

[13] Lampoudi, S., and Beazley. D.M. SWILL: A Simple
Embedded web Server Library, Proceedings of the
FREENIX Track: 2002 USENIX Annual Technical
Conference, Monterey, California, June 10-15, 2002.

[14] Oxygen Project, MIT, http://oxygen.lcs.mit.edu.
[15] Qi, X., Parmer, G., West, R. An Efficient Endhost

Architecture for Cluster Communication Services, to appear
in Cluster 04.

[16] Papazoglou, M. P., and Georgakopoulo, D., “Service-
Oriented Computing”, Communications of the ACM,
October 2003, Vol.46, No.10, p.25-28.

[17] Pike, R., Pressotto, D., Thompson, K., and Trickey, H. “Plan
9 from Bell Labs”, UKUUG Proc. Of the Summer 1990
Conf., London, England, 1990.

[18] Saltzer, J. H, and Schroeder, D. The Protection of
Information in Computer System. Proceedings of the IEEE
63(9): 1278-1308, September 1975.

[19] “The OS Kit Project,” http://www.cs.utah.edu/flux/oskit.
[20] The Choices: Object-Oriented Operating System,

http://choices.uiuc.edu/choices/choices.html.
[21] Tan, See-Mong., Raila, D.K., and Campbell, R.H. An

Object-oriented nano-kernel for operating system hardware
support, Objectorientation in Operating Systems, 1995,
Fourth International Workshop, p220-223.

[22] http://www.wired.com/news/linux/0,1411,66022,00.html.
Linux: Fewer Bugs Than Rivals, Dec 14, 2004.

[23] http://www.dwheeler.com/sloc. Estimating GNU/Linux Size,
July 2002.

http://oxygen.lcs.mit.edu/

	INTRODUCTION
	RELATED WORK
	THE DOSC PARADIGM FOR SOFTWARE
	The Application
	The Application Operating Environment
	The Application Object

	THE DOSC PARADIGM FOR HARDWARE
	Processor Complex
	Hardware API
	AO Control of Hardware

	DESIGN AND IMPLEMENTATION OF SAMPLE APPLICATION OBJECTS
	An E-mail Application Object
	A Web Server Application Object

	IMPACT OF THE DOSC APPROACH
	FUTURE RESEARCH
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

