
Obsolescence in Operating Systems and
Microprocessors

Dheeraj Naraharisetti
Marriot’s Ridge HS

Marriotsville, MD

Ramesh Karne
Computer and Information

Sciences
Towson University

Towson, MD
rkarne@towson.edu

Joel Weymouth
Information Science

and
Systems

Morgan State University

Baltimore, MD

Alex Wijesinha
Computer and Information

Sciences
Towson University Towson,

MD
awijesinha@towson.edu

Abstract—Obsolescence and its impacts on software and

systems continue to be of interest. Reducing obsolescence in

operating systems and microprocessors will help to reduce

software obsolescence. We examine obsolescence in Intel

microprocessors and Windows operating systems. We first present

data that illustrates the extent of the problem. We then consider

extensible designs to reduce obsolescence in operating systems and

microprocessors. This approach can be adapted to design software

and hardware that are resilient to obsolescence.

Keywords—software obsolescence, software evolution, operating

systems, microprocessors, extensible designs

I. INTRODUCTION

Software evolution is an important part of the software life
cycle and includes approaches for designing software that lasts
and is easier to maintain. However, software and hardware
products are often designed to have a limited lifetime. When
this lifetime is reached, current software and hardware are
replaced with new or upgraded versions. This cycle is a special
case of obsolescence, which comes from the Latin term
"obsolēscere," meaning to fall into disuse and decay. Although
viewed as being an outcome of technological advancement
and/or essential for business reasons [9], obsolescence results
in a waste of hardware and software components. It also
promotes frequent and unnecessary software and hardware
releases. The environmental consequences of software and
hardware obsolescence are an increased use of energy and
resources, and e-waste due to the dumping of hardware,
devices, and computer equipment. Reducing software and
hardware obsolescence can help green computing efforts.

Software typically requires the support of an operating
system or kernel to run, which in turn depends on the
underlying hardware. Obsolescence in operating systems and
microprocessors impacts software obsolescence. In this paper,
we examine obsolescence in operating systems and
microprocessors.

Operating systems include general purpose, centralized,
distributed, real-time, embedded, mobile, and library operating
systems. Their design and implementation are closely related to
advancements in processor technology [4]. To limit the scope
of the discussion, we only consider obsolescence in Microsoft

desktop/laptop operating systems and Intel microprocessors.
We first present data on the frequency of releases for these
products, which shows that operating system and
microprocessor obsolescence are closely related. We then
discuss the use of extensible designs to reduce obsolescence.

The rest of the paper is organized as follows. Section II
deals with obsolescence in operating systems and
microprocessors and includes relevant data. Section III
describes designs for microprocessors and operating systems to
reduce obsolescence. Section IV discusses related work.
Section V concludes the paper.

II. OBSOLESCENCE IN OPERATING SYSTEMS AND

MICROPROCESSORS

 Fig. 1 shows 16 editions of Windows 10, dominant among
Microsoft operating systems for six years, and supported by 815
Intel processor models. A total of 12,337 Windows editions
were designed from 2009 to 2021 including Starter, Home
Basic, Home Premium, Professional, Enterprise, and Ultimate,
and associated with Intel processors such as Celeron, Core,
Pentium, Xeon, and Atom as shown in Fig. 2 (based on data
from [5], [6]). Operating system size also increased, peaking at
55 million lines of code, as shown in Fig. 3 (based on data from
[7]). To support new user requirements, more architectural
features were added to CPUs, while technological
improvements resulted in new CPU designs.

Fig. 1. Intel processors for Windows 10.

979-8-3503-4588-9/23/$31.00 ©2023 IEEE
SERA 2023, May 23-25, 2023, Orlando, USA

110

20
23

 IE
EE

/A
C

IS
 2

1s
t I

nt
er

na
tio

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
R

es
ea

rc
h,

 M
an

ag
em

en
t a

nd
 A

pp
lic

at
io

ns
 (S

ER
A

) |
 9

79
-8

-3
50

3-
45

88
-9

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

SE
R

A
57

76
3.

20
23

.1
01

97
80

9

Authorized licensed use limited to: Towson University. Downloaded on December 01,2023 at 17:01:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Windows editions (2009-2021).

Fig. 3. Number of lines of code.

Obsolescence in Intel microprocessors used in desktops and
laptops is evident in the data given in [1], [2]. Microprocessors
are characterized by the number of transistors, process
technology, and speed (frequency), while the number of bits
(16, 32 or 64) defines their computer architecture and
organization. As semiconductor chip technology improved, the
number of transistors and clock rates increased, and
performance improved. New chips were produced as soon as an
improvement in technology became available, replacing the
older chips within their computing environments and platforms.
Every variant production required a separate chip, testing,
maintenance, and replacement overhead, and a different
programming environment to exploit its features. In turn, this
impacted operating systems, compilers, applications, and other
related environments and tools, and resulted in obsolescence of
people skills related to hardware and software.

Due to the 1 MB memory limit on 16-bit processors
(address 16+4=20 bits), 32-bit processors emerged. These
processors provided ample address space (4 GB), virtual
memory, and supported even more computer applications.
Improvements in technology resulted in the advent of 64-bit
processors. Table I shows the number of variants and chip types
for 16, 32, and 64-bit Intel microprocessors. For 32 and 64-bit
processors, variants outnumber chip types by almost a factor of
ten. Over 43 years (1978-2021) a chip was released every 7.8
months, and one variant was released every 0.84 months.

TABLE I. MICROPROCESSOR RELEASES

No of Bits Chip

Types

No of

Variants

16 5 11

32 27 274

64 34 330

Total 66 615

Avg.

release in

43 years

7.8

months

0.84

month

Fig. 4. Intel process technology trends.

Fig. 5. Intel multicore trends.

Fig. 4 illustrates 64-bit Intel process technology trends over

36 years. Note that process technology shrunk from 1 to 0.5 nm

(2000 times, which averages about 55 times in a year). Fig. 5

shows that over 16 years, the number of cores in the chip

increased from 1 to 56, a trend that continues. Fig. 6 shows an

improvement in clock speed from 0.8 to 5.33 GHz over 21

years. Fig. 7 shows that the number of transistors in 64-bit

processors increased from 376 to 2270 million on a single chip.

111

Authorized licensed use limited to: Towson University. Downloaded on December 01,2023 at 17:01:30 UTC from IEEE Xplore. Restrictions apply.

As density increased, engineers added more functionality to the

chip. More functionality was also part of the GPUs (general-

purpose units for graphics, servers, and specialized functions),

hyper-threads, pipelining, branch predictions, multiple cores,

multilevel caches, varying cache sizes, variation of models,

variation of clock frequencies, network protocols, security

algorithms, customization for a given application, increased

instructions (Fig. 8 based on data from [3]), specialized

registers, specialized bus widths and I/O buses, and so on.

These features were not envisioned in the original CPU

architecture, so new designs were added as needed.

Fig. 6. Clock speeds.

Fig. 7. Number of transistors.

Fig. 8. Number of CPU instructions.

III. DESIGN STRATEGIES TO REDUCE OBSOLESCENCE

A. Reducing Microprocessor Obsolescence

The number of bits (16, 32, or 64), variants (clock
frequencies, models, etc.), additional logic (cache, hyper-
threads, system registers, etc.), the number of cores,
instructions, and technology (brands) define six attributes
characterizing Intel multiprocessors as shown in Fig. 9. The
reduction of microprocessor obsolescence can be achieved with
respect to four categories: variants, technology, additional
functions, and bus widths. For example, chip designers
produced eight variants of microprocessors from October 1999
to March 2000 (5 months), improving the clock frequency from
650 to 866 MHz. If microprocessor designs are extensible, a
new variant will extend an earlier design and only one variant
(866 MHz in this case) will be introduced only once the current
technology is stable and a higher clock rate becomes feasible.
This approach would have reduced microprocessor
obsolescence. For customers with lower speed requirements, it
would also have been possible to offer high-speed clock rates
at the same price, thus reducing the number of variants.

Fig. 9. Intel micrprocessor attributes.

Similarly, Intel released seven different Pentium
microprocessor types from 1992 to 2000 or approximately one
chip per year. Process technology improved from 0.8 to 0.25
microns. It could be argued that there was no need for so many
releases. Pentium 2 and Celeron also overlap in their time of
release. Waiting for at least a year would have reduced the
number of chip releases and consequently reduced
obsolescence. Furthermore, designing the Pentium processor
model to be upward compatible would avoid the need to have
other Pentium derivatives.

More logic (cache levels and varying sizes, hyper-threads,
GPU etc.) can be architected a priori in the CPU and have hooks
placed to enable them when released. Thus, a previous design
is logically extended to support new functions. The instruction
set in the original architecture should be robust enough to allow
adding more instructions as needed. The CPU architecture
should be designed with hooks enabling extension when older
chips are replaced by newer chips. This approach is object-
oriented and transparent to the user. It will reduce the number
of chip releases and the corresponding software and
maintenance costs, thus reducing obsolescence at many levels.

A simple example will illustrate the above concept. In the
past, chip engineers located cache outside a CPU chip. As the
CPU chip sizes grew, designers changed chip design to place a
small L1 cache onto the chip. Eventually, chip designers

112

Authorized licensed use limited to: Towson University. Downloaded on December 01,2023 at 17:01:30 UTC from IEEE Xplore. Restrictions apply.

located L1, L2, and L3 caches on the chip. It may even be
possible in future to push large amounts of main memory onto
the chip and avoid a cache. Cache and main memory can be
viewed as memory for the CPU. Putting a few hooks in the
CPU, indicating where that memory location is, would solve the
location problem and allow the extension of CPUs without
obsoleting them. A similar concept can be used throughout
CPU architectures and designs to reduce obsolescence.

Multicore processors have also increased complexity and

caused rapid obsolescence in CPUs, chips, tools, supporting

software, and applications. Multicore designs require memory

to be shared and cause cache coherency problems. They also

make load balancing, concurrency control mechanisms, and

writing applications more complex. Instead of multiple cores,

designers should consider adding other logic to

microprocessors, providing upward compatibility, and

preserving previous product versions. Furthermore, the bit sizes

indicate the capacity of arithmetic and logic operations in a

CPU. For example, in a 64-bit CPU, all operations are based

on 64 bits. CPU architectures do not provide hooks to extend

the bus width. In principle, CPU obsolescence can be reduced

by adding hooks to the CPU for 16, 32, or 64-bit configurations

as shown in Table II. Designing extensible chips for CPUs to

enable enhanced functions and features will reduce

obsolescence in manufacturing, production, and maintenance,

and reduce complexity in supporting software for the chips.

TABLE II. PROPOSED SINGLE CORE LAYOUT

B. Reducing Operating System Obsolescence

Microsoft operating systems can also be characterized by six
attributes as shown in Fig. 10: number of bits, editions, brands,
additional applications, multiple cores, and additional features.
Each release of the operating system impacts browsers,
databases, editors, graphical interfaces, multi-core support, I/O,
security, RAID, cache variations, system registers and special
registers etc. A new OS release may be due to changes in
computer architecture such as hyper-threading, multiple cores,
or CPU bits. These upgrades increase the number of attributes
and operating system complexity.

Design obsolescence and planned obsolescence are common
with operating system releases. For example, Windows 11
replacing Windows 10 may be viewed as design or planned
obsolescence [41]. While new releases address important
security issues, they are likely to have a larger attack surface and

be harder to secure due to increased complexity and larger code
sizes [13]. Although not discussed here, such security issues are
not limited to Microsoft operating systems.

Fig. 10. Microsoft operating system attributes.

Reduction of operating system obsolescence is addressed
with respect to five categories: processors, applications,
additional features, direct interfaces, and user-mode functions.
Adopting methodologies to extend the useful life of
microprocessors as discussed above will reduce operating
system obsolescence. The number of models will be
considerably reduced, inducing savings in code size, production,
maintenance, support, and human resources. Upward
compatibility in operating systems will also help minimize
obsolescence regardless of the size of the bit logic in Table II.
Editors, presentation software, spreadsheets, tools, compilers,
debuggers, user interfaces, networking protocol software,
databases etc. are continually updated with new versions. Since
these applications have many features in common, designers
should create more abstractions in operating system facilities
and design applications with generic drivers that target a variety
of devices to reduce efforts and obsolescence.

Operating system designers should anticipate new features
and place appropriate hooks in the original architecture.
Operating systems can be logically extended by simply enabling
a new feature and adding new code. This promotes software
reuse and reduces obsolescence. Designers can also provide
direct hardware interfaces to bypass the operating system. These
interfaces can be implemented at the CPU level by writing
system-level code to make these hardware interfaces available
to application programmers thus reducing or even bypassing the
operating system interface to applications. This approach will
reduce operating system obsolescence while not requiring
additional features to enhance the operating system.

As in Exokernel [11], some non-essential kernel functions
can be moved to applications. Kernel functions are increasingly
done in user space with current operating systems. An extreme
approach is to run applications on bare machines [12] without
any operating system or kernel. This approach can be facilitated
in the future if vendors design hardware with direct interfaces
for applications. Designing extensible operating systems with
security in mind avoids the need for new operating system
releases and patches based on security issues. More research is
needed on how to integrate the design of microprocessors,
operating systems, and software to achieve the goals of security
and extensibility while reducing obsolescence.

113

Authorized licensed use limited to: Towson University. Downloaded on December 01,2023 at 17:01:30 UTC from IEEE Xplore. Restrictions apply.

IV. RELATED WORK

Obsolescence and its impact on society, information
technology and systems, software, hardware, business,
manufacturing, engineering, education, and management have
been (and continue to be) investigated. Mellal [23] provides an
obsolescence typology and discusses the impact of
obsolescence based on a literature review. Smit [25] used a
triangulation process to study information obsolescence.
Weerasuriya and Wijayanayake [26] study obsolescence in
information systems and provide guidelines to manage it.
Earlier studies such as Sandborn [27], Whelen [28], Gravier and
Swartz [29], Bulow [30] and Legge [31] also deal with various
aspects of obsolescence.

Bisschop, Hendlin, and Jaspers [14], and Malinauskaite and
Erdem [15] discuss legal aspects of planned obsolescence.
Green Matters [16] reports on French regulations that force
industry to report a repair-ability score on many products.
Hudomiet and Willis [20] examine the impacts of
computerization on older workers in the labor market whose
skills became obsolete.

Ma [21] defines a measure of technological obsolescence
based on patent data and discusses results covering many
aspects of product markets including innovation, growth,
productivity, and profits. Vergara et al. [42] study the
technological obsolescence of two virtual reality learning
environments in engineering classes from 2013-2020 based on
surveys using 135 students. Trabelsi et al. [22] discuss the use
of machine learning and features selection for obsolescence
forecasting. Parvin and Beruvides [24] review the literature on
forecasting technology obsolescence. They also study
abandonment of a technological innovation as an optimization
problem [44].

Studies have also addressed software and hardware
obsolescence. Jang et al. [32] investigate software and hardware
degradation and propose strategies to prevent them. Bowlds,
Fossaceca, and Iammartino [43] use multicriteria decision
making for software obsolescence risk assessment. Gerasimou
et al. [46] propose a method to address software library
obsolescence. An opinion on Docker obsolescence is given in
[10].

Zallio and Berry [17] conduct a literature review on design
strategies that may help to address planned obsolescence in the
IoT. Borning, Friedman, and Logler [18] consider the negative
impacts of IT including device proliferation in the IoT and
discuss material consumption, energy usage, and waste. Paul
[19] notes some cases of obsolescence in the IoT. Bol et al. [33]
target device obsolescence and design a reprogrammable
microcontroller unit for the IoT targeting low power and long
life. Abate and Violante [38] deal with obsolescence of digital
components and propose an approach for customizing
processor cores prior to FPGA implementation. A
comprehensive study by Shalf [35] on the general future of
computing and technology without Moore’s Law makes the
interesting observation that algorithm-driven hardware design
could make the hardware obsolete.

Obsolescence management in aviation including system,
software and hardware obsolescence is discussed in a detailed

FAA study [34]. As part of their device security guidance
initiative in the UK, NCSC [36] discuss secure configuration of
platforms and reducing risks from obsolete devices and
applications. The government of Victoria in Australia provides
a guide that addresses risk from technology obsolescence [8].
Heagney and Walker [37] propose using application
virtualization to address software obsolescence and security
risks due to operating systems and chipsets. In a survey done by
Mattord and Bandyopadhyay [39], a high percentage of
respondents indicated that operating system obsolescence is not
important in the development and operation of client/server and
distributed systems. Nield [40] and Hand [45] discuss operating
system obsolescence.

V. CONCLUSION

Obsolescence is a common problem in microprocessors and
operating systems that impacts many areas of software
engineering. The data on Intel microprocessors and Microsoft
operating systems presented in this paper shows that there are
frequent unnecessary releases resulting in obsolescence.
Similar studies on obsolescence could be done using other
microprocessors and operating systems. Extensible designs for
microprocessors and operating systems will reduce their rate of
obsolescence while making it easier to add new features and
functions in the future. This approach is also applicable to other
microprocessor technologies, CPUs, and operating systems.
Thus, non-Intel chips, smartphones based on the ARM
architecture and operating systems such as Linux and iOS could
also be designed to be extensible as discussed above to reduce
obsolescence. When microprocessors and operating systems
have a long life, it will reduce technological obsolescence and
extend the life of software that runs on these platforms.

The extensibility concept can be used in other areas of
computing, and to design systems and system components.
Hardware and software could also be designed with a view
towards adding security and other features and functionality
without continually releasing new hardware and software.
Designs based on extensibility can be used in servers, routers,
switches, IoT devices, application software, and systems
software. More research is needed on approaches to allow for
technological improvements while minimizing the impact of
business and industry-driven strategies that create obsolescence
and waste.

Future studies could investigate how obsolescence in
operating systems and microprocessors impact software
evolution and development. Such studies could also consider
obsolescence in other operating systems and microprocessors:
for example, in iOS and Apple silicon, and in Linux
distributions.

REFERENCES

[1] List of Intel Processors:
https://en.wikipedia.org/wiki/List_of_Intel_processors#Core_i3_(2nd_a
nd_3rd_Generation).

[2] List of Processors:
https://en.wikipedia.org/wiki/List_of_Intel_processors#Pentium_III.

[3] Number of Instructions:
https://en.wikipedia.org/wiki/X86_instruction_listings#Added_with_801
86/80188.

114

Authorized licensed use limited to: Towson University. Downloaded on December 01,2023 at 17:01:30 UTC from IEEE Xplore. Restrictions apply.

[4] Windows Processor Requirements: https://docs.microsoft.com/en-
us/windows-hardware/design/minimum/windows-processor-
requirements

[5] https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions#Per
sonal_computer_versions

[6] https://docs.microsoft.com/en-us/windows-
hardware/design/minimum/supported/windows-10-21h1-supported-
intel-processors

[7] Lines of code: https://www.quora.com/How-many-lines-of-code-does-
Microsoft-Windows-have.

[8] https://www.vic.gov.aus, A guideline for managing risk from technology
obsolescence, 2019.

[9] Built Not to Last: https://www.sierraclub.org/sierra/2021-4-fall/material-
world/built-not-last-how-overcome-planned-obsolescence

[10] Why Docker is getting obsolete, https://www.aurigait.com/blog/why-
docker-is-getting-obsolete/, 2022.

[11] D. R. Engler, The Exokernel Operating System Architecture, Ph.D. thesis,
MIT, October 1998.

[12] R. K. Karne, Bare Machine Computing, Relevant Publications,
http://orion.towson.edu/~karne/dosc/pubs.htm, accessed 12/10/22.

[13] D. Gens, OS-level Attacks and Defenses: from Software to Hardware-
based Exploits, Thesis, Darmsstadt, Germany, Dec 2018.

[14] L. Bisschop, Y. Hendlin, and J. Jaspers, Designed to break: planned
obsolescence as corporate environmental crime, Crime, Law and Social
Change 78, 2022.

[15] J. Malinauskaite, F. B. Erdem, Planned Obsolescence in the Context of a
Holistic Legal Sphere and the Circular Economy, Oxford Journal of Legal
Studies, Vol. 41, Issue 3, Autumn 2021, 719–749.

[16] Planned Obsolence Exposed at Apple and Microsoft, in Light of New
French Regulations, April 7, 2021,
https://www.greenmatters.com/p/planned-obsolescence, Accessed 2-4-
2022.

[17] M. Zallio and D. Berry, Design and Planned Obsolescence. Theories and
Approaches for Designing Enabling Technologies., The Design Journal,
2017, sup1, S3749-S3761, DOI: 10.1080/14606925.2017.1352879.

[18] A. Borning, B. Friedman, and N. Logler, The 'Invisible' Materiality of
Information Technology, Communications of the ACM, June 2020, Vol.
63 No. 6, 57-64, 10.1145/3360647

[19] F. Paul, IoT has an obsolescence problem, Network World, June 11, 2018.

[20] P. Hudomiet and R. J. Willis, Computerization, Obsolescence, and the
Length of Working Life, NBER Working Paper No. w28701 Last
revised: December 4, 2021,
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3834141

[21] S. Ma, Technological Obsolescence, Nov 15, 2021,
https://ssrn.com/abstract=3964128

[22]] I. Trabelsi, B. Zeddini, M. Zolghadri, M. Barkallah, and M. Haddar,
Obsolescence Prediction based on Joint Feature Selection and Machine
Learning Techniques, Proc. 13th International Conference on Agents and
Artificial Intelligence (ICAART 2021) – Vol. 2, 787-794,
10.5220/0010241407870794.

[23] M. A. Mellai, Obsolescence – A review of the literature, Technology in
Society- Elsevier, 1-6, August 2020

[24] A. J. Parvin Jr. and M. G. Beruvides, Forecasting Technology
Obsolescence: Assessing The Existing Literature, A Systematic Review,
Proceedings of the American Society for Engineering Management, 2017.

[25] E. S. Smit, Obsolescence and its impact on reliability: further
development of Internet triangulation, 9th IBA Bachelor Thesis
Conference, July 5, 2017, University of Twente, Enschede, Netherlands.

[26] G. T. Weerasuriya and W. M. Wijayanayake, An Evaluation of Factors
Affecting Information Systems Obsolescence, Journal of Emerging
Trends in Computing and Information Sciences, Vol. 5, No. 3, March
2014 ISSN 2079-8407

[27] P. Sandborn, Designing for Technology Obsolescence Management,
Proc. Industrial Engineering Research Conference, 2007,
http://escml.umd.edu/Papers/Sandborn_IERC Paper_2007-revised.pdf

[28] K. Whelan, Computers, Obsolescence, and Productivity. The Review of
Economics and Statistics, 84(3), 445–461, 2002.

[29] M. Gravier and S. Swartz, The dark side of innovation: Exploring
obsolescence and supply chain evolution for sustainment-dominated
systems. The Journal of High Technology Management Research, 20. 87-
102. 2009, 10.1016/j.hitech.2009.09.001.

[30] J. Bulow, An Economic Theory of Planned Obsolescence. The
Quarterly Journal of Economics, 101(4), 729–750. 1986,
https://doi.org/10.2307/1884176

[31] K. Legge, Obsolescence Of People—In Context, Management Decision,
Vol. 11 No. 1, 27-49. 2002, https://doi.org/10.1108/eb001008

[32] E. Jang et al., Unplanned Obsolescence: Hardware and Software After
Collapse, Workshop on Computing Within Limits, June 2017.

[33] D. Bol et al., SleepRunner: A 28-nm FDSOI ULP Cortex-M0 MCU With
ULL SRAM and UFBR PVT Compensation for 2.6–3.6-μW/DMIPS 40–
80-MHz Active Mode and 131-nW/kB Fully Retentive Deep-Sleep
Mode, IEEE Journal of Solid-Stae Circuits, 56:7, July 2021.

[34] Obsolescence and Life Cycle Management for Avionics, FAA, Nov 2015,
https://www.tc.faa.gov/its/worldpac/techrpt/tc15-33.pdf

[35] J. Shalf, The Future of Computing beyond Moore’s Law, Philosophical
Transactions Of The Royal Society A, Jan 2020.

[36] Device Security Guidance, NCSC 2021,
https://www.ncsc.gov.uk/collection/device-security-guidance

[37] C. P. Heagney and L. J. Walker, Virtual Applications Reduce Cyber
Attack Surface for Test Program Sets and Station Software, IEEE
AUTOTESTCON, Washington DC, 2018.

[38] F. Abate and M. Violante, Coping with Obsolescence of Processor Cores
in Critical Applications, IEEE International Symposium on Defect and
Fault Tolerance of VLSI Systems, 2008, 24-32, doi:
10.1109/DFT.2008.28.

[39] H. J. Mattord and T. Bandyopadhyay, The Impact of Operating System
Obsolescence on the Life Cycle of Distributed Teams. 14 Americas
Conference on Information Systems (AMCIS), 2008.

[40] D. Nield, What to do when your OS becomes obsolete—and how to save
money in the process, Popular Science, Jan 14, 2020.

[41] B. Dipert, Microsoft embraces obsolescence by design with Windows 11,
EDN, Sept. 7, 2021.

[42] D. Vergara, J. Extremera, M. P. Rubio, and L. P. Davila, The
Technological Obsolescence of Virtual Reality Learning Environments,
Applied Sciences, 10(3), 2020.

[43] T. F. Bowlds, J. M. Fossaceca, and R. Iammartino, Software
obsolescence risk assessment approach using multicriteria decision-
making, Systems Engineering, 21(5), 2018.

[44] A. J. Parvin Jr. and M. G. Beruvides, Optimizing the Abandonment of a
Technological Innovation. Systems, 9 (2), 2021.

[45] A. Hand, Intention is at the root of overcoming OS Obsolescence,
Automation World, May 24, 2018.

[46] S. Gerasimou et al., On software modernisation due to library
obsolescence, ACM/IEEE 2nd International Workshop on API Usage and
Evolution (WAPI), 2018.

115

Authorized licensed use limited to: Towson University. Downloaded on December 01,2023 at 17:01:30 UTC from IEEE Xplore. Restrictions apply.

