
A Mechanism for Secure Delivery of Bare Machine Computing Software 

 

Robert G. Eyer, Ramesh K. Karne, and Alexander L. Wijesinha  

Department of Computer & Information Sciences, Towson University 

Towson MD, 21252, USA 

{reyer, rkarne, awijesinha}@towson.edu 

  

 

Abstract 

Bare Machine Computing (BMC) software runs directly 

on computer hardware without any operating system. This 

approach produces applications that are small, fast, and 

easily secured. We describe a mechanism for secure 

delivery of BMC software using paired hardware (USB) 

devices. The mechanism involves wrapping every 

application deliverable first with AES encryption, where the 

key is derived from a passphrase supplied by the software 

user/owner. This encrypted deliverable is then re-encrypted 

using RSA where the key is generated by the software 

developer and used only for deliverables to that specific 

user. Finally, the doubly encrypted software is placed on a 

normal USB drive that is paired with a second secure USB 

device that contains the bare application loader and user 

specific decryption software. Simulation studies using 

various application code sizes and RSA/AES key sizes show 

good performance on an ordinary desktop. Military and 

other high security environments can benefit from such a 

delivery scheme since prior attempts at secure software 

delivery failed to meet the highest FIPS standards. 

1 Introduction 

Bare Machine Computing (BMC) is a programming 

paradigm that removes the need for any conventional 

operating system (OS) by providing application objects that 

can be loaded and run on bare computer hardware. By 

removing the need for an OS, BMC developers are able to 

create applications that are very small, extremely fast, and 

far more secure than their OS based counterparts.  While 

removal of the OS improves security by reducing the 

collective size and complexity of executable code, it also 

requires that BMC developers implement application 

security without resorting to OS services. 

BMC security protocols, like BMC applications, follow a 

paradigm of self-containment; all functionality is built-in, 

not added on. Secure delivery of BMC software requires 

that applications developed at the BMC lab can be delivered 

directly to trusted users (assumed here to also be the owner 

of the bare application). Since delivery is typically done 

through an insecure environment, it is necessary to provide 

protection mechanisms that prevent a listening or 

intercepting entity from reading and decrypting the 

application. A general need exists in the military and other 

government agencies, as well as high security corporate 

environments to protect proprietary software in a way that 

meets the highest levels of FIPS security. At present, BMC 

software including boot code, loader and application are 

contained on a single USB device. However, this means that 

anyone who acquires the USB can boot and run the BMC 

application. At a minimum, a methodology for secure 

delivery of BMC software must: 

1. Provide authentication to a user that the software is an 

authentic BMC application. 

2. Authenticate the user to the software as a legitimate 

user of the BMC software. 

3. Encrypt the application code and prevent reading of the 

code until it is decrypted and loaded to a BMC 

platform. 

The issue of BMC software authentication is addressed by 

the BMC lab acting as a local certificate authority for the 

BMC domain. We briefly discuss the use of BMC 

certificates in Section 4. Once the BMC software has been 

authenticated, the remaining security issues with respect to 

distribution are addressed as follows. 

First, each user authorized to run BMC applications is 

assigned a user specific RSA key pair. Unlike conventional 

usage of public and private keys for signatures and 

encryption, the RSA key pair is generated by (and known 

only to) the BMC lab. Furthermore, the key pair is unique to 

the given user. We refer to the individual half-keys in the 

key pair as the user’s and BMC lab’s RSA keys (these half-

keys are not used in the usual way as public and private 

keys). In the context of software distribution, no keys are 

ever shared directly with the user. 

To obtain the BMC software and be able to run the 

application, the user first provides a passphrase to the BMC 

lab in a physically secure manner or using a secure channel 

(discussion of this issue is not within the scope of this 

paper). The passphrase is used by the BMC lab to generate a 



unique AES-256 key for the user following the guidelines in 

[13]. Each user receives a USB device, which contains the 

BMC boot code and loader, and the user’s RSA key 

encrypted with the user’s AES key. When the user enters the 

passphrase, the BMC loader code automatically generates 

the user’s AES key, which enables the user’s RSA key to be 

decrypted.  

All deliverable BMC application code is first encrypted in 

the BMC lab with the user’s passphrase-based AES key. 

The application code is then re-encrypted using the BMC 

lab’s RSA key. This doubly-encrypted executable is then 

loaded onto an ordinary USB flash drive.  Each new user is 

initially provided with a USB decryption device that 

contains their user-specific RSA key (encrypted) used to 

decrypt multiple bare application deliverables. 

These USB decryption devices can be reprogrammed, if it 

becomes necessary to change the RSA key pair. A 

boot/decryption device is similar to a secure hardware 

token. As such, it must be physically secured to prevent 

unauthorized use of a bare application in the event of 

passphrase compromise. 

The remainder of this paper is organized as follows:  

- Section 2 discusses related work dealing with BMC 

applications, other approaches to secure software delivery, 

and TLS security concerns. 

- Section 3 provides details of the secure delivery scheme 

proposed in this paper. 

- Section 4 discusses how the proposed delivery scheme 

provides authentication and protection to deliverables. 

- Section 5 details the test simulations and results from 

proof-of-concept testing of the proposed delivery scheme. 

-  Section 6 contains the conclusion. 

2 Related Work 

The application-oriented object architecture forming the 

basis for the BMC paradigm was first described in [1]. The 

BMC paradigm serves as the basis for developing 

completely self-contained bare applications that run on the 

hardware, and perform memory management, task 

scheduling, and I/O without the need for any OS or kernel 

[6][7]. Numerous non-trivial BMC applications have been 

implemented, including a VoIP softphone [2], web server 

[3], email server [4], and a SQL database engine [5]. The 

BMC lab has developed a USB driver allowing BMC 

applications to securely access USB mass storage devices 

for application delivery and installation [8][9]. An approach 

for developing bare applications is described in [11]. It is 

also possible to convert (port) certain OS-based applications 

to bare applications [10]. The original implementation of 

TLS on a bare web server is described in [12]. However, 

TLS by itself, is insufficient to enable secure delivery of 

BMC software to users. 

There are many studies on software protection. In [22], 

software integrity protection techniques are classified by 

considering system, attack and defense views. In [23], an 

approach to anti-tampering that uses a trusted remote server 

is described. 

The TLS protocol is widely used for the secure transfer of 

data including software. RSA-PKCS#1 v1.5 still dominates 

the SSL/TLS key exchange implementations [15]. Security 

concerns with TLS include vulnerabilities relating to CAs 

[16][17][20], and attacks on the session key [18][14]. While 

TLS 1.3 addresses many issues with TLS 1.2, some attacks 

are still possible [15]. Elliptic curve cryptography (ECC) is 

an alternative to RSA having equivalent or better security 

with smaller key sizes [19]. 

3 Secure Software Delivery 

Secure delivery of trusted software to untrusted users 

across insecure environments is a major concern for 

developers.  Interception of deliverables impacts both users 

and BMC developers.  Users are concerned for the security 

of their applications and data, and BMC developers for 

unauthorized use of their software. For example, users need 

assurance that purchased software is coming from a 

legitimate source, and developers need to have their 

intellectual rights protected.  Because of this need for secure 

software delivery, numerous (often complicated) encryption 

 

 
 

Figure 1a.  Attack profile for non-BMC communication applications. 

 
 

 

 
 

Figure 1b.  Attack profile for BMC communication applications. 
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schemes have been developed, usually depending on OS 

security services or peripheral hardware like smart cards to 

enable protections. 

 

Figure 2. Encrypt mode. 

 

Figure 3. Decrypt mode. 

The BMC programming paradigm requires that all 

software security (including cryptographic capabilities) be 

built-in to the application object or application loader that is 

part of the BMC boot code. We define and implement a 

secure method of software delivery that insures that BMC 

applications cannot be stolen or reproduced by unauthorized 

parties. While many of the goals of secure software delivery 

are the same for BMC applications and OS-based 

applications, the approaches and expected results are vastly 

different.  Any OS based application must be viewed (and 

secured) as part of the larger, OS based system.  Regardless 

of how well such application software is secured against 

piracy, security holes in the underlying OS can open new 

routes to unauthorized replication.  Application developers 

have no control over OS security, and to a lesser degree OS 

security can be compromised by running insecure 

applications.  Each component of an OS-based system is, at 

least, partially dependent on the security of every other 

component that is running concurrently on the system [21]. 

For BMC applications, the only code running on the 

system is the application object, plus the residue of the boot 

and loader code.  Both of these items are within the control 

of the BMC application programmer, allowing for the 

development of mechanisms that cannot be weakened by 

external software components. Figures 1a and 1b compare 

communication between BMC versus non-BMC (OS-based) 

applications. 

Secure software delivery always involves some form of 

cryptographic protection to provide authentication, and 

prevent unauthorized replication. With OS based systems, 

cryptographic capabilities are usually available as system 

services.  However, since BMC applications load directly to 

computer hardware, using only the BIOS and BMC loader 

code, any cryptographic capabilities associated with 

software deliverables needs to be directly supported by the 

BMC loader. The secure software delivery mechanism for 

BMC was developed to take advantage of the secure 

laboratory environment where BMC applications are 

presently created. This mechanism needs to be extended in 

future for scalability. 

BMC development computers are not networked beyond 

the lab itself and a non-networked machine has been 

designated as a single source for secure application release 

of BMC deliverables. On this single machine, an encryption 

database resides that contains all releasable BMC 

applications, and a table containing BMC user records 

which include, (for each user), (1) A secret passphrase 

selected by the user; (2) an AES key (256 bits) generated 

from the user’s secret passphrase; and (3) a 2048-bit RSA 

key-pair generated on the BMC release workstation.  As 

noted earlier, these RSA keysets are not shared directly with 

the associated users, but are used as part of the delivery 

process. 

The secure software delivery mechanism involves the 

following steps: 

1. Each application user has a record created in the BMC 

user database where their AES passphrase, AES key,  

and RSA keys are stored 

2. The BMC Boot Code and Application Loader-

Decryptor Code are written to low sectors of the USB 

Boot Drive along with the user’s RSA key which was 

encrypted with the user AES key 

3. The USB Boot Drive is delivered to each user by some 

(out of band) secure delivery method, and is to be used 

with any BMC applications delivered separately on 

standard USB flash drives. The user will confirm 

receipt of the USB Boot Drive (via an out of band 



secure channel or method) before any BMC 

applications are forwarded 

4. As noted earlier, every BMC application delivered to a 

BMC user will be loaded on a standard USB flash drive 

after first being encrypted using the AES key generated 

from the user passphrase and then re-encrypted using 

the BMC lab’s RSA key associated with that particular 

user. The user’s RSA key is also encrypted with the 

AES key and stored on the flash drive 

5. Whenever the user loads a BMC application, the 

machine is cold-booted with the USB Boot Drive 

inserted. The boot code then installs the BMC 

application loader/decryptor which will ask the user to 

enter their secret passphrase   

6. The application loader then decrypts the user’s RSA 

key and asks the user to insert a USB drive containing 

an encrypted BMC application   

7. The encrypted application is read and decrypted by the 

loader code (using the decrypted RSA key and AES 

key) and written to main memory 

8. The BMC loader code now jumps to the newly 

decrypted code in main memory and the application is 

launched. 

Figures 2 and 3 show the contents of the USBs (on left 

and right) and the sequence of operations (in the middle) 

during encrypt and decrypt respectively. 

4 Discussion 

Authentication issues are partially addressed by using the 

proprietary USB devices, which may be viewed as a form of 

“two-factor” protection. As discussed previously, protection 

against counterfeit boot code and application code requires 

that these be signed by the BMC lab acting as a certificate 

authority (this signature must be verified in the usual 

manner). An encrypted BMC application can only be 

decrypted if the decryption agent possesses the user’s RSA 

key and the user’s AES key. Since the AES key is not stored 

on either device, only the legitimate user with knowledge of 

the passphrase can decrypt the application. Conversely, if 

the application is successfully decrypted, the boot code has 

the lab’s RSA key. Thus, we have authenticated the 

application to the user and the user to the application. 

Protection against software interception is provided by the 

double encryption scheme. This will make it harder for an 

attacker to decrypt the software by brute-force. No key 

information resides on the application drive along with the 

encrypted executable. Additionally, on the user’s bare 

machine, the decrypted code is never exposed except during 

BMC run-time. The encrypted executable is read, decrypted, 

and copied directly to main memory, without any external 

write to persistent storage.  

The double encryption scheme for deliverables was 

selected for 3 reasons: 

1. While all encryption keys are known at some point to 

the BMC lab, the AES component belongs primarily to 

individual users and is changeable at their discretion 

with simple notice to the BMC lab. 

2. A single layer of encryption represents a single point of 

failure if the relevant key is compromised. Any RSA 

key could be attacked directly using known attack 

patterns. Given the security issues noted in Section 2, 

this is a valid concern. 

3. Two-layer encryption provides developers with 

expanded choices on the RSA key size used to encrypt 

executables. Since any brute-force attempt to decrypt an 

executable would need to find both the AES and RSA 

keys, successful decryption must try each AES key with 

every possible RSA key. The search space is the 

product of all valid AES keys and all valid RSA keys.  

As such, a developer could use a combination of AES-

256/RSA-1024 and still exceed the cipher security of a 

2048 bit RSA key. An RSA key size of 4,096 is 

considered roughly equivalent to a symmetric key size 

of 148 bits. Combining AES-256 with a 1.024 bit RSA 

key far exceeds the strength of even the highest 

available RSA key sizes. 

The USB boot and application devices are currently 

written to standard 2 gigabyte USB flash drives. Future 

research could investigate adding support for USB hardware 

based decryption and providing additional security in the 

form of masked storage (and a security housing that 

grounds/deletes ROM memory when breached). The cost of 

this hardware development would be significant and the 

tradeoffs would need to be considered. Future versions of 

the secure delivery software could include ECC to take 

advantage of the smaller key sizes and associated 

improvements to execution time and memory usage. 

We now discuss the issue of transferring BMC software 

from the BMC lab to a trusted BMC user/owner of a BMC 

application (referred to from now on as the BMC user or 

simply the user). The requirement is that the user has 1) 

received a USB drive containing BMC boot code/loader and 

the user’s RSA half key encrypted with the user’s AES key; 

and 2) the BMC application code encrypted first with the 

user’s AES key and then with the BMC lab’s RSA half key 

for this user. 

As noted earlier, we assume that:  

a) The user’s passphrase, AES key (derived from the 

passphrase), and RSA key pair (BMC lab and user half keys 

for this user) are known to the BMC lab. This information is 

stored on an isolated physically secured non-networked 

machine in the BMC lab that can only be accessed with the 

necessary administrative privileges. If this machine (or the 

information it stores) were to be compromised, the secure 



delivery mechanism for BMC software as proposed in this 

paper fails. 

b) The USB containing the boot code/loader and user’s 

encrypted RSA half key were delivered to the user by some 

secure means. This USB must be physically secured to 

prevent tampering or unauthorized use.   

Next, we consider secure delivery of the (doubly 

encrypted) BMC application code. If an ordinary USB 

containing this code cannot be physically delivered by some 

secure means to the user, one option would be to transfer the 

encrypted code over a secure Internet connection between 

the BMC lab and the user’s network. The user could then 

create the USB containing the application code. 

The secure Internet connection in this case could use TLS 

with mutual authentication. However, this requires that the 

secured USB containing the boot code/loader also include a 

BMC TLS client application. When the user boots and 

enters its correct passphrase, the TLS bare client will be 

launched.  

During the TLS handshake, the BMC server in the lab 

will send its X.509 (RSA/SHA256) certificate, which would 

be verified by the BMC client. As usual, the BMC client 

will send the 48-byte random premaster secret encrypted 

with the BMC server’s public RSA key (this key will be 

included in the secured USB containing the boot 

code/loader). Only the BMC server knows the 

corresponding private RSA key needed to decrypt this 

premaster secret. In lieu of sending its certificate, the BMC 

client will authenticate itself to the server by encrypting a 

nonce generated by the BMC server with the correct AES 

key (generated in turn when the user enters the correct 

passphrase). After the TLS handshake is successfully 

completed, the server can transfer the doubly encrypted 

application code (as TLS application data) over the TLS 

connection. 

An alternative option, which is less secure, is to use an 

ordinary OS-based browser instead of the BMC client. This 

means that the browser must be able to verify the BMC 

server’s certificate, which should be signed by a CA. This 

requires a trusted OS-based browser and a trusted CA. As 

discussed earlier, OS-based browsers and CA certificates 

can be controlled by attackers.   

5       Software Simulations 

A major factor affecting performance of the software is 

the overhead due to RSA operations. A number of RSA 

software implementations were tested, and the fastest were 

those that used the Chinese Remainder Theorem [24] to 

optimize RSA encryption. The algorithms typically used to 

generate RSA keysets always chose a small exponent for the 

public key to reduce encryption time. The multiplicative 

inverse exponent that is part of the private key is far more 

complex and needs to be more highly optimized. 

Encryption elements of the BMC load and delivery 

protocol have been tested across a range of possible RSA 

and AES key sizes.  Our implementation can generate and 

use 16 different RSA key sizes from 512 to 4,096 bits and 

all possible AES key sizes (128, 192, and 256 bits). We 

selected 1,024 bit RSA encryption combined with AES-256 

to provide decrypt operations that were reasonably fast, but 

which still provided overall security exceeding the highest 

stand-alone RSA encryption. 

Tests were run using a range of application sizes and, on 

average, decryption with this combination of RSA and AES 

required 360 msec/kB of original application size on a Dell 

OptiPlex 960. RSA encryption in our case involves a 

scheme where all keys are held as private, so the normal 

encryption/decryption pattern can be reversed without 

compromising security.  In this protocol the application is 

first encrypted using the more complex key (most 1s set) 

and later decrypted using the shorter key.  Initial encryption 

will always be performed in the BMC lab and does not need 

to be fast. The decryption process, on the other hand, needs 

to be fast since it is part of a user’s load process. 

These tests were designed to prove that our approach 

using RSA/AES encryption provides a high level of security 

with reasonable encryption/decryption times for all current 

BMC applications. This enables us to avoid techniques that 

compromise security such as the intentional selection of 

Fermat Primes to improve encryption speed. While the 

decryption time of 360 msec/kB may seem slow, it is 

noteworthy that these test decryptions included IO 

read/write time, and full data verification routines. 

Additionally, our proof-of-concept testing did not use multi-

processor or any built-in processor hardware acceleration.  

Finally, as BMC applications are very small and this scheme 

only requires decryption once at the start of an application 

or server process, timing is not of paramount importance.  A 

companion project has been proposed to utilize on-USB 

hardware acceleration that would improve decryption 

speeds by 100 times, allowing for large executables. 

6     Conclusion 

We described a mechanism for secure delivery of BMC 

software, which requires a pair of USBs containing the boot 

code and application code respectively. Each user has a 

proprietary RSA key pair, where only the BMC developer 

has access to either side of the key pair. This approach 

enables the encryption strength of RSA to be fully realized, 

and when coupled with the AES encryption layer, to provide 

a high level of security for software distribution. Our 

software simulations of the software delivery mechanism 

suggest that implementations will provide strong encryption 

at speeds acceptable for user software loading while 

achieving secure delivery across a hostile environment. 
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