
A Mechanism for Secure Delivery of Bare Machine Computing Software

Robert G. Eyer, Ramesh K. Karne, and Alexander L. Wijesinha

Department of Computer & Information Sciences, Towson University

Towson MD, 21252, USA

{reyer, rkarne, awijesinha}@towson.edu

Abstract

Bare Machine Computing (BMC) software runs directly

on computer hardware without any operating system. This

approach produces applications that are small, fast, and

easily secured. We describe a mechanism for secure

delivery of BMC software using paired hardware (USB)

devices. The mechanism involves wrapping every

application deliverable first with AES encryption, where the

key is derived from a passphrase supplied by the software

user/owner. This encrypted deliverable is then re-encrypted

using RSA where the key is generated by the software

developer and used only for deliverables to that specific

user. Finally, the doubly encrypted software is placed on a

normal USB drive that is paired with a second secure USB

device that contains the bare application loader and user

specific decryption software. Simulation studies using

various application code sizes and RSA/AES key sizes show

good performance on an ordinary desktop. Military and

other high security environments can benefit from such a

delivery scheme since prior attempts at secure software

delivery failed to meet the highest FIPS standards.

1 Introduction

Bare Machine Computing (BMC) is a programming

paradigm that removes the need for any conventional

operating system (OS) by providing application objects that

can be loaded and run on bare computer hardware. By

removing the need for an OS, BMC developers are able to

create applications that are very small, extremely fast, and

far more secure than their OS based counterparts. While

removal of the OS improves security by reducing the

collective size and complexity of executable code, it also

requires that BMC developers implement application

security without resorting to OS services.

BMC security protocols, like BMC applications, follow a

paradigm of self-containment; all functionality is built-in,

not added on. Secure delivery of BMC software requires

that applications developed at the BMC lab can be delivered

directly to trusted users (assumed here to also be the owner

of the bare application). Since delivery is typically done

through an insecure environment, it is necessary to provide

protection mechanisms that prevent a listening or

intercepting entity from reading and decrypting the

application. A general need exists in the military and other

government agencies, as well as high security corporate

environments to protect proprietary software in a way that

meets the highest levels of FIPS security. At present, BMC

software including boot code, loader and application are

contained on a single USB device. However, this means that

anyone who acquires the USB can boot and run the BMC

application. At a minimum, a methodology for secure

delivery of BMC software must:

1. Provide authentication to a user that the software is an

authentic BMC application.

2. Authenticate the user to the software as a legitimate

user of the BMC software.

3. Encrypt the application code and prevent reading of the

code until it is decrypted and loaded to a BMC

platform.

The issue of BMC software authentication is addressed by

the BMC lab acting as a local certificate authority for the

BMC domain. We briefly discuss the use of BMC

certificates in Section 4. Once the BMC software has been

authenticated, the remaining security issues with respect to

distribution are addressed as follows.

First, each user authorized to run BMC applications is

assigned a user specific RSA key pair. Unlike conventional

usage of public and private keys for signatures and

encryption, the RSA key pair is generated by (and known

only to) the BMC lab. Furthermore, the key pair is unique to

the given user. We refer to the individual half-keys in the

key pair as the user’s and BMC lab’s RSA keys (these half-

keys are not used in the usual way as public and private

keys). In the context of software distribution, no keys are

ever shared directly with the user.

To obtain the BMC software and be able to run the

application, the user first provides a passphrase to the BMC

lab in a physically secure manner or using a secure channel

(discussion of this issue is not within the scope of this

paper). The passphrase is used by the BMC lab to generate a

unique AES-256 key for the user following the guidelines in

[13]. Each user receives a USB device, which contains the

BMC boot code and loader, and the user’s RSA key

encrypted with the user’s AES key. When the user enters the

passphrase, the BMC loader code automatically generates

the user’s AES key, which enables the user’s RSA key to be

decrypted.

All deliverable BMC application code is first encrypted in

the BMC lab with the user’s passphrase-based AES key.

The application code is then re-encrypted using the BMC

lab’s RSA key. This doubly-encrypted executable is then

loaded onto an ordinary USB flash drive. Each new user is

initially provided with a USB decryption device that

contains their user-specific RSA key (encrypted) used to

decrypt multiple bare application deliverables.

These USB decryption devices can be reprogrammed, if it

becomes necessary to change the RSA key pair. A

boot/decryption device is similar to a secure hardware

token. As such, it must be physically secured to prevent

unauthorized use of a bare application in the event of

passphrase compromise.

The remainder of this paper is organized as follows:

- Section 2 discusses related work dealing with BMC

applications, other approaches to secure software delivery,

and TLS security concerns.

- Section 3 provides details of the secure delivery scheme

proposed in this paper.

- Section 4 discusses how the proposed delivery scheme

provides authentication and protection to deliverables.

- Section 5 details the test simulations and results from

proof-of-concept testing of the proposed delivery scheme.

- Section 6 contains the conclusion.

2 Related Work

The application-oriented object architecture forming the

basis for the BMC paradigm was first described in [1]. The

BMC paradigm serves as the basis for developing

completely self-contained bare applications that run on the

hardware, and perform memory management, task

scheduling, and I/O without the need for any OS or kernel

[6][7]. Numerous non-trivial BMC applications have been

implemented, including a VoIP softphone [2], web server

[3], email server [4], and a SQL database engine [5]. The

BMC lab has developed a USB driver allowing BMC

applications to securely access USB mass storage devices

for application delivery and installation [8][9]. An approach

for developing bare applications is described in [11]. It is

also possible to convert (port) certain OS-based applications

to bare applications [10]. The original implementation of

TLS on a bare web server is described in [12]. However,

TLS by itself, is insufficient to enable secure delivery of

BMC software to users.

There are many studies on software protection. In [22],

software integrity protection techniques are classified by

considering system, attack and defense views. In [23], an

approach to anti-tampering that uses a trusted remote server

is described.

The TLS protocol is widely used for the secure transfer of

data including software. RSA-PKCS#1 v1.5 still dominates

the SSL/TLS key exchange implementations [15]. Security

concerns with TLS include vulnerabilities relating to CAs

[16][17][20], and attacks on the session key [18][14]. While

TLS 1.3 addresses many issues with TLS 1.2, some attacks

are still possible [15]. Elliptic curve cryptography (ECC) is

an alternative to RSA having equivalent or better security

with smaller key sizes [19].

3 Secure Software Delivery

Secure delivery of trusted software to untrusted users

across insecure environments is a major concern for

developers. Interception of deliverables impacts both users

and BMC developers. Users are concerned for the security

of their applications and data, and BMC developers for

unauthorized use of their software. For example, users need

assurance that purchased software is coming from a

legitimate source, and developers need to have their

intellectual rights protected. Because of this need for secure

software delivery, numerous (often complicated) encryption

Figure 1a. Attack profile for non-BMC communication applications.

Figure 1b. Attack profile for BMC communication applications.

Lab/Developer OS

Communication
Applications

Other apps run
concurrently

Communication
Protocols

Client OS

Communication
Applications

Other apps run
concurrently

Communication
Protocols

Certificate
Authorities

Certificate
Protocols

Connected external
applications

Lab/Developer Application

Communication
Protocol

Communication
Protocol

schemes have been developed, usually depending on OS

security services or peripheral hardware like smart cards to

enable protections.

Figure 2. Encrypt mode.

Figure 3. Decrypt mode.

The BMC programming paradigm requires that all

software security (including cryptographic capabilities) be

built-in to the application object or application loader that is

part of the BMC boot code. We define and implement a

secure method of software delivery that insures that BMC

applications cannot be stolen or reproduced by unauthorized

parties. While many of the goals of secure software delivery

are the same for BMC applications and OS-based

applications, the approaches and expected results are vastly

different. Any OS based application must be viewed (and

secured) as part of the larger, OS based system. Regardless

of how well such application software is secured against

piracy, security holes in the underlying OS can open new

routes to unauthorized replication. Application developers

have no control over OS security, and to a lesser degree OS

security can be compromised by running insecure

applications. Each component of an OS-based system is, at

least, partially dependent on the security of every other

component that is running concurrently on the system [21].

For BMC applications, the only code running on the

system is the application object, plus the residue of the boot

and loader code. Both of these items are within the control

of the BMC application programmer, allowing for the

development of mechanisms that cannot be weakened by

external software components. Figures 1a and 1b compare

communication between BMC versus non-BMC (OS-based)

applications.

Secure software delivery always involves some form of

cryptographic protection to provide authentication, and

prevent unauthorized replication. With OS based systems,

cryptographic capabilities are usually available as system

services. However, since BMC applications load directly to

computer hardware, using only the BIOS and BMC loader

code, any cryptographic capabilities associated with

software deliverables needs to be directly supported by the

BMC loader. The secure software delivery mechanism for

BMC was developed to take advantage of the secure

laboratory environment where BMC applications are

presently created. This mechanism needs to be extended in

future for scalability.

BMC development computers are not networked beyond

the lab itself and a non-networked machine has been

designated as a single source for secure application release

of BMC deliverables. On this single machine, an encryption

database resides that contains all releasable BMC

applications, and a table containing BMC user records

which include, (for each user), (1) A secret passphrase

selected by the user; (2) an AES key (256 bits) generated

from the user’s secret passphrase; and (3) a 2048-bit RSA

key-pair generated on the BMC release workstation. As

noted earlier, these RSA keysets are not shared directly with

the associated users, but are used as part of the delivery

process.

The secure software delivery mechanism involves the

following steps:

1. Each application user has a record created in the BMC

user database where their AES passphrase, AES key,

and RSA keys are stored

2. The BMC Boot Code and Application Loader-

Decryptor Code are written to low sectors of the USB

Boot Drive along with the user’s RSA key which was

encrypted with the user AES key

3. The USB Boot Drive is delivered to each user by some

(out of band) secure delivery method, and is to be used

with any BMC applications delivered separately on

standard USB flash drives. The user will confirm

receipt of the USB Boot Drive (via an out of band

secure channel or method) before any BMC

applications are forwarded

4. As noted earlier, every BMC application delivered to a

BMC user will be loaded on a standard USB flash drive

after first being encrypted using the AES key generated

from the user passphrase and then re-encrypted using

the BMC lab’s RSA key associated with that particular

user. The user’s RSA key is also encrypted with the

AES key and stored on the flash drive

5. Whenever the user loads a BMC application, the

machine is cold-booted with the USB Boot Drive

inserted. The boot code then installs the BMC

application loader/decryptor which will ask the user to

enter their secret passphrase

6. The application loader then decrypts the user’s RSA

key and asks the user to insert a USB drive containing

an encrypted BMC application

7. The encrypted application is read and decrypted by the

loader code (using the decrypted RSA key and AES

key) and written to main memory

8. The BMC loader code now jumps to the newly

decrypted code in main memory and the application is

launched.

Figures 2 and 3 show the contents of the USBs (on left

and right) and the sequence of operations (in the middle)

during encrypt and decrypt respectively.

4 Discussion

Authentication issues are partially addressed by using the

proprietary USB devices, which may be viewed as a form of

“two-factor” protection. As discussed previously, protection

against counterfeit boot code and application code requires

that these be signed by the BMC lab acting as a certificate

authority (this signature must be verified in the usual

manner). An encrypted BMC application can only be

decrypted if the decryption agent possesses the user’s RSA

key and the user’s AES key. Since the AES key is not stored

on either device, only the legitimate user with knowledge of

the passphrase can decrypt the application. Conversely, if

the application is successfully decrypted, the boot code has

the lab’s RSA key. Thus, we have authenticated the

application to the user and the user to the application.

Protection against software interception is provided by the

double encryption scheme. This will make it harder for an

attacker to decrypt the software by brute-force. No key

information resides on the application drive along with the

encrypted executable. Additionally, on the user’s bare

machine, the decrypted code is never exposed except during

BMC run-time. The encrypted executable is read, decrypted,

and copied directly to main memory, without any external

write to persistent storage.

The double encryption scheme for deliverables was

selected for 3 reasons:

1. While all encryption keys are known at some point to

the BMC lab, the AES component belongs primarily to

individual users and is changeable at their discretion

with simple notice to the BMC lab.

2. A single layer of encryption represents a single point of

failure if the relevant key is compromised. Any RSA

key could be attacked directly using known attack

patterns. Given the security issues noted in Section 2,

this is a valid concern.

3. Two-layer encryption provides developers with

expanded choices on the RSA key size used to encrypt

executables. Since any brute-force attempt to decrypt an

executable would need to find both the AES and RSA

keys, successful decryption must try each AES key with

every possible RSA key. The search space is the

product of all valid AES keys and all valid RSA keys.

As such, a developer could use a combination of AES-

256/RSA-1024 and still exceed the cipher security of a

2048 bit RSA key. An RSA key size of 4,096 is

considered roughly equivalent to a symmetric key size

of 148 bits. Combining AES-256 with a 1.024 bit RSA

key far exceeds the strength of even the highest

available RSA key sizes.

The USB boot and application devices are currently

written to standard 2 gigabyte USB flash drives. Future

research could investigate adding support for USB hardware

based decryption and providing additional security in the

form of masked storage (and a security housing that

grounds/deletes ROM memory when breached). The cost of

this hardware development would be significant and the

tradeoffs would need to be considered. Future versions of

the secure delivery software could include ECC to take

advantage of the smaller key sizes and associated

improvements to execution time and memory usage.

We now discuss the issue of transferring BMC software

from the BMC lab to a trusted BMC user/owner of a BMC

application (referred to from now on as the BMC user or

simply the user). The requirement is that the user has 1)

received a USB drive containing BMC boot code/loader and

the user’s RSA half key encrypted with the user’s AES key;

and 2) the BMC application code encrypted first with the

user’s AES key and then with the BMC lab’s RSA half key

for this user.

As noted earlier, we assume that:

a) The user’s passphrase, AES key (derived from the

passphrase), and RSA key pair (BMC lab and user half keys

for this user) are known to the BMC lab. This information is

stored on an isolated physically secured non-networked

machine in the BMC lab that can only be accessed with the

necessary administrative privileges. If this machine (or the

information it stores) were to be compromised, the secure

delivery mechanism for BMC software as proposed in this

paper fails.

b) The USB containing the boot code/loader and user’s

encrypted RSA half key were delivered to the user by some

secure means. This USB must be physically secured to

prevent tampering or unauthorized use.

Next, we consider secure delivery of the (doubly

encrypted) BMC application code. If an ordinary USB

containing this code cannot be physically delivered by some

secure means to the user, one option would be to transfer the

encrypted code over a secure Internet connection between

the BMC lab and the user’s network. The user could then

create the USB containing the application code.

The secure Internet connection in this case could use TLS

with mutual authentication. However, this requires that the

secured USB containing the boot code/loader also include a

BMC TLS client application. When the user boots and

enters its correct passphrase, the TLS bare client will be

launched.

During the TLS handshake, the BMC server in the lab

will send its X.509 (RSA/SHA256) certificate, which would

be verified by the BMC client. As usual, the BMC client

will send the 48-byte random premaster secret encrypted

with the BMC server’s public RSA key (this key will be

included in the secured USB containing the boot

code/loader). Only the BMC server knows the

corresponding private RSA key needed to decrypt this

premaster secret. In lieu of sending its certificate, the BMC

client will authenticate itself to the server by encrypting a

nonce generated by the BMC server with the correct AES

key (generated in turn when the user enters the correct

passphrase). After the TLS handshake is successfully

completed, the server can transfer the doubly encrypted

application code (as TLS application data) over the TLS

connection.

An alternative option, which is less secure, is to use an

ordinary OS-based browser instead of the BMC client. This

means that the browser must be able to verify the BMC

server’s certificate, which should be signed by a CA. This

requires a trusted OS-based browser and a trusted CA. As

discussed earlier, OS-based browsers and CA certificates

can be controlled by attackers.

5 Software Simulations

A major factor affecting performance of the software is

the overhead due to RSA operations. A number of RSA

software implementations were tested, and the fastest were

those that used the Chinese Remainder Theorem [24] to

optimize RSA encryption. The algorithms typically used to

generate RSA keysets always chose a small exponent for the

public key to reduce encryption time. The multiplicative

inverse exponent that is part of the private key is far more

complex and needs to be more highly optimized.

Encryption elements of the BMC load and delivery

protocol have been tested across a range of possible RSA

and AES key sizes. Our implementation can generate and

use 16 different RSA key sizes from 512 to 4,096 bits and

all possible AES key sizes (128, 192, and 256 bits). We

selected 1,024 bit RSA encryption combined with AES-256

to provide decrypt operations that were reasonably fast, but

which still provided overall security exceeding the highest

stand-alone RSA encryption.

Tests were run using a range of application sizes and, on

average, decryption with this combination of RSA and AES

required 360 msec/kB of original application size on a Dell

OptiPlex 960. RSA encryption in our case involves a

scheme where all keys are held as private, so the normal

encryption/decryption pattern can be reversed without

compromising security. In this protocol the application is

first encrypted using the more complex key (most 1s set)

and later decrypted using the shorter key. Initial encryption

will always be performed in the BMC lab and does not need

to be fast. The decryption process, on the other hand, needs

to be fast since it is part of a user’s load process.

These tests were designed to prove that our approach

using RSA/AES encryption provides a high level of security

with reasonable encryption/decryption times for all current

BMC applications. This enables us to avoid techniques that

compromise security such as the intentional selection of

Fermat Primes to improve encryption speed. While the

decryption time of 360 msec/kB may seem slow, it is

noteworthy that these test decryptions included IO

read/write time, and full data verification routines.

Additionally, our proof-of-concept testing did not use multi-

processor or any built-in processor hardware acceleration.

Finally, as BMC applications are very small and this scheme

only requires decryption once at the start of an application

or server process, timing is not of paramount importance. A

companion project has been proposed to utilize on-USB

hardware acceleration that would improve decryption

speeds by 100 times, allowing for large executables.

6 Conclusion

We described a mechanism for secure delivery of BMC

software, which requires a pair of USBs containing the boot

code and application code respectively. Each user has a

proprietary RSA key pair, where only the BMC developer

has access to either side of the key pair. This approach

enables the encryption strength of RSA to be fully realized,

and when coupled with the AES encryption layer, to provide

a high level of security for software distribution. Our

software simulations of the software delivery mechanism

suggest that implementations will provide strong encryption

at speeds acceptable for user software loading while

achieving secure delivery across a hostile environment.

References

[1] R. K. Karne, Object-oriented Computer Architectures

for New Generation of Applications, Computer

Architecture News, December 1995, Vol. 23, No. 5.

[2] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He,

and S. Girumala, A Peer-to-Peer Bare PC VoIP

Application, IEEE Consumer and Communications and

Networking Conference (CCNC), Las Vegas, Nevada,

January 2007.

[3] He, Karne, and Wijesinha, Design and performance of a

bare PC web server, International Journal of Computers

and their Applications, June 2008.

[4] G. Ford, R. Karne, A. Wijesinha, and P. Appiah-Kubi,

The Design and Implementation of a Bare PC Email

Server, 33rd IEEE International Computer Software

and Applications Conference (COMPSAC), Seattle,

Washington, July 2009, pp. 480-485.

[5] U. Okafor, R. K. Karne, A. L. Wijesinha and B. Rawal,

Transforming SQLITE to Run on a Bare PC, 7th

International Conference on Software Paradigm Trends

(ICSoft), pages 311-314, Rome, Italy, July 2012.

[6] H. Chang, R. Karne and A. Wijesinha, Insight Into the

x86-64 Bare PC Application Boot/Load/Run

Methodology, 22nd International Conference on

Software Engineering and Data Engineering (SEDE),

Los Angeles, CA, 2013.

[7] U. Okafor, R. Karne, A. Wijesinha, and P. Appiah-

Kubi, Eliminating the Operating System via the Bare

Machine Computing Paradigm, 5th International

Conference on Future Computational Technologies and

Applications (Future Computing), Valencia, Spain,

2013.

[8] R. K. Karne, A. L. Wijesinha, and S. Liang, A Bare

PC Mass Storage USB Driver, International Journal of

Computers and their Applications, March 2013.

[9] S. Liang, R. K. Karne, and A. L. Wijesinha., A Lean

USB File System For Bare Machine Applications, 21st

International Conference on Software Engineering and

Data Engineering (SEDE), June 2012, pp. 191-196.

[10] U. Okafor, R. Karne, A. Wijesinha, and P. Appiah-

Kubi, A Methodology to Transform an OS-based

Application to a Bare Machine Application, 12th IEEE

International Conference on Ubiquitous Computing and

Communications (IUCC), Melbourne, Australia, 2013.

[11] G. H. Khaksari, R. K. Karne and A. L. Wijesinha, A

Bare Machine Application Development Methodology,

International Journal of Computers and their

Applications, Vol. 19, No.1, March 2012, pp. 10-25.

[12] A. Emdadi, R. K. Karne, and A. L. Wijesinha.

Implementing the TLS Protocol on a Bare PC, 2nd

International Conference on Computer Research and

Development (ICCRD), Kuala Lumpur, Malaysia, May

2010.

[13] K. Moriarty, B. Kaliski, and A. Rusch, PKCS #5:

Password-Based Cryptography Specification Version

2.1, RFC 8018, 2017.

[14] K. Böttinger, D. Schuster, and C. Eckert, Detecting

Fingerprinted Data in TLS Traffic, 10th ACM

Symposium on Information, Computer and

Communications Security (ASIA CCS), April 2015.

[15] T. Jager, J. Schwenk, and J. Somorovsky, On the

Security of TLS 1.3 and QUIC Against Weaknesses in

PKCS#1 v1.5 Encryption, 22nd ACM SIGSAC

Conference on Computer and Communications Security

(CCS), October 2015.

[16] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, D.

Tian, K. R. B. Butler, and A. Alkhelaifi, Securing SSL

Certificate Verification through Dynamic Linking,

ACM SIGSAC Conference on Computer and

Communications Security (CCS), November 2014.

[17] A. Bates, J. Pletcher, T. Nichols, B. Hollembaek, and

K. R. B. Butler, Forced Perspectives: Evaluating an

SSL Trust Enhancement at Scale, Conference on

Internet Measurement (IMC), November 2014.

[18] F. Giesen, F. Kohlar, and D. Stebila, On the security of

TLS renegotiation, ACM SIGSAC conference on

Computer & Communications Security (CCS),

November 2013.

[19] Federal Office for Information Security, Technical

Guideline TR-03111 Elliptic Curve Cryptography

Version 2.0, Germany, 2012.

[20] N. Vratonjic, J. Freudiger, V. Bindschaedler, and

J.P.Hubaux, The Inconvenient Truth About Web

Certificates, In B. Schneier, editor, Economics of

Information Security and Privacy III, pages 79-117.

Springer New York, 2013.

[21] R. Eyer, R. Karne, and A. Wijesinha, Isolation as a

Threat Reduction Strategy for Super-Systems, 22nd

International Conference on Computers and Their

Applications in Industry and Engineering (CAINE),

2009.

[22] M. Ahmadvand, A. Pretschner, and F. Kelbert, A

Taxonomy of Software Integrity Protection Techniques,

Advances in Computers, ISSN 0065-2458, Feb 2018.

[23] A. Viticchie, C. Basile, M. Ceccato, B. Abrath, and B.

Coppens, Reactive Attestation: Automatic Detection

and Reaction to Software Tampering Attacks, (SPRO),

ACM Workshop on Software Protection, 2016.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein, An Introduction to Algorithms, 3rd ed MIT, 2009.

