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Abstract—We consider the design and implementation of a 
bare PC Web server with no OS or kernel running on a multicore 
architecture. Previous work has demonstrated initialization, 
loading and running of a 32-bit web server on a single core in a 
multicore configured system. The main design issues that need to 
be addressed are balancing the load, designing re-entrant code, 
enforcing concurrency control, partitioning network logic, sharing 
the network interface and designing multi-tasking execution. We 
describe a novel bare PC Web server architecture and design for 
addressing these issues. We also provide initial performance 
measurements that demonstrate the feasibility of this architecture 
and its implementation. It is shown that with this design and 
implementation, the main bottleneck impeding multicore 
parallelism is using a single Ethernet card in the system to handle 
multiple cores. This work serves as a basis for identifying issues 
that may exist in other networking and multicore configurations 
for a bare PC Web server.

Keywords— Bare Machine Computing, Bare PC, Intel x86, 
Multi-core, Web server.

I. INTRODUCTION 

Bare Machine Computing (BMC) is a two-prong approach. 
First, a computer is bare without any hard disk or resident 
operating system or kernel. Secondly, it is a different 
programming paradigm, where a given application suite and 
its programs directly communicate with the hardware. There is 
no middleware running in the machine. The applications and 
system programs are homogenized to run as a single program. 
The application suite is designed to perform only the intended 
functionality and nothing else. When a communication is made 
between two BMC machines, it is the most secure way to 
operate as it avoids all OS vulnerabilities. The computing box 
has no ownership or added value. Anyone can use the box 
anywhere. The BMC paradigm is applicable to any pervasive 
computing device. This is an alternate way of computing for 
some chosen closed applications that are distinct from all other 
OS based universe. It is evident that BMC applications can be 
used for defense and other closed secure communications but
may not be immediately used for commercial world where 
there is more focus on open systems and the global world.

The elimination of OS abstractions was proposed [1] over 
twenty years ago. Since then, similar ideas have been in 
research focus including virtualization [2], tiny OS [3], 

Palacios and Kitten [4], IO-Lite [5], OS-Kit [6], bare metal 
Linux [7] and more. Two other systems are often mixed up
with bare machine computing. LibOS [19] is used to link 
kernel OS libraries in user space to provide more flexibility to 
applications. Bare metal servers [20] offered by IBM uses 
“bare metal” term in a different context, indicating that it is 
running a single tenant at a time. The term is also used to 
distinguish it from modern forms of virtualization and cloud 
hosting. These systems still have OS or kernel dependency
during the operation.  These references are shown to illustrate 
the concepts; however it is obvious that they were explored 
long time ago. These approaches fall in the middle of a 
spectrum where a full-blown OS is on one end and the BMC  
at the other end. The BMC being the extreme end of this 
spectrum, one can’t go beyond this to achieve full control of 
an application with the ultimate security and simplicity. There 
are other architectures such as Raw [8], which focus on 
parallelizing customized applications, that are based on using 
compilers at run time to map to the hardware. These 
approaches are different from the BMC paradigm and its 
objectives. 

There are numerous BMC applications cited in the 
literature. Some examples of these applications include: Web
mail server [10], Email servers [9], VoIP [11], SQLite based 
mail [12] and more. These applications run as multi-threaded 
programs with hundreds of threads and yield high performance 
with high security as there is no centralized OS or kernel. 
These applications inherit very short image with limited 
functionality and a single programming environment with no 
outside dependencies and controls. It is essentially a closed end 
user system with full control by the user. This paper will 
further explore the work done before in web servers running 
on bare PC with multicore capabilities [13]. Increase in web 
server performance was observed in multicores due to flow-
level parallelism in web server workloads [14] in Windows 
OS. Tunings to web server software, network interrupt 
processing and OS (Linux) scheduling were attempted in [15] 
to allow scaling of web servers in multicore architectures. 
Some key factors that affected the web server performance 
were attributed to memory footprint, control of shared 
resources and setting core affinity to the loads [16] while using 
2 representative workloads, one serviced by cache and another 
that required significant I/O. Address bus utilization increased
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and saturated on the cores [17] in the experiments carried out
with each Network Interface Card (NIC) dedicated to each 
core on a multicore web server and was contended as the main 
bottleneck in the web server performance. Attempt to increase 
the scalability of Apache web server [18] to efficiently utilize 
multicores was made by using multiple listening sockets to 
bind to a single port on a host. 

This paper is based on the design of a webserver on a 4-
core multicore architecture with a single NIC card and is 
organized as follows. Section II outlines the integrated 
protocol for web server including: HTTP and TCP. Section III
describes design issues related to multicore implementation for 
the web server. Section IV describes the novel architecture 
used to implement web server that addresses the above design 
issues. Section V present novel design and implementation 
features. Section VI provides some performance 
measurements of the web server on multicore architecture. 
Finally, Section VII narrate the conclusion. 

II. INTEGRATED PROTOCOL

A web server serves client requests using HTTP protocol. 
Internally, TCP/IP/Ethernet provide the communication 
between a client and a server. As the BMC paradigm has no 
layering, the HTTP and TCP protocols are integrated as shown 
in Fig. 1. 

Fig 1. Server and Client Interfaces

The BMC programmer has complete knowledge and 
control over the Ethernet controller and its driver. In the 
Ethernet driver, there are two circular lists one for transmit and 
another one for receive as shown in Fig. 2. This 
implementation has up to (4096) entries in the lists. Some 
network cards have limitations on the size of these lists. These 
lists are situated in user memory. However, in BMC, all 
memory is in user memory.

Fig.2 TDL and RDL Structures

Each entry has a descriptor and a pointer to the data. The 
descriptor consists of status and other control information. The 
software can check the status in the descriptor and the 
hardware can write the status. There can be a race condition, if 
both hardware and software come there at the same time. The 
Transmit Descriptor List is referred to as TDL and the Receive 
Descriptor List is referred to as RDL. Notice that the Ethernet 
driver and the card can operate in full duplex mode, where 
receive and send can happen concurrently.  

The above description of the integrated protocol and 
Ethernet buffers is relevant to this paper and the web server 
implementation.  In BMC web server, there are three basic task 
structures, Main Task (MT), RCV Task (RT) and HTTP Tasks 
(HT).  There is one MT, one RT and many HT’s.  When a 
program starts execution, it begins with the MT. When a 
packet arrives, MT gives control to RT to run and process the 
packet arrived. When it is time to run a HTTP request, the HT 
runs to send data and update the TCP state. For each client 
request, there is a separate HT. The RT task suspends when a 
received packet processing is complete. The HT suspends after 
sending data to a client. When FINACK comes from a client, 
the HT gets terminated and returns to a task pool. Fig.3 
illustrates this task state transitions.

Fig.3 Task States in BMC

The IP and Ethernet protocols simply validate and remove 
their headers before passing the packet to TCP object. When a 
client sends a request to a server, the packet is captured by NIC 
and stored in RDL. Similarly, when a packet needs to be 
transmitted, it is placed in the TDL. Fig.4 shows the actual 

556



steps involved when a packet arrives. All these steps run as a 
single thread of execution in the machine. 

Fig 4. Single Thread of Execution

The MT checks if a packet is arrived by probing the “D” 
bit in the Ethernet descriptor. If the “D” bit set, then it calls 
(step2) to read the data. When the data is read from the RDL 
entry, it calls step 3 to remove IP header and handles to TCP 
object (step4).  The TCP object processes the packets, if it is a 
SYN packet, then it handles it to a ListenHandler() function, 
otherwise, it handles the packet to an OtherHandler() method.

The RT tasks continuously runs through this single thread 
and after updating the status of the request in the TCP table, it 
returns to the MT. Notice, during this processing, CPU is busy 
and not wasting any time and not switching to other tasks. 
These two methods provide all the necessary functionality 
needed in the TCP object.

III. DESIGN ISSUES

In BMC, there are many design issues to be considered for 
optimal design and implementation. Some of these issues are 
discussed here.

A. State of HTTP Requests
At a given point in time, there are many concurrent 

requests coming from clients. Each request goes through state 
transitions as shown in Fig. 1. We must maintain the state of 
each request and respond to the clients accordingly. This state 
is maintained in a table known as TCB (TCP Control Block).
The responses to a client will be based on the state of a given 
request. Hence, we give a unique TCB number (TCBNO) to 
each request and then track that request as it goes through its 
various states.      

B. Addressing TCB Table
In order to address TCB table, we must make each entry 

unique. The most common way to make the entry unique is 
using a Hash Table. The Hash Table index is usually derived 
from a client’s IP and Port number. Hash tables also require 
covering for collisions by using a linked list. To avoid hash 
table, we used an indexing technique to optimize the design. 

Each client’s port numbers are limited to 64K, we define a 
Port Table (PT) in the system. When port numbers collide 
with other clients, we then use a linked list structure to store 
the collided entry. The linked list is implemented as a memory 
structure to avoid address pointers. The port table points to the 
linked memory structure to keep the collided entries.   

C. Network Interface Card (NIC)
In our desktop there is only one NIC on the motherboard. 

There are receive and send circular lists that interface between 
NIC hardware and Ethernet software. In our multicore 
environment, there are four cores Boot Strap Processor and 
Application Processors. These four cores are designated as 
BSP, AP1, AP2 and AP3. The BSP core assumes execution 
when computer starts. We used BSP as the core for 
communicating between NIC and Ethernet driver. The send 
and receive parts of the data are managed by BSP. 

D. NIC Send Buffering
There are two circular buffers in the Ethernet device driver 

that manage send and receive data as shown in Fig. 2. As there 
are four cores that can send data asynchronously, we need four 
send data buffers to hold the data until it is placed in the send 
circular list. The BSP manages the send data buffers and 
periodically checks and places the data in the send circular list. 
Notice, BSP can also process HTTP requests, thus there is a 
need for four send data buffers. 

E. BSP Buffering
As the BSP manages all the receive data for HTTP 

requests, this data is destined for the appropriate core which 
is processing a HTTP request. As the cores run concurrently, 
we need communication buffers to send arrived packets from 
Ethernet to appropriate cores. We need communication 
buffers between BSP and appropriate HTTP request 
processing cores. Notice, BSP can also process HTTP 
requests, thus there is a need for four communication buffers. 
We preferred this method as a means of communication 
between the cores instead of interrupts to avoid interrupt 
overhead.

F. Synchronization and Locking
As the cores access buffers asynchronously, there is a need 

to lock a buffer while the other core is accessing. In our case, 
we need synchronizing locks for send and communication 
buffers. These locks must be appropriately set and reset. 

G. Process Lists
As each core can execute HTTP requests in multi-

processing manner, we need a linear list that keeps all the task 
requests corresponding to their client requests. To avoid 
search in this list, we used indexing by keeping a TCBNO 
table that keeps the index for the linear list. 

H. Load Balancing
As AP1, AP2 and AP3 have the same processing work, we 

simply used a round robin approach to balance the load on 
cores. We used the same round robin for dispatching requests 
when BSP also participates in processing HTTP requests. 
Load balancing based on CPU utilization can be a good 
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strategy to use, but to keep the design simple we adopted the 
round robin approach for now.

I. TCP Processing
The major processing of HTTP request involves 

processing the request at TCP level and maintaining the TCB 
table. We divide this TCP processing into two main 
components. ListenHandler() and OtherHandler() functions. 
The ListenHandler() receives a SYN packet and sends a 
SYNACK. The      OtherHandler() takes care of processing 
the rest of the HTTP/TCP protocol. Thus, the load balancing 
algorithm is placed at BSP when SYN packet arrives. 
Although each core has its own TCP object, only BSP uses 
ListenHandler() code and BSP and APs can use 
OtherHandler() code. Each core also has its own TCB table. 
The TCB state in the BSP is SYNRCVD state and other cores 
have the current state of a given request.

J. Deleting State
The FINACK response from the client deletes the state in 

process list, TCB table entry and PT and the whole request is 
relinquished from the system. 

IV. ARCHITECTURE

As shown in Section 3, multicore architecture poses many 
design challenges. Fig. 5 illustrates a novel architecture for 
implementing multicore bare machine web server. 
Throughout the architecture, search is avoided and replaced 
with index tables. Although index tables take more space, it is 
affordable in BMC implementation.  A client’s port number is 
used as an index into a PT.  Each entry in the PT will refer to 
a record with a structure that has TCB record number, port no 
and other miscellaneous attributes. Multiple clients may use 
the same port number thus causing collisions in the PT. To 
address this problem, a linear list of port number records is 
stored in an array as shown in the architecture.  The main 
purpose of the PT is to provide a TCB no that is unique for 
each client’s request. 

The TCB no is used for many other purposes in the 
architecture. It is used to access a TCB record that contains 
the state of the client request (basically the transitions shown 
in Fig. 1). The structure stored in the TCB Table contains 
about 400 bytes of information. The TCB no is also used to 
access a task that is running on behalf of a client request. The 
client request tasks are stored in a linear array as shown in the 
Fig.5. The linear array index is stored in the Task Index Table 
(TIT) which is addressed by a TCB no. 

The BSP, AP1, AP2, AP3 in a four-core architecture can 
process any client request. However, BSP acts as a load 
balancer between network interface card (NIC) and cores. The 
BSP performs NIC interface and is responsible to receive and 
send the packets. In addition, it can also process HTTP 
requests. Accordingly, BSP runs MT, RT tasks and HT task in 
addition if scheduled, whereas other cores only act as HTTP 
request processors and run only HT Task. Due to the BSP 
architectural role as a centralized processor, it receives and 

transmits all packets to the NIC and uses buffering for send 
and receive operations to control concurrency issues. In 
addition, BSP is also chosen to load balance requests when a 
SYN packet arrives. A simple round robin strategy is used to 
balance the clients load. When other types of packets arrive 
for a given request (other than SYN), BSP identifies the 
destination as it stored the information in PT and TCB Table. 
The arrived packet in BSP will be stored in an appropriate 
communication receive lists CLIST, CLIST1, CLIST2, 
CLIST3. When cores send data to NIC, they put their data in 
send lists DLIST, DLIST1, DLIST2 and DLIST3. 
Periodically, BSP polls the DLISTs to send data to the NIC. 
As all cores are running concurrently, appropriate locking 
mechanisms are required as shown in the Fig.5. 

The novel architecture illustrated here was a result of 
many iterations and trials to obtain a simple system for BMC 
implementation. It is possible to implement such architecture 
in BMC, as there is full control of the machine from boot 
process to execution process. It is much harder to implement 
this model in an OS environment with full control.  

V. DESIGN AND IMPLEMENTATION

Design and implementation of a Web server on multicore 
architecture using BMC paradigm poses many challenges. 
Multicore configuration, initialization and multicore 
operation was described in [13]. This section will describe 
some additional novelties and features that are unique to BMC 
architecture. 

A. TCP Code Partitioning
As the BSP and AP roles are different at a network level, 

the TCP code is partitioned to suit their needs in BMC. A 
separate copy of TCP code is given for each core to tailor their 
code for their specific needs. This also solves the problem of 
re-entrant code in TCP for multiple cores. As mentioned 
before the ListenHandler() and the OtherHandler() functions 
perform most of the work done in TCP object. Load 
balancing, communicating with NIC is done by BSP. Each 
core has their own main loop to serve HTTP tasks. 

B. AP Cache Enable
In order to enable cache for APs, the following code is 

needed as shown in Fig.6. If their cache is not enabled, they 
run much slower as they must fetch instructions and data from 
main memory.

C. BSP Control Flow
A control flow to process client’s request in BSP is shown 

in Fig. 7. This flow shows a high-level description of its 
implementation in BSP main loop. As shown in Fig. 4, a 
packet arrival can be detected and RCV task can be invoked. 
When the RCV task runs, it also inserts packets into 
appropriate CLIST based on a partitioning algorithm. After 
running the RCV task, the Data List (DLIST) for each core is 
checked if data needs to be sent through NIC. Data packet(s) 
are sent if the DLIST contains any send requests. If the BSP 
is partitioned to run HTTP requests, then it will also process 
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the HTTP request as shown in Fig. 7. Otherwise, the BSP 
control returns to main loop processing new requests.

Fig. 5 Multicore web server architecture 

Fig. 6 AP Cache Enable

D. HTTP Control Flow
A control flow to process HTTP requests is shown in Fig. 

8. The same control flow is used by BSP and APs. In APs this 
is the main program running in a loop. When a BSP receives 
a packet from a client, it checks its TCB table and finds the 
core-id of a given request. The core-id was inserted into the 
table based on a request’s load balancing strategy. This core-
id helps to insert the packet in an appropriate Communication 
List (CLIST). Each core processing a request checks its 
CLIST and processes an arrived packet. If it is not a valid 
packet type received in the CLIST, it causes an error. The 
processing of an arrived packet is done by calling the 

OtherHandler() method in the appropriate cores TCP object.  
 

This method processes the packet and updates its status in 
TCB table entry. As shown in Fig. 1, when a GET request 
packet comes from a client, a HT is inserted into the linear list 
by the OtherHandler() method. Thus, when GET arrives, its 
task is removed from the linear list and run. Also, when time 
expires or FINACK arrives, its task is removed from the linear 
list. In addition, if a RESET comes from the client, then also 
its task is removed from the linear list. In all these cases, the 
core will run the task and return to its main loop. Notice, in 
BMC, the entire flow control of HTTP request processing is 
controlled and coded by a programmer at programming time. 
In conventional systems, the operating system controls this 
kind of flow at run time. 

E. Locking Mechanism
As multiple cores access CLIST and DLIST entities 
concurrently, these sharing resources must be locked. In
BMC, one can use memory addresses (that are in real mode 
memory) to set up lock area. These are locking and unlocking 
direct hardware interfaces to do these operations. An actual 
such code is described in Fig. 9. An instantiated interface 
object “io” represents the direct hardware interface class. This 
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C++ interface calls a C interface and that in turn calls an 
assembly call as shown in Fig. 9. This is a typical flow that 
is used to implement all direct hardware interfaces. 
Depending upon its use, one can put program logic at C++, C, 
or assembly level. Notice that there is a full control of real 
shared memory at an application level. The assembly call 
shows how the lock area is updated with disabling and 
enabling interrupts which is also under programmer control.
 

Fig. 7 BSP Control Flow

F. Task Mechanism
The task mechanisms implemented in BMC are novel and 

unique. It is completely controlled by an application 
programmer as shown in Fig.10a and Fig.10b. A task is 
defined as a function and has its own TSS (Task State 
Segment).  The GDT (Global Descriptor Table), IDT 
(Interrupt Descriptor Table) and control registers can be 
directly controlled by its application developer. After 
initialization, BSP and APs run in their main loop. The main 
loop in each core runs HTTP tasks as needed. Fig.10b 
illustrates mechanisms to run tasks in cores with actual code 
snippets with an example of AOArunTask3() for AP3. Task 
implementation is in Fig.10a with an example. 

Each task has a unique Task_ID (1608 in this example). 
This task id is used to address its TSS and a GDT entry is 
created to address this TSS.  AOArunTask3() C++ function in 
turn calls a C function named ap3_runTask(). This C function 
in turn calls an assembly function as shown in the figure. In 
this example, it calls an interrupt with 0x44 (or 68) vector 
number. When the interrupt vector table is initialized, the 
descriptor related to this vector will be initialized with task 
gate descriptor using method set_gatedesc().

Fig. 8 AP Control Flow

Each core has the capability to run multiple HT’s to process 
client requests. 

Fig 9. Locking Code

 Fig.10b illustrates how task switching occur in this 
design. In this example, notice that 0x44 (68) is the interrupt 
used for AP3 tasks. Similarly, 0x43, 0x42, 0x28 interrupt 
vectors are used to run HT’s in AP2, AP1 and BSP cores. 
When “INT 44h” is executed by the CPU, it goes to the IDT 
and obtains the GDT offset. In this case, it was initialized with 
0x110 indicating that it is a 34th entry in the GDT.  
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Fig.10a. Task Implementation

Fig.10b. Task Invocation

Notice each descriptor in x86 architecture takes 8 bytes. 
The CPU takes this offset and it addresses the GDT entry. It 
calculates the GDT entry address as shown in the Fig.10.a. 
The GDT entry consists of 8-byte descriptor in a descriptor 
format. This descriptor is mapped to a 4-byte address as 
shown in this figure. This four-byte address is taddr in the TSS 
table. A TSS entry consists of a TSS header and TSS data. The 
TSS header (8 bytes) is used for debugging purposes. The task 
mechanisms shown in this paper are unique to BMC 
implementation and it is used in many applications as part of 
BMC arena.      

G. BMC Novel Design Features
In BMC, the design and implementation of a web server 

on multicore architecture differs in many ways compared to 
applications designed to run on operating systems. Some 
significant attributes of BMC that are novel and unique are 
listed as follows: 

1) The entire memory is real memory, there is no virtual 
memory and paging 

2) Real mode, protected mode and compatibility modes 
of x86 processor are under programmer control 

3) Real mode memory can be used by programmer 
transparently 
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4) Interrupts are controlled by a programmer 
5) Control flow is designed apriori by a programmer 
6) A given program execution is controlled explicitly by 

a programmer 
7) Tasking structure and scheduling is controlled by a 

programmer 
8) A program is statically linked 
9) Locking is part of an application code 
10) All direct hardware interfaces are part of an 

application code
11) Application performs only intended functions 
12) Concurrency control is easier to implement in BMC
13) Indexing can be used more liberally in the design due 

to less usage of overall memory 
14) TSS, Program Counter, IDT, GDT can be redefined 

and controlled by a programmer 
Hopefully, BMC is more secure than any other OS or kernel-
based applications. 

VI. PERFORMANCE MEASUREMENTS

Dell Optiplex 9010 at 3.4 GHz processor with 4 cores and 
4GB memory is used to conduct measurements. 3 Bare PC 
Web clients, two with 3700 requests/second and one with 
1000 requests/second and an additional windows client is 
used to collect data shown in the following graphs.  
These clients make requests to the multicore web server 
running on multiple cores as described before. We do not have 
hard disk and virtual memory in Bare Machine. The size of 
the file request was 4KB and the network was 1 Gigabits/sec 
bandwidth. The data collected and the plots shown in this 
paper are described as follows. 

Fig. 11 CPU Utilization

Fig. 11 shows CPU utilization for all cores. BSP only handles 
the send and receive interface of packets with the NIC. 
The charts indicate two cases, where BSP handles the HTTP 
load and does not handle any HTTP load. There is a minor 
difference in CPU utilization in these two cases. A maximum 
of 8400 requests per second were run on four cores where 

incoming requests were equally distributed on all cores.
Notice, the APs utilization is quite small compared with the 
BSP. This is because BSP was assigned as the main interface 
to the Network (Receive Task and Send Task) while APs were 
only doing HTTP Tasks.

Fig. 12 shows a pie chart of BSP CPU utilization with respect 
to receive and send processing, when there is no HTTP load 
assigned to BSP. The CPU utilization reached to 92% without 
any HTTP load. This indicates that the BSP processor is 
overwhelmed with the network interface handling load of 
sending and receiving packets. 

Fig. 12 BSP CPU Utilization

Fig.13 shows average and maximum time of a request that 
stays in a linear list before its completion. 

Fig.13. Stay time in Linear List

Notice that the stay time measured between a GET request 
and its FINACK from the client increases rapidly as the load 
increases. 
Fig.14 shows the number of maximum requests running in 
parallel in all cores. When 8400 requests/sec were running, 
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there were about 100 requests running concurrently. This is 
sometimes referred to as MAX Parallel. 

Fig 14. Max Parallel
   
Fig. 15 shows the first response time of server measured by 
Wireshark from a Windows client. As expected, the first 
response time increases with respect to the number of 
requests. 

        Fig. 15 First Response time

Fig. 16 shows the connection time of server measured by 
Wireshark from a Windows client. As expected, the 
connection time increases with respect to the number of 
requests increase. 

The performance measurements indicate that the current 
BMC architecture has some bottlenecks beyond 8400 
requests/sec. Fig.1 indicates that a client request consists of 
many individual steps starting from SYN to FINACK with a 
variable time in between interactions. It is obvious, that there 
is some inherent serial part in each request. We can’t 
parallelize these requests completely due to inherent serial 
portion as defined by Amdahl’s law. This paper focused on 
exploiting parallelism at inter-request levels from multiple 
clients. However, this parallelism was limited due to the BSP 
bottlenecks of handling NIC interfaces as shown in Fig. 2. 
Further research is needed to find new avenues to parallelize 

a Web server running on multicores in the BMC approach. 
Many commercial Web servers utilize clustering and multiple 
NICs to address this problem. 

Fig. 16 Connection time

VII. CONCLUSIONS

This paper proposes a novel architecture for implementing a 
Web server on multiple cores without a need for OS or kernel 
that run on bare PCs. This paper demonstrates that the bare 
machine computing paradigm is applicable to multicore 
architectures. Novel and unique design issues related to a Web 
server application on bare PCs are identified and 
implemented. It is shown that in a bare machine computing 
environment, design choices such as indexing is much easier 
to afford and implement. Complex systems such as Web 
servers can be implemented on bare machines with total 
control by application programmer. Some novel and simple 
ways of implementations are described to demonstrate the 
potential of BMC that are only possible in bare machine 
computing paradigm and not applicable to OS based 
applications. The paper also hints that BMC based 
applications maybe inherently designed for security although 
beyond the scope of this research paper. The performance 
measurements illustrate that many requests were executed in 
parallel, however, the BSP saturation limited the scalability of 
this architecture. Further research is needed to address the 
scalability and speedup problems in the proposed architecture. 
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