
[19] https://lwn.net/Articles/637658/
[20] https://en.wikipedia.org/wiki/Bare-metal_server

Design Issues in Running a Web Server on Bare PC Multi-core Architecture

Nirmala Soundararajan, Ramesh K Karne,
Alexander L Wijesinha and Navid Ordouie

Computer and Information Sciences
Towson University

Towson, USA
e-mail: {nsoundararajan, rkarne, awijesinha,

nordouie}@towson.edu

Hojin Chang
Math and Information Science

Susquehanna University
Selinsgrove, USA

e-mail: changh@susqu.edu

Abstract—We consider the design and implementation of a
bare PC Web server with no OS or kernel running on a multicore
architecture. Previous work has demonstrated initialization,
loading and running of a 32-bit web server on a single core in a
multicore configured system. The main design issues that need to
be addressed are balancing the load, designing re-entrant code,
enforcing concurrency control, partitioning network logic, sharing
the network interface and designing multi-tasking execution. We
describe a novel bare PC Web server architecture and design for
addressing these issues. We also provide initial performance
measurements that demonstrate the feasibility of this architecture
and its implementation. It is shown that with this design and
implementation, the main bottleneck impeding multicore
parallelism is using a single Ethernet card in the system to handle
multiple cores. This work serves as a basis for identifying issues
that may exist in other networking and multicore configurations
for a bare PC Web server.

Keywords— Bare Machine Computing, Bare PC, Intel x86,
Multi-core, Web server.

I. INTRODUCTION

Bare Machine Computing (BMC) is a two-prong approach.
First, a computer is bare without any hard disk or resident
operating system or kernel. Secondly, it is a different
programming paradigm, where a given application suite and
its programs directly communicate with the hardware. There is
no middleware running in the machine. The applications and
system programs are homogenized to run as a single program.
The application suite is designed to perform only the intended
functionality and nothing else. When a communication is made
between two BMC machines, it is the most secure way to
operate as it avoids all OS vulnerabilities. The computing box
has no ownership or added value. Anyone can use the box
anywhere. The BMC paradigm is applicable to any pervasive
computing device. This is an alternate way of computing for
some chosen closed applications that are distinct from all other
OS based universe. It is evident that BMC applications can be
used for defense and other closed secure communications but
may not be immediately used for commercial world where
there is more focus on open systems and the global world.

The elimination of OS abstractions was proposed [1] over
twenty years ago. Since then, similar ideas have been in
research focus including virtualization [2], tiny OS [3],

Palacios and Kitten [4], IO-Lite [5], OS-Kit [6], bare metal
Linux [7] and more. Two other systems are often mixed up
with bare machine computing. LibOS [19] is used to link
kernel OS libraries in user space to provide more flexibility to
applications. Bare metal servers [20] offered by IBM uses
“bare metal” term in a different context, indicating that it is
running a single tenant at a time. The term is also used to
distinguish it from modern forms of virtualization and cloud
hosting. These systems still have OS or kernel dependency
during the operation. These references are shown to illustrate
the concepts; however it is obvious that they were explored
long time ago. These approaches fall in the middle of a
spectrum where a full-blown OS is on one end and the BMC
at the other end. The BMC being the extreme end of this
spectrum, one can’t go beyond this to achieve full control of
an application with the ultimate security and simplicity. There
are other architectures such as Raw [8], which focus on
parallelizing customized applications, that are based on using
compilers at run time to map to the hardware. These
approaches are different from the BMC paradigm and its
objectives.

There are numerous BMC applications cited in the
literature. Some examples of these applications include: Web
mail server [10], Email servers [9], VoIP [11], SQLite based
mail [12] and more. These applications run as multi-threaded
programs with hundreds of threads and yield high performance
with high security as there is no centralized OS or kernel.
These applications inherit very short image with limited
functionality and a single programming environment with no
outside dependencies and controls. It is essentially a closed end
user system with full control by the user. This paper will
further explore the work done before in web servers running
on bare PC with multicore capabilities [13]. Increase in web
server performance was observed in multicores due to flow-
level parallelism in web server workloads [14] in Windows
OS. Tunings to web server software, network interrupt
processing and OS (Linux) scheduling were attempted in [15]
to allow scaling of web servers in multicore architectures.
Some key factors that affected the web server performance
were attributed to memory footprint, control of shared
resources and setting core affinity to the loads [16] while using
2 representative workloads, one serviced by cache and another
that required significant I/O. Address bus utilization increased

555

2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.0-195

and saturated on the cores [17] in the experiments carried out
with each Network Interface Card (NIC) dedicated to each
core on a multicore web server and was contended as the main
bottleneck in the web server performance. Attempt to increase
the scalability of Apache web server [18] to efficiently utilize
multicores was made by using multiple listening sockets to
bind to a single port on a host.

This paper is based on the design of a webserver on a 4-
core multicore architecture with a single NIC card and is
organized as follows. Section II outlines the integrated
protocol for web server including: HTTP and TCP. Section III
describes design issues related to multicore implementation for
the web server. Section IV describes the novel architecture
used to implement web server that addresses the above design
issues. Section V present novel design and implementation
features. Section VI provides some performance
measurements of the web server on multicore architecture.
Finally, Section VII narrate the conclusion.

II. INTEGRATED PROTOCOL

A web server serves client requests using HTTP protocol.
Internally, TCP/IP/Ethernet provide the communication
between a client and a server. As the BMC paradigm has no
layering, the HTTP and TCP protocols are integrated as shown
in Fig. 1.

Fig 1. Server and Client Interfaces

The BMC programmer has complete knowledge and
control over the Ethernet controller and its driver. In the
Ethernet driver, there are two circular lists one for transmit and
another one for receive as shown in Fig. 2. This
implementation has up to (4096) entries in the lists. Some
network cards have limitations on the size of these lists. These
lists are situated in user memory. However, in BMC, all
memory is in user memory.

Fig.2 TDL and RDL Structures

Each entry has a descriptor and a pointer to the data. The
descriptor consists of status and other control information. The
software can check the status in the descriptor and the
hardware can write the status. There can be a race condition, if
both hardware and software come there at the same time. The
Transmit Descriptor List is referred to as TDL and the Receive
Descriptor List is referred to as RDL. Notice that the Ethernet
driver and the card can operate in full duplex mode, where
receive and send can happen concurrently.

The above description of the integrated protocol and
Ethernet buffers is relevant to this paper and the web server
implementation. In BMC web server, there are three basic task
structures, Main Task (MT), RCV Task (RT) and HTTP Tasks
(HT). There is one MT, one RT and many HT’s. When a
program starts execution, it begins with the MT. When a
packet arrives, MT gives control to RT to run and process the
packet arrived. When it is time to run a HTTP request, the HT
runs to send data and update the TCP state. For each client
request, there is a separate HT. The RT task suspends when a
received packet processing is complete. The HT suspends after
sending data to a client. When FINACK comes from a client,
the HT gets terminated and returns to a task pool. Fig.3
illustrates this task state transitions.

Fig.3 Task States in BMC

The IP and Ethernet protocols simply validate and remove
their headers before passing the packet to TCP object. When a
client sends a request to a server, the packet is captured by NIC
and stored in RDL. Similarly, when a packet needs to be
transmitted, it is placed in the TDL. Fig.4 shows the actual

556

steps involved when a packet arrives. All these steps run as a
single thread of execution in the machine.

Fig 4. Single Thread of Execution

The MT checks if a packet is arrived by probing the “D”
bit in the Ethernet descriptor. If the “D” bit set, then it calls
(step2) to read the data. When the data is read from the RDL
entry, it calls step 3 to remove IP header and handles to TCP
object (step4). The TCP object processes the packets, if it is a
SYN packet, then it handles it to a ListenHandler() function,
otherwise, it handles the packet to an OtherHandler() method.

The RT tasks continuously runs through this single thread
and after updating the status of the request in the TCP table, it
returns to the MT. Notice, during this processing, CPU is busy
and not wasting any time and not switching to other tasks.
These two methods provide all the necessary functionality
needed in the TCP object.

III. DESIGN ISSUES

In BMC, there are many design issues to be considered for
optimal design and implementation. Some of these issues are
discussed here.

A. State of HTTP Requests
At a given point in time, there are many concurrent

requests coming from clients. Each request goes through state
transitions as shown in Fig. 1. We must maintain the state of
each request and respond to the clients accordingly. This state
is maintained in a table known as TCB (TCP Control Block).
The responses to a client will be based on the state of a given
request. Hence, we give a unique TCB number (TCBNO) to
each request and then track that request as it goes through its
various states.

B. Addressing TCB Table
In order to address TCB table, we must make each entry

unique. The most common way to make the entry unique is
using a Hash Table. The Hash Table index is usually derived
from a client’s IP and Port number. Hash tables also require
covering for collisions by using a linked list. To avoid hash
table, we used an indexing technique to optimize the design.

Each client’s port numbers are limited to 64K, we define a
Port Table (PT) in the system. When port numbers collide
with other clients, we then use a linked list structure to store
the collided entry. The linked list is implemented as a memory
structure to avoid address pointers. The port table points to the
linked memory structure to keep the collided entries.

C. Network Interface Card (NIC)
In our desktop there is only one NIC on the motherboard.

There are receive and send circular lists that interface between
NIC hardware and Ethernet software. In our multicore
environment, there are four cores Boot Strap Processor and
Application Processors. These four cores are designated as
BSP, AP1, AP2 and AP3. The BSP core assumes execution
when computer starts. We used BSP as the core for
communicating between NIC and Ethernet driver. The send
and receive parts of the data are managed by BSP.

D. NIC Send Buffering
There are two circular buffers in the Ethernet device driver

that manage send and receive data as shown in Fig. 2. As there
are four cores that can send data asynchronously, we need four
send data buffers to hold the data until it is placed in the send
circular list. The BSP manages the send data buffers and
periodically checks and places the data in the send circular list.
Notice, BSP can also process HTTP requests, thus there is a
need for four send data buffers.

E. BSP Buffering
As the BSP manages all the receive data for HTTP

requests, this data is destined for the appropriate core which
is processing a HTTP request. As the cores run concurrently,
we need communication buffers to send arrived packets from
Ethernet to appropriate cores. We need communication
buffers between BSP and appropriate HTTP request
processing cores. Notice, BSP can also process HTTP
requests, thus there is a need for four communication buffers.
We preferred this method as a means of communication
between the cores instead of interrupts to avoid interrupt
overhead.

F. Synchronization and Locking
As the cores access buffers asynchronously, there is a need

to lock a buffer while the other core is accessing. In our case,
we need synchronizing locks for send and communication
buffers. These locks must be appropriately set and reset.

G. Process Lists
As each core can execute HTTP requests in multi-

processing manner, we need a linear list that keeps all the task
requests corresponding to their client requests. To avoid
search in this list, we used indexing by keeping a TCBNO
table that keeps the index for the linear list.

H. Load Balancing
As AP1, AP2 and AP3 have the same processing work, we

simply used a round robin approach to balance the load on
cores. We used the same round robin for dispatching requests
when BSP also participates in processing HTTP requests.
Load balancing based on CPU utilization can be a good

557

strategy to use, but to keep the design simple we adopted the
round robin approach for now.

I. TCP Processing
The major processing of HTTP request involves

processing the request at TCP level and maintaining the TCB
table. We divide this TCP processing into two main
components. ListenHandler() and OtherHandler() functions.
The ListenHandler() receives a SYN packet and sends a
SYNACK. The OtherHandler() takes care of processing
the rest of the HTTP/TCP protocol. Thus, the load balancing
algorithm is placed at BSP when SYN packet arrives.
Although each core has its own TCP object, only BSP uses
ListenHandler() code and BSP and APs can use
OtherHandler() code. Each core also has its own TCB table.
The TCB state in the BSP is SYNRCVD state and other cores
have the current state of a given request.

J. Deleting State
The FINACK response from the client deletes the state in

process list, TCB table entry and PT and the whole request is
relinquished from the system.

IV. ARCHITECTURE

As shown in Section 3, multicore architecture poses many
design challenges. Fig. 5 illustrates a novel architecture for
implementing multicore bare machine web server.
Throughout the architecture, search is avoided and replaced
with index tables. Although index tables take more space, it is
affordable in BMC implementation. A client’s port number is
used as an index into a PT. Each entry in the PT will refer to
a record with a structure that has TCB record number, port no
and other miscellaneous attributes. Multiple clients may use
the same port number thus causing collisions in the PT. To
address this problem, a linear list of port number records is
stored in an array as shown in the architecture. The main
purpose of the PT is to provide a TCB no that is unique for
each client’s request.

The TCB no is used for many other purposes in the
architecture. It is used to access a TCB record that contains
the state of the client request (basically the transitions shown
in Fig. 1). The structure stored in the TCB Table contains
about 400 bytes of information. The TCB no is also used to
access a task that is running on behalf of a client request. The
client request tasks are stored in a linear array as shown in the
Fig.5. The linear array index is stored in the Task Index Table
(TIT) which is addressed by a TCB no.

The BSP, AP1, AP2, AP3 in a four-core architecture can
process any client request. However, BSP acts as a load
balancer between network interface card (NIC) and cores. The
BSP performs NIC interface and is responsible to receive and
send the packets. In addition, it can also process HTTP
requests. Accordingly, BSP runs MT, RT tasks and HT task in
addition if scheduled, whereas other cores only act as HTTP
request processors and run only HT Task. Due to the BSP
architectural role as a centralized processor, it receives and

transmits all packets to the NIC and uses buffering for send
and receive operations to control concurrency issues. In
addition, BSP is also chosen to load balance requests when a
SYN packet arrives. A simple round robin strategy is used to
balance the clients load. When other types of packets arrive
for a given request (other than SYN), BSP identifies the
destination as it stored the information in PT and TCB Table.
The arrived packet in BSP will be stored in an appropriate
communication receive lists CLIST, CLIST1, CLIST2,
CLIST3. When cores send data to NIC, they put their data in
send lists DLIST, DLIST1, DLIST2 and DLIST3.
Periodically, BSP polls the DLISTs to send data to the NIC.
As all cores are running concurrently, appropriate locking
mechanisms are required as shown in the Fig.5.

The novel architecture illustrated here was a result of
many iterations and trials to obtain a simple system for BMC
implementation. It is possible to implement such architecture
in BMC, as there is full control of the machine from boot
process to execution process. It is much harder to implement
this model in an OS environment with full control.

V. DESIGN AND IMPLEMENTATION

Design and implementation of a Web server on multicore
architecture using BMC paradigm poses many challenges.
Multicore configuration, initialization and multicore
operation was described in [13]. This section will describe
some additional novelties and features that are unique to BMC
architecture.

A. TCP Code Partitioning
As the BSP and AP roles are different at a network level,

the TCP code is partitioned to suit their needs in BMC. A
separate copy of TCP code is given for each core to tailor their
code for their specific needs. This also solves the problem of
re-entrant code in TCP for multiple cores. As mentioned
before the ListenHandler() and the OtherHandler() functions
perform most of the work done in TCP object. Load
balancing, communicating with NIC is done by BSP. Each
core has their own main loop to serve HTTP tasks.

B. AP Cache Enable
In order to enable cache for APs, the following code is

needed as shown in Fig.6. If their cache is not enabled, they
run much slower as they must fetch instructions and data from
main memory.

C. BSP Control Flow
A control flow to process client’s request in BSP is shown

in Fig. 7. This flow shows a high-level description of its
implementation in BSP main loop. As shown in Fig. 4, a
packet arrival can be detected and RCV task can be invoked.
When the RCV task runs, it also inserts packets into
appropriate CLIST based on a partitioning algorithm. After
running the RCV task, the Data List (DLIST) for each core is
checked if data needs to be sent through NIC. Data packet(s)
are sent if the DLIST contains any send requests. If the BSP
is partitioned to run HTTP requests, then it will also process

558

the HTTP request as shown in Fig. 7. Otherwise, the BSP
control returns to main loop processing new requests.

Fig. 5 Multicore web server architecture

Fig. 6 AP Cache Enable

D. HTTP Control Flow
A control flow to process HTTP requests is shown in Fig.

8. The same control flow is used by BSP and APs. In APs this
is the main program running in a loop. When a BSP receives
a packet from a client, it checks its TCB table and finds the
core-id of a given request. The core-id was inserted into the
table based on a request’s load balancing strategy. This core-
id helps to insert the packet in an appropriate Communication
List (CLIST). Each core processing a request checks its
CLIST and processes an arrived packet. If it is not a valid
packet type received in the CLIST, it causes an error. The
processing of an arrived packet is done by calling the

OtherHandler() method in the appropriate cores TCP object.

This method processes the packet and updates its status in
TCB table entry. As shown in Fig. 1, when a GET request
packet comes from a client, a HT is inserted into the linear list
by the OtherHandler() method. Thus, when GET arrives, its
task is removed from the linear list and run. Also, when time
expires or FINACK arrives, its task is removed from the linear
list. In addition, if a RESET comes from the client, then also
its task is removed from the linear list. In all these cases, the
core will run the task and return to its main loop. Notice, in
BMC, the entire flow control of HTTP request processing is
controlled and coded by a programmer at programming time.
In conventional systems, the operating system controls this
kind of flow at run time.

E. Locking Mechanism
As multiple cores access CLIST and DLIST entities
concurrently, these sharing resources must be locked. In
BMC, one can use memory addresses (that are in real mode
memory) to set up lock area. These are locking and unlocking
direct hardware interfaces to do these operations. An actual
such code is described in Fig. 9. An instantiated interface
object “io” represents the direct hardware interface class. This

559

C++ interface calls a C interface and that in turn calls an
assembly call as shown in Fig. 9. This is a typical flow that
is used to implement all direct hardware interfaces.
Depending upon its use, one can put program logic at C++, C,
or assembly level. Notice that there is a full control of real
shared memory at an application level. The assembly call
shows how the lock area is updated with disabling and
enabling interrupts which is also under programmer control.

Fig. 7 BSP Control Flow

F. Task Mechanism
The task mechanisms implemented in BMC are novel and

unique. It is completely controlled by an application
programmer as shown in Fig.10a and Fig.10b. A task is
defined as a function and has its own TSS (Task State
Segment). The GDT (Global Descriptor Table), IDT
(Interrupt Descriptor Table) and control registers can be
directly controlled by its application developer. After
initialization, BSP and APs run in their main loop. The main
loop in each core runs HTTP tasks as needed. Fig.10b
illustrates mechanisms to run tasks in cores with actual code
snippets with an example of AOArunTask3() for AP3. Task
implementation is in Fig.10a with an example.

Each task has a unique Task_ID (1608 in this example).
This task id is used to address its TSS and a GDT entry is
created to address this TSS. AOArunTask3() C++ function in
turn calls a C function named ap3_runTask(). This C function
in turn calls an assembly function as shown in the figure. In
this example, it calls an interrupt with 0x44 (or 68) vector
number. When the interrupt vector table is initialized, the
descriptor related to this vector will be initialized with task
gate descriptor using method set_gatedesc().

Fig. 8 AP Control Flow

Each core has the capability to run multiple HT’s to process
client requests.

Fig 9. Locking Code

 Fig.10b illustrates how task switching occur in this
design. In this example, notice that 0x44 (68) is the interrupt
used for AP3 tasks. Similarly, 0x43, 0x42, 0x28 interrupt
vectors are used to run HT’s in AP2, AP1 and BSP cores.
When “INT 44h” is executed by the CPU, it goes to the IDT
and obtains the GDT offset. In this case, it was initialized with
0x110 indicating that it is a 34th entry in the GDT.

560

Fig.10a. Task Implementation

Fig.10b. Task Invocation

Notice each descriptor in x86 architecture takes 8 bytes.
The CPU takes this offset and it addresses the GDT entry. It
calculates the GDT entry address as shown in the Fig.10.a.
The GDT entry consists of 8-byte descriptor in a descriptor
format. This descriptor is mapped to a 4-byte address as
shown in this figure. This four-byte address is taddr in the TSS
table. A TSS entry consists of a TSS header and TSS data. The
TSS header (8 bytes) is used for debugging purposes. The task
mechanisms shown in this paper are unique to BMC
implementation and it is used in many applications as part of
BMC arena.

G. BMC Novel Design Features
In BMC, the design and implementation of a web server

on multicore architecture differs in many ways compared to
applications designed to run on operating systems. Some
significant attributes of BMC that are novel and unique are
listed as follows:

1) The entire memory is real memory, there is no virtual
memory and paging

2) Real mode, protected mode and compatibility modes
of x86 processor are under programmer control

3) Real mode memory can be used by programmer
transparently

561

4) Interrupts are controlled by a programmer
5) Control flow is designed apriori by a programmer
6) A given program execution is controlled explicitly by

a programmer
7) Tasking structure and scheduling is controlled by a

programmer
8) A program is statically linked
9) Locking is part of an application code
10) All direct hardware interfaces are part of an

application code
11) Application performs only intended functions
12) Concurrency control is easier to implement in BMC
13) Indexing can be used more liberally in the design due

to less usage of overall memory
14) TSS, Program Counter, IDT, GDT can be redefined

and controlled by a programmer
Hopefully, BMC is more secure than any other OS or kernel-
based applications.

VI. PERFORMANCE MEASUREMENTS

Dell Optiplex 9010 at 3.4 GHz processor with 4 cores and
4GB memory is used to conduct measurements. 3 Bare PC
Web clients, two with 3700 requests/second and one with
1000 requests/second and an additional windows client is
used to collect data shown in the following graphs.
These clients make requests to the multicore web server
running on multiple cores as described before. We do not have
hard disk and virtual memory in Bare Machine. The size of
the file request was 4KB and the network was 1 Gigabits/sec
bandwidth. The data collected and the plots shown in this
paper are described as follows.

Fig. 11 CPU Utilization

Fig. 11 shows CPU utilization for all cores. BSP only handles
the send and receive interface of packets with the NIC.
The charts indicate two cases, where BSP handles the HTTP
load and does not handle any HTTP load. There is a minor
difference in CPU utilization in these two cases. A maximum
of 8400 requests per second were run on four cores where

incoming requests were equally distributed on all cores.
Notice, the APs utilization is quite small compared with the
BSP. This is because BSP was assigned as the main interface
to the Network (Receive Task and Send Task) while APs were
only doing HTTP Tasks.

Fig. 12 shows a pie chart of BSP CPU utilization with respect
to receive and send processing, when there is no HTTP load
assigned to BSP. The CPU utilization reached to 92% without
any HTTP load. This indicates that the BSP processor is
overwhelmed with the network interface handling load of
sending and receiving packets.

Fig. 12 BSP CPU Utilization

Fig.13 shows average and maximum time of a request that
stays in a linear list before its completion.

Fig.13. Stay time in Linear List

Notice that the stay time measured between a GET request
and its FINACK from the client increases rapidly as the load
increases.
Fig.14 shows the number of maximum requests running in
parallel in all cores. When 8400 requests/sec were running,

562

there were about 100 requests running concurrently. This is
sometimes referred to as MAX Parallel.

Fig 14. Max Parallel

Fig. 15 shows the first response time of server measured by
Wireshark from a Windows client. As expected, the first
response time increases with respect to the number of
requests.

 Fig. 15 First Response time

Fig. 16 shows the connection time of server measured by
Wireshark from a Windows client. As expected, the
connection time increases with respect to the number of
requests increase.

The performance measurements indicate that the current
BMC architecture has some bottlenecks beyond 8400
requests/sec. Fig.1 indicates that a client request consists of
many individual steps starting from SYN to FINACK with a
variable time in between interactions. It is obvious, that there
is some inherent serial part in each request. We can’t
parallelize these requests completely due to inherent serial
portion as defined by Amdahl’s law. This paper focused on
exploiting parallelism at inter-request levels from multiple
clients. However, this parallelism was limited due to the BSP
bottlenecks of handling NIC interfaces as shown in Fig. 2.
Further research is needed to find new avenues to parallelize

a Web server running on multicores in the BMC approach.
Many commercial Web servers utilize clustering and multiple
NICs to address this problem.

Fig. 16 Connection time

VII. CONCLUSIONS

This paper proposes a novel architecture for implementing a
Web server on multiple cores without a need for OS or kernel
that run on bare PCs. This paper demonstrates that the bare
machine computing paradigm is applicable to multicore
architectures. Novel and unique design issues related to a Web
server application on bare PCs are identified and
implemented. It is shown that in a bare machine computing
environment, design choices such as indexing is much easier
to afford and implement. Complex systems such as Web
servers can be implemented on bare machines with total
control by application programmer. Some novel and simple
ways of implementations are described to demonstrate the
potential of BMC that are only possible in bare machine
computing paradigm and not applicable to OS based
applications. The paper also hints that BMC based
applications maybe inherently designed for security although
beyond the scope of this research paper. The performance
measurements illustrate that many requests were executed in
parallel, however, the BSP saturation limited the scalability of
this architecture. Further research is needed to address the
scalability and speedup problems in the proposed architecture.

REFERENCES

[1] D. R. Engler, “The Exokernel Operating System Architecuture,” Ph.D.
thesis, MIT, October 1998.

[2] G. Ammons, J. Appayoo, M. Butrico, D. Silva, D. Grove, K.
Kawachiva, O. Krieger, B. Rosenburg, E. Hensbergen and R. W.
Wisniewski, “Libra: A Library Operating System for a JVM in a
Virtualized Execution Environment,” VEE ’07: Proceedings of the 3rd

International Conference on Virtual Execution Environments, June
2007.

[3] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer and D. Culler, “TinyOS: An
Operating System for Sensor Networks,” In: Weber W., Rabaey J.M.,
Aarts E. (eds) Ambient Intelligence. Springer, Berlin, Heidelberg, pp.
115-148.

[4] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen and R. Brightwell, “Palacios
and Kitten: New High Performance Operating Systems for Scalable

563

Virtualized and Native Supercomputing,” Proceedings of the 24th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
Atlanta, GA, 2010, pp.1-12.

[5] V. S. Pai, P. Druschel and W. Zwaenepoel, “IO-Lite: A Unified I/O
Buffering and Caching System,” Proceedings of ACM Transactions on
Computer Systems, Volume 18, Issue 1, February 2000, pp. 37 – 66.

[6] “The OS Kit Project – CS @ Utah,” University of Utah,
http://www.cs.utah.edu/flux/oskit.

[7] T. Venton, M. Miller, R. Kalla and A. Blanchard, “A Linux-based tool
for hardware bring up, Linux development, and manufacturing.” IBM
Systems Journal, Vol. 44, Issue 2, 2005, pp. 319-329.

[8] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J.
Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe and A.
Agarwal, “Baring it all to Software : Raw Machines,” IEEE Computer,
September 1997, pp. 86-93.

[9] G. H. Ford, R. K. Karne, A. L. Wijesinha and P. Appiah-Kubi, “The
Performance of a Bare Machine Email Server,” 21st International
Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD 2009), IEEE / ACM Publications, Sao Paulo,
Brazil, 2009, pp. 143-150.

[10] P. Appiah-kubi, R. K. Karne and A. L. Wijesinha, “The Design and
Performance of a Bare PC Webmail Server,” 12th IEEE International
Conference on High Performance Computing and Communications,
Melbourne, Australia, 2010, pp. 521-526.

[11] G. Khaksari, A. L. Wijesinha, R. K. Karne, He, L. and S. Girumala, “A
Peer-to-Peer Bare PC VoIP Application,”, IEEE Consumer

Communications and Networking Conference, Seamless Consumer
Connectivity, Los Vegas, Nevada, 2007.

[12] H. Alabsi, R. K. Karne, A. L. Wijesinha, R. Almajed, B. Rawal, and F.
Almansour, “A Novel SQLite-Based Bare PC Email Server,” 15th
International Conference, BDAS2019, Ustron, Poland, 2019, pp. 341-
353.

[13] H. Chang, R. K. Karne and A.L. Wijesinha, “Migrating a Bare PC
Webserver to Multi-core Architecture,” IEEE 40th Annual Computer
Software and Applications Conference, Atlanta, Georgia, 2016, pp.
216-221.

[14] F. Urem and Ž. Mikulic, ‘’The impact of multi-core processor on web
sever performance’’, 32nd International Conference for Information
and Communication Technology (MIPRO), May 2009

[15] R. Hashemian, D. Krishnamurthy, M. Arlitt, N. Carlsson,‘’ Improving
the scalability of a multicore web server”, Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineering
(ICPE), April 2013, pp. 161-172.

[16] A. S. Harji, P. A. Buhr, T. Brecht, “Comparing High Performance
Multi-core Web server Architectures”, Fifth Annual International
Systems and Storage Conference (SYSTOR), Article no. 1, 2012

[17] B. Veal and A. Foong, “Performance Scalability of a Multicore Web
Server”, Proceedings of the 3rd Symposium on Architecture for
networking and Communications systems (ANCS), 2007, pp. 57-66.

[18] Y. Lu, R. Shiveley, J. Ruby, “Scaling the Performance of Apache Web
Server on Intel Based Platforms”, White Paper Apache Web server
Open Source Software Solutions, Intel.

564

