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Abstract—Most Web transfers use TCP, notable exceptions 

being those that use HTTP/3 over QUIC and CoAP in the IoT, 

which require UDP. The latter protocols are complex because they 

provide essential functionality for real-world Web applications. 

We describe the design and implementation of a UDP-based 

simple Web server that runs on a bare PC with 64-bit multicore 

processors. Previously, we built UDP and TCP-based bare PC 

Web servers that run on 32-bit and 64-bit multicore processors 

respectively. The present design improves, modifies, and 

integrates the previous designs. We compare delays for designs 

with and without a last ack by capturing a single HTTP request 

and reply between the Web server and a client connected through 

an Ethernet hub. This work is a first step towards building robust 

and scalable bare PC Web servers that can transfer data 

efficiently and securely to browser applications in the real-world.  

Keywords—Bare PC, Bare Machine Computing, 64-bit 

processor, multicore processor, Web server, UDP 

I. INTRODUCTION 

Client/server computing on the Web commonly uses 
TCP. The overhead due to TCP can be eliminated by using 
the QUIC protocol over UDP [RFC 9000]. QUIC is a 
transport protocol that deals with reliability, error 
correction, and security. The specification of HTTP/3 
based on QUIC [RFC 9114] reflects current interest in 
using UDP for reliable secure Web data transfers. QUIC 
can also be used for unreliable data transfers [RFC 9221]. 
CoAP used for M2M applications in the IoT [RFC 7252] 
also typically uses UDP for transport, although CoAP can 
also run over TCP [RFC 8323]. Both QUIC and CoAP 
require some form of operating system or kernel support. 
We describe a simple UDP-based protocol for HTTP 
transfers between bare machines with no operating system 
or kernel, where the server runs on 64-bit multicore 

processors. Bare Machine Computing (BMC) systems run 
general-purpose computing applications and are not the 
same as embedded systems or bare metal Linux systems. 
Due to their reduced attack surface, bare machines are 
especially suited for secure real-world environments. Bare 
machines and BMC applications are discussed later in the 
paper. 

This UDP-based protocol for Web transfers has no last 
ACK. Earlier versions of a UDP-based protocol with a last 
ACK are described for a 32-bit multicore BMC Web 
server in [1] and for a 32-bit single-core BMC Web server 
in [2]. When there is no last ACK, all data packets are not 
sent at one time by the server. Instead, the data file is split, 
and a limited amount of data in a small number of packets 
is sent at a time to the client. After receiving these packets, 
the client makes a new request to receive the next set of 
packets. In addition to making the server stateless and 
simpler, possible benefits of this protocol include 
elimination of server retransmissions due to timeouts and 
improved security due to limiting the amount of data sent 
at a time. The protocol may also be useful for resource 
constrained servers. Potential protocol benefits are traded 
off versus increased client complexity. We do not discuss 
tradeoffs in this paper.  

Using Wireshark packet captures, we found that the 
server completes a typical HTTP transfer of a 4 KB file 
about 9 times faster without a last ACK because there is 
no waiting. We also briefly review the multicore server 
architecture and examine shared single NIC and Web 
server load balancing issues, while noting a few 32 to 64-
bit translation issues relevant to the present server design. 



The main contribution of this work is a simple UDP-based 
protocol for efficient HTTP transfers between stateless 64-
bit multicore bare servers and clients. The rest of this paper 
is organized as follows. Section II introduces the new 
UDP-based protocol for Web transfers, Section III 
provides an overview of BMC. Section IV briefly 
discusses related work. Section V describes the 64-bit 
multicore server architecture and design. Section VI gives 
preliminary results for delays with and without the last 
ACK. Section VII concludes the paper. 

II. A SIMPLE PROTOCOL FOR UDP-BASED WEB TRANSFERS 

The UDP-based protocol for HTTP transfers between 
bare machines has no relation to QUIC or CoAP. It can be 
configured to work with or without a last ACK. As Fig. 1 
shows, the UDP-based protocol eliminates the TCP 
overhead due to establishing and closing connections, 
unnecessary retransmissions, and TCP ACKs. If more 
packets are needed or packet loss occurs, the client decides 
when to send another GET request. An HTTP/PHP request 
to a bare server is associated with a file name and attributes 
combined and referred to as the GET request. POST 
requests are similar. The GetACK response from the 
server contains the file size and number of data packets to 
be sent giving the client complete details about the file. In 
Fig. 1(b)), the server sends all the packets and waits for the 
last ACK. In Fig. 1(c)), the server only sends n (e.g., n=4) 
packets at a time, avoiding the last ACK and all 
retransmission related overhead and logic. When there are 
more packets to be sent, the client sends a GET request 
with the next packet number. For large files, multiple 
transfers of n packets may be needed. If a packet is lost, a 
client will request all n packets again. This approach 
simplifies the server but adds some more logic at the 
client. Packet numbers are used to handle out-of-order 
packets. The parameter n can vary based on file size and 
other design criteria. 

The only overhead in this approach is due to additional 
GETs and GetACKs. This overhead is offset by reduced 
server complexity. The server is effectively stateless for a 
given client request. After initialization, the client sends 
only the GET request and the server sends only the data. 
After sending a set of packets, the server does not interact 
with the client until the client requests more packets. There 
is no waiting at either end other than waiting for the 
GetACK at the client. Although we did not use DTLS 
[RFC 9147] to secure communications between the client 
and the server, this protection can be easily added in a 
future version of the protocol (security protocols such as 
TLS, IPsec and SRTP have been implemented with other 
bare machine applications). 

III. BARE MACHINE COMPUTING 

The Application-Oriented Architecture (AOA) [3] and 
its successor Dispersed Operating System Computing 

(DOSC) [4] evolved into Bare Machine Computing 
(BMC) [5]. Prior publications on BMC (or bare PC/bare) 
applications are archived at the website in [6]. The 
essential differences between conventional computing 
based on an Operating System (OS) and computing based 
on the BMC approach are shown in Fig, 2. In the BMC 
approach, a computing device is made bare: it has no OS 
and no hard disk, and only uses the BIOS in the boot 
process. Bare applications can run on older or newer x86 
and x64 compatible Intel processors. The application 
software is written in C/C++ with a small amount of 
assembly code. A BMC system is based on a single 
programming environment. The boot, loader, and interrupt 
code are written in assembly. One or more applications 
can be compiled as an application suite to generate a single 
monolithic executable. This is statically compiled and 
linked with no external software or libraries.  

 

Fig. 1. Message exchanges for HTTP transfers over TCP and UDP. 

The BMC paradigm was motivated by its potential to 
eliminate the disadvantages of conventional OS-based 
computing. BMC executables are small and include only 
the necessary bare drivers and minimal code to support 
other functions used to run a given application suite. There 
are no kernel or system calls, and no OS-related 
management functions. The application programmer has 
full control of the hardware and required interfaces, and 
the application suite directly communicates to the 
hardware without any middleware via a hardware API 
(HAPI). The bare application software is user controlled 
and physically secured by placing it on external storage. 
Currently, this is a USB flash drive owned by the user, 
who is responsible for guaranteeing its security. Bare 
applications only run intended functions with no options 
to introduce new functionality. For example, attackers 
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cannot run scripts, create additional threads, or open new 
ports. Bare machine applications have no OS-related 
vulnerabilities and eliminate overhead due to the OS. 

Fig. 2. Conventional versus Bare Machine Computing (BMC). 

Moreover, conventional OS functions are not 
duplicated in an application suite as there is no centralized 
kernel running in the system. A typical OS provides 
services for all applications, while a bare machine 
application suite is designed to run only a desired small set 
of applications. The bare-to-bare communication is 
implemented as application-to-application avoiding all 
middle layers. There are no heterogeneous components 
and no layers in the application suite. An application suite 
image is typically very small since BMC systems are 
designed for domain-specific and intended functionality 
(e.g., a TCP Web client code image is less than 200 KB 
and a TCP server with four applications is less than 1 MB). 
The assembly code is minimal in BMC applications (e.g., 
a USB 2.0 driver has 24 lines of assembly code including 
comments and only two functions). 

IV. RELATED WORK 

The design of 32-bit multicore UDP and TCP-based 
bare Web servers are described respectively in [1] and [7]. 
An attempt to migrate a 32-bit single core bare Web server 
to a 64-bit multicore architecture was made in [8]. That 
work was preliminary, focused primarily on migration, 
and did not use UDP. Exokernel [9], Microkernel [10], 
Tiny-OS [11], IO_Lite [12], OS-Kit [13], and RIOT [14] 
are a few examples of numerous approaches to reduce the 
size and complexity of the OS or kernel, give more direct 
hardware access to applications, or move some OS 
functions into user space. These approaches differ from 
BMC in that some form of an OS or kernel is needed. To 
the best of our knowledge, we are unaware of other work 

that enables general-purpose computing applications to 
run without an OS or kernel. 

Fig. 3. Bare multicore server architecture. 

V. 64-BIT MULTICORE WEB SERVER 

The bare Web server runs on a Dell Optiplex 9010 
desktop with four 64-bit cores, 4 GM main memory and a 
1 gigabit Intel Ethernet (1GbE) network adapter. There is 
no OS or kernel running in the machine. Fig. 3 shows the 
bare server architecture. The four cores are named BSP 
(boot processor), and AP1, AP2, and AP3 (application 
processors). The BMC multicore server design for 32-bit 
processors is described in [1]. The 64-bit multicore server 
was derived from this 32-bit multicore server. For BMC 
applications, most difficulties in translating 32-bit code to 
64-bit code were related to 64-bit data and 64-bit 
addresses. We also modified BMC device drivers to work 
with 64-bit data values. This modification required 
checking the relevant C++, C and ASM code. The 64-bit 
multicore design differs significantly from the 32-bit 
design. Architectural issues in multicore are usually dealt 
with at the OS level. In BMC application development, 
such issues must be resolved during design and 
implementation. They include shared memory, locking, 
cache, shared single Network Interface Controller (NIC), 
Web server load balancing, and multicore configuration. 
Only shared single NIC, Web server load balancing issues, 
and design details relevant to processing requests are 
discussed here. 

 

 



A. Shared Single NIC 

The bare NIC driver is integrated with bare application. 
It has two paths,  one each for transmit and receive. It also 
has two data structures (circular lists), known as the 
transmit descriptor list (TDL) and receive descriptor list 
(RDL). These lists are stored in main memory and used by 
the bare application and the driver to communicate. There 
can be 4096/8192 descriptors defined for these circular 
lists. When a packet arrives, the DD bit in the RDL 
descriptor is set. When a packet is received, the driver 
resets the DD bit. Similarly, when a packet is transmitted, 
the hardware sets the DD bit in the transmit descriptor. The 
driver can reset the transmit descriptor DD bit and move 
on to the next slot. The management of circular lists is 
done in the driver through IN and OUT pointers for TDL 
and RDL. SendINPtr, SendOUTPtr, RcvOUTPtr, and 
RcvINPtr need locking to modify them. When a packet 
arrives, RcvINPtr is used to store the packet in the list. It 
is incremented after inserting the packet. RcvOutPtr is 
used to read the packet inserted; it is incremented after the 
packet is discarded. Similarly, SendINPtr is used to form 
a packet; it is incremented for the next packet. 
SendOUTPtr is incremented after the packet is 
transmitted. The bare application manages these pointers 
using a locking HAPI with C++, C and ASM paths to lock 
and unlock shared memory. 

B. Web Server Load Balancing 

A client request is processed by the Web server in a 
single thread of execution with or without a last ACK. In 
Fig. 1(b), the server must keep state for each request until 
it gets the last ACK, which ends that request. In Fig. 1(c), 
the server does not keep state. It sends Get-ACK and data, 
but there is no waiting because there is no last ACK. As 
there is only one RDL, the core that gets a GET request 
processes the request. This poses a challenge for load 
balancing in a multicore architecture. In Fig. 1(b), the last 
ACK may be received by any core, and it may need to 
redirect that ACK to the appropriate core. Alternatively, 
one core could transmit and receive and delegate to other 
cores as implemented in [7]. This requires buffering and 
locks at each buffer.  

With a last ACK, many requests are waiting in the 
queue to receive the last ACK for completion. With no last 
ACK, after sending GetACK, n packets can be sent in a 
single thread of execution. There is no need for queueing 
client requests. As the client/server interactions are few, 
there is not much to parallelize with respect to client 
requests in BMC applications. The only parallelism that 
can be exploited is dispatching client requests to all cores 
evenly. However, as there is only one NIC (single receive 
and transmit), this will become a bottleneck in achieving 
higher performance. In the bare Web server, the starting 
point for a client request is a GET message. As there is 
only one receive flow control in the NIC and there are four 

cores that can access an incoming GET packet, load 
balancing becomes critical. One approach is to lock the 
RDL descriptor and let one core receive the GET packet.  

The bare server uses an alternative approach that avoid 
locks and their complexity. As there are only four cores in 
the server, a software approach based on round robin with 
flags is used to avoid concurrency control. Each core has 
its own ready flag: io.bspready, io.ap1ready, io.ap2ready, 
and io.ap3ready. There is one common token, io.token, 
indicating which core currently has a token. The token can 
be 0x100, 0x101, 0x102, 0x103 for BSP, AP1, AP2, AP3 
respectively at any given point in time. When a token is at 
hand for a core, that core grabs the token, and gives the 
token back to the next core in round robin fashion, if that 
core is ready. There is only one io.token variable in 
memory, so only one core at a time can get to memory to 
modify the token, which guarantees mutual exclusion. 
When a core receives a token, it turns off its ready state, 
processes the GET request, and then sets its ready state to 
1. When a core receives a GET packet, it processes the 
request. In this approach, each core has a chance to get the 
request, thus redistributing the load to all cores. At the 
transmit end, all cores use locks to send data, thus creating 
a bottleneck in sending data. Two or more NICs could be 
used to improve performance as in [15]. 

C. Processing Requests 

When processing a request with a last ACK (Fig. 1(b)), 
the control flow for 64-bit is the same as the control flow 
for 32-bit in [2]. When a packet arrives, it triggers 
RcvCall() as a single thread of execution in an event-based 
system. This is done in all BMC applications to eliminate 
the need for an OS or kernel. As in [1], we added a 16-byte 
data header that has control information including a 4-byte 
request id, 4-byte core id, size of pkt/total size, total 
packets/pktno. The last two fields are interpreted 
differently depending on the packet type. This header is 
sent with the GetACK enabling the client to know all the 
resource file details. Some parts of the header simplify the 
multicore architecture and packet management at the 
server. Reqid is used at the server as an index to a linear 
list that contains all the details about the client and the 
resource file. This id is a monotonically increasing number 
that wraps around. Indexing avoids searching to find a 
client request in the list. The coreid helps the server to 
manage requests by indicating which core is processing 
the request. When the last ACK arrives with the 16-byte 
data header, the server plugs in the same reqid and coreid 
in this header. The client also plugs in total packets 
received in the pktno and the total bytes received in the 
size field. This structure reduces the complexity to manage 
packets between the server and the client. The linear list 
for holding client requests is managed and maintained 
until client sends the last ACK. Each client’s request state 
is also managed in this list. 



When processing a request in the protocol without the 
last ACK (Fig. 1(c)), the control flow is the same as above 
except for the following. To process the UDP request in 
processUDPRequest(), only the GET control flow 
activates since there is no last ACK. In this case, there is 
no linear list to maintain client requests and no state 
maintained for each request. The 16-byte data header is 
still used to simplify request management and multicore 
setup for load balancing. The data header is used by clients 
to request subsequent GETs for continued data if the 
server only sends partial data for a large file. Eliminating 
the last ACK reduces complexity and makes it easier to 
design, implement and debug the protocol. 

VI. PRELIMINARY MEASUREMENTS 

To find HTTP request completion times at the server 

with and without a last ACK, we used packet data captured 

by Wireshark running on a Windows machine connected 

to the Ethernet hub. For 4 KB files, typical times were as 

follows (these were found by using the packets shown in 

Fig. 4). With the last ACK (port 29539), request 

completion time = 3.241721 – 3.238404 secs = 0.003357 

secs; and with no last ACK (port 7020), request 

completion time = 3.1094 - 3.1091 secs = 0.0003 secs. 

While the server completes the request without a last ACK 

about 9 times faster, the time for the client to receive and 

process all the packets is not known in this case. More 

accurate and detailed performance measurements could be 

obtained in future by also measuring the request delay at 

the bare machine client; and using multiple requests and 

multiple clients to fully utilize the bare machine server. 

VII. CONCLUSION 

We described the design and implementation of a 
simple UDP-based 64-bit multicore Web server that runs 
on a bare PC. Two versions of the UDP-based protocol for 
HTTP transfers with and without a last ACK were 
compared. Preliminary measurements confirm that the 
server can complete a request much faster when it does not 
have to wait for a last ACK. In this case, the server is 
stateless and only interacts with a client when the client 
makes another request for more data. This in turn may 
improve overall server performance. We also discussed 
shared single NIC and Web server load balancing issues. 
More research is needed to investigate the protocol with 
respect to security, scalability, and server performance 
under heavy loads.  
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Fig. 4.  Protocol packets

 

        

 

(a) With Last Ack. 

                                                             

   

(b) No Last Ack. 

 

 

                         

 

 

 

 


