

A Simple UDP-Based Web Server on a Bare PC with

64-bit Multicore Processors: Design and

Implementation

Navid Ordouie

Computer and Information

Sciences

Towson University

Towson, MD

nordouie@towson.edu

Ramesh K. Karne

Computer and Information

Sciences

Towson University

Towson, MD

rkarne@towson.edu

Alexander L. Wijesinha

Computer and Information

Sciences

Towson University

Towson, MD

awijesinha@towson.edu

Nirmala Soundararajan

Chemistry, Computer and

Physical Sciences

Southeastern Oklahoma State

University

Durant, OK

nsoundararajan@se.edu

Abstract—Most Web transfers use TCP, notable exceptions

being those that use HTTP/3 over QUIC and CoAP in the IoT,

which require UDP. The latter protocols are complex because they

provide essential functionality for real-world Web applications.

We describe the design and implementation of a UDP-based

simple Web server that runs on a bare PC with 64-bit multicore

processors. Previously, we built UDP and TCP-based bare PC

Web servers that run on 32-bit and 64-bit multicore processors

respectively. The present design improves, modifies, and

integrates the previous designs. We compare delays for designs

with and without a last ack by capturing a single HTTP request

and reply between the Web server and a client connected through

an Ethernet hub. This work is a first step towards building robust

and scalable bare PC Web servers that can transfer data

efficiently and securely to browser applications in the real-world.

Keywords—Bare PC, Bare Machine Computing, 64-bit

processor, multicore processor, Web server, UDP

I. INTRODUCTION

Client/server computing on the Web commonly uses
TCP. The overhead due to TCP can be eliminated by using
the QUIC protocol over UDP [RFC 9000]. QUIC is a
transport protocol that deals with reliability, error
correction, and security. The specification of HTTP/3
based on QUIC [RFC 9114] reflects current interest in
using UDP for reliable secure Web data transfers. QUIC
can also be used for unreliable data transfers [RFC 9221].
CoAP used for M2M applications in the IoT [RFC 7252]
also typically uses UDP for transport, although CoAP can
also run over TCP [RFC 8323]. Both QUIC and CoAP
require some form of operating system or kernel support.
We describe a simple UDP-based protocol for HTTP
transfers between bare machines with no operating system
or kernel, where the server runs on 64-bit multicore

processors. Bare Machine Computing (BMC) systems run
general-purpose computing applications and are not the
same as embedded systems or bare metal Linux systems.
Due to their reduced attack surface, bare machines are
especially suited for secure real-world environments. Bare
machines and BMC applications are discussed later in the
paper.

This UDP-based protocol for Web transfers has no last
ACK. Earlier versions of a UDP-based protocol with a last
ACK are described for a 32-bit multicore BMC Web
server in [1] and for a 32-bit single-core BMC Web server
in [2]. When there is no last ACK, all data packets are not
sent at one time by the server. Instead, the data file is split,
and a limited amount of data in a small number of packets
is sent at a time to the client. After receiving these packets,
the client makes a new request to receive the next set of
packets. In addition to making the server stateless and
simpler, possible benefits of this protocol include
elimination of server retransmissions due to timeouts and
improved security due to limiting the amount of data sent
at a time. The protocol may also be useful for resource
constrained servers. Potential protocol benefits are traded
off versus increased client complexity. We do not discuss
tradeoffs in this paper.

Using Wireshark packet captures, we found that the
server completes a typical HTTP transfer of a 4 KB file
about 9 times faster without a last ACK because there is
no waiting. We also briefly review the multicore server
architecture and examine shared single NIC and Web
server load balancing issues, while noting a few 32 to 64-
bit translation issues relevant to the present server design.

The main contribution of this work is a simple UDP-based
protocol for efficient HTTP transfers between stateless 64-
bit multicore bare servers and clients. The rest of this paper
is organized as follows. Section II introduces the new
UDP-based protocol for Web transfers, Section III
provides an overview of BMC. Section IV briefly
discusses related work. Section V describes the 64-bit
multicore server architecture and design. Section VI gives
preliminary results for delays with and without the last
ACK. Section VII concludes the paper.

II. A SIMPLE PROTOCOL FOR UDP-BASED WEB TRANSFERS

The UDP-based protocol for HTTP transfers between
bare machines has no relation to QUIC or CoAP. It can be
configured to work with or without a last ACK. As Fig. 1
shows, the UDP-based protocol eliminates the TCP
overhead due to establishing and closing connections,
unnecessary retransmissions, and TCP ACKs. If more
packets are needed or packet loss occurs, the client decides
when to send another GET request. An HTTP/PHP request
to a bare server is associated with a file name and attributes
combined and referred to as the GET request. POST
requests are similar. The GetACK response from the
server contains the file size and number of data packets to
be sent giving the client complete details about the file. In
Fig. 1(b)), the server sends all the packets and waits for the
last ACK. In Fig. 1(c)), the server only sends n (e.g., n=4)
packets at a time, avoiding the last ACK and all
retransmission related overhead and logic. When there are
more packets to be sent, the client sends a GET request
with the next packet number. For large files, multiple
transfers of n packets may be needed. If a packet is lost, a
client will request all n packets again. This approach
simplifies the server but adds some more logic at the
client. Packet numbers are used to handle out-of-order
packets. The parameter n can vary based on file size and
other design criteria.

The only overhead in this approach is due to additional
GETs and GetACKs. This overhead is offset by reduced
server complexity. The server is effectively stateless for a
given client request. After initialization, the client sends
only the GET request and the server sends only the data.
After sending a set of packets, the server does not interact
with the client until the client requests more packets. There
is no waiting at either end other than waiting for the
GetACK at the client. Although we did not use DTLS
[RFC 9147] to secure communications between the client
and the server, this protection can be easily added in a
future version of the protocol (security protocols such as
TLS, IPsec and SRTP have been implemented with other
bare machine applications).

III. BARE MACHINE COMPUTING

The Application-Oriented Architecture (AOA) [3] and
its successor Dispersed Operating System Computing

(DOSC) [4] evolved into Bare Machine Computing
(BMC) [5]. Prior publications on BMC (or bare PC/bare)
applications are archived at the website in [6]. The
essential differences between conventional computing
based on an Operating System (OS) and computing based
on the BMC approach are shown in Fig, 2. In the BMC
approach, a computing device is made bare: it has no OS
and no hard disk, and only uses the BIOS in the boot
process. Bare applications can run on older or newer x86
and x64 compatible Intel processors. The application
software is written in C/C++ with a small amount of
assembly code. A BMC system is based on a single
programming environment. The boot, loader, and interrupt
code are written in assembly. One or more applications
can be compiled as an application suite to generate a single
monolithic executable. This is statically compiled and
linked with no external software or libraries.

Fig. 1. Message exchanges for HTTP transfers over TCP and UDP.

The BMC paradigm was motivated by its potential to
eliminate the disadvantages of conventional OS-based
computing. BMC executables are small and include only
the necessary bare drivers and minimal code to support
other functions used to run a given application suite. There
are no kernel or system calls, and no OS-related
management functions. The application programmer has
full control of the hardware and required interfaces, and
the application suite directly communicates to the
hardware without any middleware via a hardware API
(HAPI). The bare application software is user controlled
and physically secured by placing it on external storage.
Currently, this is a USB flash drive owned by the user,
who is responsible for guaranteeing its security. Bare
applications only run intended functions with no options
to introduce new functionality. For example, attackers

syn

syn-ack

ack

get

get-ack

header

data

data-ack

data

data-ack

fin-ack

fin-ack-ack

Server Client

R

S

R

R

S

S

S

R

S

R

R

S

R - Receive
S - Send

Get

Get-ACK

header

data

Last ACK

Server Client

R

S

R

S

S

Data (all)

S

Server

R

S

S

S

(a) TCP

(b) UDP last ACK,
all packets

(c) UDP no last ACK,
only n packets

Get

Get-ACK

header

data

Client

S
Data(n-pkts)

cannot run scripts, create additional threads, or open new
ports. Bare machine applications have no OS-related
vulnerabilities and eliminate overhead due to the OS.

Fig. 2. Conventional versus Bare Machine Computing (BMC).

Moreover, conventional OS functions are not
duplicated in an application suite as there is no centralized
kernel running in the system. A typical OS provides
services for all applications, while a bare machine
application suite is designed to run only a desired small set
of applications. The bare-to-bare communication is
implemented as application-to-application avoiding all
middle layers. There are no heterogeneous components
and no layers in the application suite. An application suite
image is typically very small since BMC systems are
designed for domain-specific and intended functionality
(e.g., a TCP Web client code image is less than 200 KB
and a TCP server with four applications is less than 1 MB).
The assembly code is minimal in BMC applications (e.g.,
a USB 2.0 driver has 24 lines of assembly code including
comments and only two functions).

IV. RELATED WORK

The design of 32-bit multicore UDP and TCP-based
bare Web servers are described respectively in [1] and [7].
An attempt to migrate a 32-bit single core bare Web server
to a 64-bit multicore architecture was made in [8]. That
work was preliminary, focused primarily on migration,
and did not use UDP. Exokernel [9], Microkernel [10],
Tiny-OS [11], IO_Lite [12], OS-Kit [13], and RIOT [14]
are a few examples of numerous approaches to reduce the
size and complexity of the OS or kernel, give more direct
hardware access to applications, or move some OS
functions into user space. These approaches differ from
BMC in that some form of an OS or kernel is needed. To
the best of our knowledge, we are unaware of other work

that enables general-purpose computing applications to
run without an OS or kernel.

Fig. 3. Bare multicore server architecture.

V. 64-BIT MULTICORE WEB SERVER

The bare Web server runs on a Dell Optiplex 9010
desktop with four 64-bit cores, 4 GM main memory and a
1 gigabit Intel Ethernet (1GbE) network adapter. There is
no OS or kernel running in the machine. Fig. 3 shows the
bare server architecture. The four cores are named BSP
(boot processor), and AP1, AP2, and AP3 (application
processors). The BMC multicore server design for 32-bit
processors is described in [1]. The 64-bit multicore server
was derived from this 32-bit multicore server. For BMC
applications, most difficulties in translating 32-bit code to
64-bit code were related to 64-bit data and 64-bit
addresses. We also modified BMC device drivers to work
with 64-bit data values. This modification required
checking the relevant C++, C and ASM code. The 64-bit
multicore design differs significantly from the 32-bit
design. Architectural issues in multicore are usually dealt
with at the OS level. In BMC application development,
such issues must be resolved during design and
implementation. They include shared memory, locking,
cache, shared single Network Interface Controller (NIC),
Web server load balancing, and multicore configuration.
Only shared single NIC, Web server load balancing issues,
and design details relevant to processing requests are
discussed here.

A. Shared Single NIC

The bare NIC driver is integrated with bare application.
It has two paths, one each for transmit and receive. It also
has two data structures (circular lists), known as the
transmit descriptor list (TDL) and receive descriptor list
(RDL). These lists are stored in main memory and used by
the bare application and the driver to communicate. There
can be 4096/8192 descriptors defined for these circular
lists. When a packet arrives, the DD bit in the RDL
descriptor is set. When a packet is received, the driver
resets the DD bit. Similarly, when a packet is transmitted,
the hardware sets the DD bit in the transmit descriptor. The
driver can reset the transmit descriptor DD bit and move
on to the next slot. The management of circular lists is
done in the driver through IN and OUT pointers for TDL
and RDL. SendINPtr, SendOUTPtr, RcvOUTPtr, and
RcvINPtr need locking to modify them. When a packet
arrives, RcvINPtr is used to store the packet in the list. It
is incremented after inserting the packet. RcvOutPtr is
used to read the packet inserted; it is incremented after the
packet is discarded. Similarly, SendINPtr is used to form
a packet; it is incremented for the next packet.
SendOUTPtr is incremented after the packet is
transmitted. The bare application manages these pointers
using a locking HAPI with C++, C and ASM paths to lock
and unlock shared memory.

B. Web Server Load Balancing

A client request is processed by the Web server in a
single thread of execution with or without a last ACK. In
Fig. 1(b), the server must keep state for each request until
it gets the last ACK, which ends that request. In Fig. 1(c),
the server does not keep state. It sends Get-ACK and data,
but there is no waiting because there is no last ACK. As
there is only one RDL, the core that gets a GET request
processes the request. This poses a challenge for load
balancing in a multicore architecture. In Fig. 1(b), the last
ACK may be received by any core, and it may need to
redirect that ACK to the appropriate core. Alternatively,
one core could transmit and receive and delegate to other
cores as implemented in [7]. This requires buffering and
locks at each buffer.

With a last ACK, many requests are waiting in the
queue to receive the last ACK for completion. With no last
ACK, after sending GetACK, n packets can be sent in a
single thread of execution. There is no need for queueing
client requests. As the client/server interactions are few,
there is not much to parallelize with respect to client
requests in BMC applications. The only parallelism that
can be exploited is dispatching client requests to all cores
evenly. However, as there is only one NIC (single receive
and transmit), this will become a bottleneck in achieving
higher performance. In the bare Web server, the starting
point for a client request is a GET message. As there is
only one receive flow control in the NIC and there are four

cores that can access an incoming GET packet, load
balancing becomes critical. One approach is to lock the
RDL descriptor and let one core receive the GET packet.

The bare server uses an alternative approach that avoid
locks and their complexity. As there are only four cores in
the server, a software approach based on round robin with
flags is used to avoid concurrency control. Each core has
its own ready flag: io.bspready, io.ap1ready, io.ap2ready,
and io.ap3ready. There is one common token, io.token,
indicating which core currently has a token. The token can
be 0x100, 0x101, 0x102, 0x103 for BSP, AP1, AP2, AP3
respectively at any given point in time. When a token is at
hand for a core, that core grabs the token, and gives the
token back to the next core in round robin fashion, if that
core is ready. There is only one io.token variable in
memory, so only one core at a time can get to memory to
modify the token, which guarantees mutual exclusion.
When a core receives a token, it turns off its ready state,
processes the GET request, and then sets its ready state to
1. When a core receives a GET packet, it processes the
request. In this approach, each core has a chance to get the
request, thus redistributing the load to all cores. At the
transmit end, all cores use locks to send data, thus creating
a bottleneck in sending data. Two or more NICs could be
used to improve performance as in [15].

C. Processing Requests

When processing a request with a last ACK (Fig. 1(b)),
the control flow for 64-bit is the same as the control flow
for 32-bit in [2]. When a packet arrives, it triggers
RcvCall() as a single thread of execution in an event-based
system. This is done in all BMC applications to eliminate
the need for an OS or kernel. As in [1], we added a 16-byte
data header that has control information including a 4-byte
request id, 4-byte core id, size of pkt/total size, total
packets/pktno. The last two fields are interpreted
differently depending on the packet type. This header is
sent with the GetACK enabling the client to know all the
resource file details. Some parts of the header simplify the
multicore architecture and packet management at the
server. Reqid is used at the server as an index to a linear
list that contains all the details about the client and the
resource file. This id is a monotonically increasing number
that wraps around. Indexing avoids searching to find a
client request in the list. The coreid helps the server to
manage requests by indicating which core is processing
the request. When the last ACK arrives with the 16-byte
data header, the server plugs in the same reqid and coreid
in this header. The client also plugs in total packets
received in the pktno and the total bytes received in the
size field. This structure reduces the complexity to manage
packets between the server and the client. The linear list
for holding client requests is managed and maintained
until client sends the last ACK. Each client’s request state
is also managed in this list.

When processing a request in the protocol without the
last ACK (Fig. 1(c)), the control flow is the same as above
except for the following. To process the UDP request in
processUDPRequest(), only the GET control flow
activates since there is no last ACK. In this case, there is
no linear list to maintain client requests and no state
maintained for each request. The 16-byte data header is
still used to simplify request management and multicore
setup for load balancing. The data header is used by clients
to request subsequent GETs for continued data if the
server only sends partial data for a large file. Eliminating
the last ACK reduces complexity and makes it easier to
design, implement and debug the protocol.

VI. PRELIMINARY MEASUREMENTS

To find HTTP request completion times at the server

with and without a last ACK, we used packet data captured

by Wireshark running on a Windows machine connected

to the Ethernet hub. For 4 KB files, typical times were as

follows (these were found by using the packets shown in

Fig. 4). With the last ACK (port 29539), request

completion time = 3.241721 – 3.238404 secs = 0.003357

secs; and with no last ACK (port 7020), request

completion time = 3.1094 - 3.1091 secs = 0.0003 secs.

While the server completes the request without a last ACK

about 9 times faster, the time for the client to receive and

process all the packets is not known in this case. More

accurate and detailed performance measurements could be

obtained in future by also measuring the request delay at

the bare machine client; and using multiple requests and

multiple clients to fully utilize the bare machine server.

VII. CONCLUSION

We described the design and implementation of a
simple UDP-based 64-bit multicore Web server that runs
on a bare PC. Two versions of the UDP-based protocol for
HTTP transfers with and without a last ACK were
compared. Preliminary measurements confirm that the
server can complete a request much faster when it does not
have to wait for a last ACK. In this case, the server is
stateless and only interacts with a client when the client
makes another request for more data. This in turn may
improve overall server performance. We also discussed
shared single NIC and Web server load balancing issues.
More research is needed to investigate the protocol with
respect to security, scalability, and server performance
under heavy loads.

REFERENCES

[1] N. Ordoui, N. Sounderarajan, R. K. Karne, and A. L. Wijesinha,
“Developing Computer Applications without any OS or Kernel in a Multi-
core Architecture,” International Symposium on Networks, Computers
and Communications (ISNCC), 2021.

[2] N. Soundararajan, R. K. Karne, A. L. Wijesinha, N. Ordouie, and B. S.
Rawal, “A Novel Client/Server Protocol for Web-based Communication

over UDP on a Bare Machine,” 18th Student Conference on Research and
Development (SCOReD), 2020.

[3] R. K. Karne, “Object-oriented Computer Architectures for New
Generation of Applications,” Computer Architecture News, Vol. 23, No.
5, December 1995.

[4] R. K. Karne, K.V. Jaganathan, T. Ahmed, and N. Rosa, “DOSC:
Dispersed Operating System Computing,” 20th Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), Onward Track, 2005.

[5] U. Okafor, R. Karne, A. Wijesinha, and P. Appiah-Kubi, “Eliminating the
Operating System via the Bare Machine Computing Paradigm,” 5th
International Conference on Future Computational Technologies and
Applications (Future Computing), 2013.

[6] Bare Machine Computing,
http://orion.towson.edu/~karne/dosc/pubs.htm. Accessed Oct. 15, 2022.

[7] N. Soundararajan, R. Karne, A. Wijesinha, N. Ordouie, and H. Chang,
“Design Issues in Running a Web Server on Bare PC Multi-Core
Architecture,” 44th Annual Computers, Software, and Applications
Conference (COMPSAC), 2020.

[8] H. Chang, R. K. Karne, and A. Wijesinha, “Migrating a Bare PC Web
Server to a Multi-core Architecture,” 40th Annual International
Computer Software and Applications Conference (COMPSAC), 2016.

[9] D. R. Engler, “The Exokernel Operating System Architecuture,” Ph.D.
thesis, MIT, 1998.

[10] I. Odun-Ayo et al, “An Overview of Microkernel Based Operating
Systems,” IOP Conference Series: Materials Science and Engineering,
1107 012052, 2021.

[11] TinyOS Home Page, http://www.tinyos.net/, Accessed Oct. 15, 2022.

[12] V. S. Pai, P. Druschel and W. Zwaenepoel, “IO-Lite: “A Unified I/O
Buffering and Caching System,” ACM Transactions on Computer
Systems, Volume 18, Issue 1, February 2000.

[13] The OSKit Project, http://www.cs.utah.edu/flux/oskit, Accessed Oct. 15,
2022.

[14] RIOT – The friendly Operating System for the Internet of Things,
https://www.riot-os.org, Accessed Oct. 15, 2022.

[15] F. Almansour, R. K. Karne, A.L. Wijesinha, and B. Rawal, “Ethernet
Bonding on a Bare PC Webserver with Dual NICs,” 33rd ACM/SIGAPP
Symposium on Applied Computing (SAC), 2018.

Fig. 4. Protocol packets

(a) With Last Ack.

(b) No Last Ack.

