
978-0-7381-1316-6/21/$31.00 ©2021 IEEE

Developing Computer Applications without any OS
or Kernel in a Multi-core Architecture

Navid Ordouie
Department of Computer &

Information Sciences
Towson University

Towson, USA
nordouie@towson.edu

Nirmala Soundararajan
Department of Computer &

Information Sciences
Towson University

Towson, USA
nsound1@students.towson.edu

Ramesh Karne
Department of Computer &

Information Sciences
Towson University

Towson, USA
rkarne@towson.edu

Alexander L. Wijesinha
Department of Computer &

Information Sciences
Towson University

Towson, USA
awijesinha@towson.edu

Abstract—Over the years, operating systems (OSs) have grown

significantly in complexity and size providing attackers with more

avenues to compromise their security. By eliminating the OS, it

becomes possible to develop general-purpose non-embedded

applications that are free of typical OS-related vulnerabilities.

Such applications are simpler and smaller in size, making it easier

secure the application code. Bare machine computing (BMC)

applications run on ordinary desktops and laptops without the

support of any operating system or centralized kernel. Many BMC

applications have been developed previously for single-core

systems. We show how to build BMC applications for multicore

systems by presenting the design and implementation of a novel

UDP-based bare machine prototype Web server for a multicore

architecture. We also include preliminary experimental results

from running the server on the Internet. This work provides a

foundation for building secure computer applications that run on

multicore systems without the need for intermediary software.

Keywords—Operating System Security, Bare Machine

Computing, Web Server, Multicore, UDP

I. INTRODUCTION

Operating systems (OSs) continue to grow in complexity and
size. This makes it increasingly difficult to secure the OS and
the applications that depend on it. There are many secure OSs
and numerous techniques are used to harden an OS. An
alternative approach is to eliminate the OS. It is then easier to
analyze the application code for security flaws because of the
reduction in system complexity and size. Bare Machine
Computing (BMC) is a novel alternative approach to
conventional OS-based computing that enables general-purpose
non-embedded applications to run on an ordinary desktop or
laptop without the support of any OS or kernel. Previously, a
variety of BMC applications were built that run on single core
systems. In this paper, we show how to build BMC applications
for a multicore architecture by presenting details of the design,
and implementation of a new UDP-based BMC multicore Web
server. While this server is a prototype and the results presented
are preliminary, our work shows the feasibility of developing
BMC applications for a multicore architecture that will be easier
to secure because of reduced system complexity.

BMC applications are currently designed for Intel x86-based
CPUs. The entire BMC application has no dependence on any
intermediary or external software. USB mass storage (a flash
drive) is used as an external detachable medium to store all the

code and data for the server and likewise for the client. The
BMC application integrates the application code with the
necessary network and security protocols, and device drivers.
For example, a bare driver that works with an Intel Gigabit
Ethernet controller is integrated with the server code.

The focus of this paper is on providing developers with the
details needed to build a BMC application for a multicore
system. As such, we do not undertake a security analysis of the
code or demonstrate that this BMC application can withstand
typical attacks that target the underlying OS or kernel.
Nevertheless, we believe that the design and implementation
details provided here can be used in the future for building
secure OS-independent applications that run on multicore
systems. The rest of the paper is organized as follows. Section
II describes related work. Section III describes the system
architecture, gives a step-by-step approach for bare machine
multicore application design, and provides key implementation
details of the server. Section IV presents preliminary Internet
measurements using the server and a bare client. Section V
contains the conclusion.

II. RELATED WORK

OSs have grown in size and complexity over the years, and
a variety of techniques have been devised to move some of the
OS functions to applications and reduce the OS footprint. Such
techniques are used in Exokernel [1], Microkernel [2], Tiny-OS
[3], IO_Lite [4], Palacio and Kitten [5], Bare Metal Linux [6],
OS-Kit [7] and Raw Architecture [8]. BMC systems are similar
to existing minimal systems except that applications run with no
OS or kernel support. It is possible to write a simple operating
system from scratch as in [9], and to build one’s own OS with
small image sizes as in [10]. However, such systems typically
use OS concepts to build rapid prototypes that are compatible
with existing evolutionary applications. Pushing parts of kernel
code to applications has many benefits. For example, UDP is
used for HTTP clients and servers enabling Web applications to
avoid the complexity and overhead of TCP. CoAP for IoT
devices [11] and the QUIC protocol [12], support UDP-based
Web applications. QUIC provides similar services to those
offered by TCP and TLS, and serves as the basis for HTTP/3
[13]. HTTP over UDP for a multicore BMC server in this paper
is a customized minimal application protocol design that is
considerably simpler than QUIC and not dependent on any OS.
This will make it easier to analyze the code and make it secure.

The BMC HTTP over UDP protocol likewise has no relation to
CoAP although it can also be adapted for use with a multicore
proxy serving IoT devices.

A variety of BMC applications have been built and tested in
real environments including local LANs and the Internet. They
include Web servers [14], text-only browsers [15], mail servers
[16], SIP servers [17], VoIP clients [18], IPv6-IPv4 translators
[19], and SQLite database engines [20]. A TCP-based BMC
multicore Web server is described in [21], and design issues
relevant to such servers are discussed in [22]. The present UDP-
based multicore BMC Web server differs from a UDP-based
BMC Web server [23] in three important ways. Firstly, that
server was designed only for a single core. Secondly, optional
ACKS and TIME_OUTS were not used as in the present server
to handle UDP packet loss on the Internet. Thirdly, we used the
data header format shown in Fig. 3 that has new fields to
simplify the bare client and improve reliability. The new UDP-
based application multicore design has the benefits of being
simpler, more general, and efficient. It can thus be more easily
used to develop and secure general-purpose (non-embedded)
BMC multicore applications in the future.

III. ARCHITECTURE AND DESIGN

The design of a BMC application requires knowledge of the
underlying system. A step by step bottom-up approach is used
to design, develop, and test such applications. The following
sub-sections give details of the design methodology and include
code snippets to illustrate the simplicity and novelty of this
approach. These snippets provide basic programming nuggets to
construct other bare PC applications or suites.

When there is no OS or kernel running in the machine, the
application program becomes event driven. This requires prior
knowledge of the execution of program threads as the program
might have to wait for required resources. In such cases, the
application programmer uses the “Suspend()” mechanism to
wait until an event occurs. This avoids the scheduling problem
that is required in a centralized OS or kernel approach. The
anticipated event will wake up a suspended thread to continue
execution. This logic becomes part of the application program
and eliminates the need for an OS or kernel.

Process management is avoided by simply creating known
processes a priori in the program. For example, a TCP Web
server requires a receive task, and many HTTP tasks. A pool of
tasks can be created and used at run time as needed. A single
main entry in the application will provide execution for tasks
based on the relevant scheduling method. In this approach, a
TSS (task segment state) required for a given task is also part of
the application program, thus avoiding process management by
a kernel. Also, there is no user/privileged mode switch. All
applications run in privileged mode and they are self-contained,
self-executable and self-manageable entities. Similarly, file
management and disk management are also avoided as they are
part of the application. This does not imply that a general-
purpose management system is needed as with a traditional OS.
The management functions only focus on the requirements of
the given application suite and are tailored to it.

Fig. 1 shows the simple system architecture used in this
paper for developing and testing the multicore BMC server and

client, and for making preliminary performance measurements.
Fig. 2 shows the HTTP over UDP message exchange.

A. Boot Code

The first step is to boot the machine with customized boot
code (boot.bin). When the PC is powered on, based on the BIOS
configuration, a BIOS interrupt transfers the boot sector from a
designated device to the memory location at 0x7c00. The BIOS
loads the PC (program counter) with the this address, and then
the CPU starts running the boot code, which is usually one
sector. Fig. 4 shows the boot process in IBM desktops. The
system starts in real mode in Intel processors, implying that the
CPU only understands real memory addresses limited to 1 MB
or 20-bit addresses. The small boot code is usually written in
assembly code, has minimal functionality, and validates a
signature at the end to indicate success. Commonly in boot code,
a tiny loader loads the startup program.

Fig. 1. System Architecture

Fig. 2. Client-Server Message Exchange

In real mode, startup code (entry.bin) is loaded from the flash
drive to a memory location at 0x2000 by using INT 13H. This
is a BIOS interrupt, and it uses a data structure that facilitates
loading the entry or start up program (Fig. 5). Once the startup
(entry.bin) is loaded, the program performs a jump to go to the
startup code. The system is still in real mode and it will never
return to the boot program as it performed a jump instruction
(hard boot). Alternatively, with a soft boot, it jumps to the boot
code at a given point in the program, In many address exception
cases, the system usually reboots and executes the boot code.

B. Real-Protected Modes

Once boot code loads the startup program (entry.bin), the
startup program runs in real mode. In this case, memory is
limited to 1 MB. In order to run large programs, a switch to
protected mode is needed to access the full address space and to

Bare Server

Internet

Bare Client

also protect the memory. In real mode, there is access to BIOS
interrupts that are not available while in protected mode. Video
memory is available in both modes to display text data. The
BIOS interrupt 13H was used to load programs and data from
mass storage as shown in the previous section. In the startup
code, the actual application code is loaded in memory above 1
M (protected mode area) by using the same BIOS interrupt. This
requires the program to read a sector in real mode and store the
data read in protected mode. As the file system is not available
at this point of execution, INT 13H is the only option to load the
application program (test.exe). One sector at a time is loaded to
make the code simple for reading and writing to the protected
mode area of memory. A data structure similar to the one used
in the boot code is also used here for reading sectors from the
flash drive. This loader is more sophisticated than the one used
in the boot code. Fig. 6 shows a simple control flow of this
mechanism. The first time the processor is in real mode, the CR0
is saved and reloaded whenever it goes back to real mode. CR0
plays a major role in switching between real and protected mode.

Fig. 3. UDP Data Header

Fig. 4. Boot Process

In order to switch to protected mode, address bit 20 must be
enabled (unless it is automatically enabled). Fig. 7 shows the
code snippet for enabling address bit 20. The address bit 20 in
real mode is the highest bit for addressing and it is disabled. It
needs to be enabled in protected mode to address above 1 MB
and up to the limit of its address space. There are some key
instructions in this code. The instructions CLI and STI are
assembly instructions to disable and enable interrupts
respectively. While enabling the address bit 20, no interrupts
should be processed. Another key element in this code is to
balance PUSH and POP instructions, since otherwise the stack
will go out of order and cause major issues in the program. In
assembly functions, it is customary to push registers that are
used in the call and pop those registers back before leaving the

function. This will guarantee register contents before the
function is called.

Fig. 5. INT 13h Data Structure and its Call

It is necessary to keep separate stacks for real and protected
modes. Switching to protected mode involves control register 1;
details are shown in Fig. 8. The important bits to modify in CR0
are PE (protected mode enable bit to 1) and CD (cache disable
to 0). After the PE bit is enabled in CR0, the GDT and IDT
registers must be loaded to address memory and process
interrupts respectively. In real mode, segment registers are used
to address beyond one segment (size of 64K). In protected mode,
segment registers are loaded with selectors to address memory.
A selector points to an 8-byte descriptor located in the GDT
(global descriptor table). Descriptors are simply indexed from
the beginning of the GDT in memory. For a given application
program, code selector, data selector and stack selector have to
be defined to address the memory. Each descriptor provides a
start address and a limit for a memory region. The hardware
checks for these addressing limits for each memory access. The
control flow shown in Fig. 6 accomplishes loading of an
application suite into the protected memory area. All application
code, data and stack are situated in the protected mode area of
memory. Once this loading process is done, issues related to
processes and multiple cores are handled.

C. Process Setup

GDT and IDT Setup: In 32-bit mode, in order to create a
separate process, a GDT (Global Descriptor Table) entry and a
TSS (Task Segment State) table are needed. The GDT entry is
an index in the GDT table, and it is used as a selector for
addressing and validating memory. These selectors are loaded
into the segment registers as needed to address memory. In the
multicore architecture, the boot processor is designated as BSP
(Boot Strap Processor) and other processors are referred to as
APs (Application Processors). Fig. 9 shows three sample
selectors for code, data and stack for the BSP process, and other
important details of the 8-byte descriptor, such as the 8 bytes
illustrating the “appcodedesc.” In this model, a 4GB limit and
base address of 0x00110000 is assumed. In addition, it uses
system privilege level (DPL 00 – lowest ring), granularity of 4K
segments (making it to 4GB address space) and 32-bit segments.
More details of the descriptors are in [23]. The descriptors must

be defined appropriately as shown in the figure to guarantee
correct operation of the system. The descriptor fields provided
here are the actual GDT descriptors used in the prototypes. Other
descriptors for AP1, AP2, and AP3 are similarly defined. Notice
that the selector base address is at 0x00110000, forcing the
program to be loaded above 1MB. These selectors cannot be
used to address real mode memory below 1MB. In order address
the entire address space, there is also need for a ZERO selector,
which can address the entire memory. In this selector, the base
address is simply all zeros.

Usually, in 32-bit mode, tasks (processes) are created using
interrupt gates. In addition, there are trap gates and interrupts
that use them. Each type of gate plays its own role in their usage.
Fig. 10 shows the format for these three possible descriptors.
Mostly, 0 – 31 are used for hardware exceptions such as divide
by zero. Interrupts 0-31 use trap gates as these are hardware
exceptions. In the Web server prototype, only the timer interrupt
and keyboard interrupts are used and they are mapped to
interrupts 32 and 33 respectively. These interrupts are hardware
interrupts that use interrupt gates. The BSP, AP1, AP2 and AP3
in this system use task gate interrupts. Fig. 11 shows key details
used in the design and the actual descriptors used for each type
of gate. Byte 5 in the descriptor defines the type of gate. The
TGATE, IGATE and KGATE macros help to define all 256
interrupts in Intel x86. These 256 definitions of interrupt
descriptors are placed in the IDT (interrupt descriptor table).
Similarly, all GDT descriptors are placed in the GDT table. The
IDTR (IDT register) is loaded with the starting point of the IDT
table. Similarly, the GDTR register is loaded with the starting
point of the GDT table. Trap Gate and Interrupt Gate descriptors
can point to the interrupt service routine (usually referred to as
ISR) as shown in the figure

Fig. 6. Real-Protected Mode Cycle

Fig. 7. Enable Address Bit 20

Fig. 8. Switch to Protected Mode

Fig. 9. GDT descriptors

TSS Setup: A task gate is used to create a process or a task.
The interrupts INT 232, INT233, INT234, INT235 are used for
creating tasks for AP1, AP2, AP3 and BSP respectively. Fig. 11
shows the BSP task gate as an example. There is no ISR address
in this descriptor. Task gates use the TSS (task segment state)
structure in Intel 32-bit multicore. When this interrupt is called,
its associated hardware stores the state of the machine in the
current TSS and then jumps to the TSS that it is supposed to run.
During this process, the link field in the new TSS is modified to
point to the previous TSS. This mechanism provides a means to
return to the previous task when needed. Thus, the TSS is the
key data structure for task management in Intel 32-bit. Fig. 12
shows a sample template for the TSS. General purpose registers,
program counter, stack pointers and all CPU-related information
is stored in the TSS, so that each task can fill in its own state in
the CPU. This template is used to create other TSSs by simply
filling in appropriate fields for a given task.

Process Invocation: Four processes BSP, AP1, AP2 and
AP3 are created using the following methodology. Processes for
the APs are created, but they will not run until the BSP enables
them to run. As there is no task concept in the entry.asm code up
to this point, a dummy TSS is created for each core. A dummy
TSS for the BSP is shown in Fig. 13, where the appropriate
values are filled in with the entry.asm selectors and related
pointers. Similarly, other three dummy TSSs are created for

AP1, AP2 and AP3. When a task switch occurs, the dummy TSS
will be filled in with the current state of the machine and a move
to the next process occurs. The BSP task invocation steps are
shown in Fig. 14. These steps are crucial to the proper invocation
of a BSP task.

In the multicore architecture, there is a different mechanism
for interrupt handling (not discussed here). The task register is
loaded with the Demo selector, which is a demo TSS used to
start the BSP processor. Peripheral interface controllers must be
initialized in the multicore architecture. Timer and keyboard
interrupts are ignored until the BSP starts running in a new task.
Fig. 15 shows a part of the assembly code for this initialization.
Using the FillTSS0 function (Fig. 16), its TSS is filled in with
the appropriate data. The EIP or program counter, is initialized
to 0x1000. The base address 0x00111000, 0x00110000 of the
test.exe was in the descriptor. For Microsoft executables, the
starting address is usually at 0x1000. The timer is set up to run
at ¼ millisecond speed using the set timer function (Fig. 17).
Calling INT 235 invokes the task gate and makes the appropriate
task switching to run the BSP code (test.exe), starting at address
0x00111000 where test.exe was loaded. All cores run
concurrently following the boot process after BSP activates
them. In the entry.asm code, a shared memory flag (at location
0x8750) is stored by the BSP to enable APs to run after they
have been reactivated. Here we assume that only the BSP is
running (the APs are not running). Process creation for APs is
described later.

D. Multicore Setup

The BSP process starts running at main() in test.exe. Fig. 18
shows the main control flow logic after it starts. All cores go
through entry.bin as well as the test.exe code. However, when
they enter the test.exe flow, they will take different routes as
shown in the figure. When they are in the entry.bin code, they
also take different paths based on whether the BSP has set a
shared memory flag or not. The BSP only sets the shared
memory flag just before they are activated. After the BSP flow
is complete, it goes to its MainTask() function and assumes its
server role. The BIOS constructs the MP Configuration Table
where each processor is identified by a unique local APIC ID
(Advanced Programmable Interrupt Controller). The APs are all
in sleep or halted mode and passively monitor the APIC bus.
They react only after special interrupts like INIT IPI and
STARTUP IPI are issued. These are special Inter Processor
Interrupts (IPI). Figs. 19 and 20 respectively show details
concerning AP activation and AP flow control. Upon receiving
an INIT IPI, the local APIC causes an INIT at its processor.
STARTUP IPI enables the processor to start executing in real
mode from address 000VV000h, where VV is an 8-bit vector
that is part of the IPI message. The Interrupt Command Register
(ICR) is used to send IPIs between the processors, and writing
to the ICR causes the IPI message to be sent.

E. Client-Server Systems

 The client design is similar to the server design, except that
it is inverted to communicate with the server. In this server
prototype, the BSP is running the Web server system and the
other APs are simply running in an idle loop while waiting to
share the workload from the BSP. Load balancing strategies are
not considered here. The client and server systems are

implemented in C/C++ supplemented by a small amount of
assembly code. The server executable (test.exe) is 549 sectors
and the client executable (test.exe) is 230 sectors. Currently, the
client is a text-only system used to stress test the server.

Fig. 10. IDT Descriptor Formats

Fig. 11. Example IDT Descriptors

IV. PRELIMINARY INTERNET MEASUREMENTS

In this section, we present the results from limited
performance studies using the prototypes. Recall that UDP
packet loss is handled by timeouts and retransmissions. Also,
out-of-order packets are handled by storing and reordering them
after all packets arrive. UDP does not keep any state in a client
request, so the client and server maintain some state to ensure
reliable transmission at the application level. The maintenance
of state for each request results in large queue sizes. This was
avoided by doing frequent timeouts every 4 seconds. Such
settings may need to be dynamically adjusted in a real system.
We were only able to run up to 3000 requests at the client site

on the Internet, whereas earlier studies using a UDP-based
single core Web server in a LAN achieved over 13000
requests/per second. It is possible that UDP throttling at the ISP
level affected our test results. Some interesting and unexpected
findings based on the tests are discussed below.

Fig. 12. TSS Template

 Fig. 13. Demo TSS for BSP

Fig. 14. BSP Invocation

Experiment I: These test results are derived from Wireshark
traces and some code measurements using the system
architecture shown in Fig. 1. The bare server and client
connected to the Internet via a pair of gigabit Ethernet switches
and their respective ISP routers (Wireshark ran on a Windows
machine). HTTP requests for a 4K file are sent to the server at
250, 500, 1000, 2000, and 3000 requests per second. Timeouts,
outstanding requests, out of order requests and no-matches were
measured. Timeouts occur every 4 seconds at the server, if the

last ACK does not arrive, and at the client if all data packets do
not arrive. These timeouts happen asynchronously and result in
the removal of requests from their queues. With the present
design, out of order requests are easily detected at the client. The
non-matches occur due to timeouts, and in some cases due to
out-of-order packets. The results also show outstanding requests
in the queue (linear lists are used for queues) that are ready to be
processed, which determines the degree of parallelism that can
be achieved using multiple cores. Each run is made for 5 minutes
on the Internet to collect data. The data collected is from the bare
server and client based on probe points in the code.

Fig. 21 shows the timeouts for client and server runs using
250, 500, 1000, 2000 and 3000 requests per second. The
timeouts vary dramatically as seen in the figure. It was found
that these timeouts are directly related to the traffic volume at
the ISP router. The difference between timeouts at the server and
at the client are due to packet losses or delays at each end. The
timeouts increase dramatically after 2000 requests per second at
the client, as the client capacity is limited due to the ISP
bottleneck. The no-matches and out of order results in Fig. 22
also indicate that after 2000 requests, there are increased no-
matches and out of order data. This is directly correlated to the
timeouts in the client and the server. Fig. 23 shows the
outstanding requests at the client and server. Notice that they
both follow the same pattern. The linear list (queue) sizes at
client and server is 30000. The outstanding requests observed
during the measurements reached a maximum of 1000, but they
always converge to the numbers shown in the plot. This is not a
queue size issue. Due to timeouts and queue cleanup, the server
and client can handle requests without any queue size problems.
The client and server systems were run overnight, and they never
reached any saturation point or errors during their operation.

Experiment II: For this test, both client and server are
connected to Ethernet hubs since there were no switches with
port mirroring capability in the home environments used for
testing. In order to measure average processing times for
requests, Wireshark traces are used, and average times are
calculated for 5 random requests. Each run in the measurement
is made for 5 minutes on the Internet. Fig. 24 shows the average
processing time of a request. We observed some outliers in the
traces, which are not included in the average time. As expected,
the hub contributes to more delays and timeouts.

V. CONCLUSION

We described a step-by-step approach for developing bare
machine applications for a multicore architecture. We illustrated
the approach by designing and implementing a UDP-based
multicore Web server. We included internal code snippets that
can be used to build similar systems for file transfer, Web mail
and other bare machine applications. The design is based on a
novel bottom-up approach. Because code images are small and
the application only performs intended functions, bare machine
systems have less complexity than their OS-based counterparts.
This reduction in complexity coupled with the elimination of
OS-related vulnerabilities will enable applications to be built in
the future that are easier to secure and harder to attack. The
Internet performance measurements indicate that these systems
can be used to communicate between bare machine servers and
clients with tolerable delays. More complex bare machine

applications that run on multicore architectures can be built by
extending the prototypes described in this work. Further
research is needed to address scalability and security issues with
respect to multiple cores and multiple nodes.

REFERENCES.

[1] D. R. Engler, M. F. Kaashoek, and J. O’Toole, “Exokernel: An operating
system architecture for application-level resource management,” 1995.

[2] D. Black et al., “Microkernel operating system architecture and Mach,” J.
Inf. Process., 1991.

[3] P. Levis et al., “TinyOS: An operating system for sensor networks,” in
Ambient Intelligence, 2005.

[4] V. S. Pai, P. Druschel, and W. Zwaenepoel, “IO-Lite: A unified I/O
buffering and caching system,” ACM Trans. Comput. Syst., 2000.

[5] J. Lange et al., “Palacios and kitten: New high performance operating
systems for scalable virtualized and native supercomputing,” 2010.

[6] T. Venton, M. Miller, R. Kalla, and A. Blanchard, “A Linux-based tool
for hardware bring up, Linux development, and manufacturing,” IBM
Syst. J., 2005.

[7] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers, “The
Flux OSKit: A Substrate for Kernel and Language Research,” Oper. Syst.
Rev., 1997.

[8] M. Taylor, Design decision in the implementation of a raw architecture
workstation. 1999.

[9] N. Blundell, Writing a Simple Operating System from Scratch. 2010.

[10] E. Baccelli et al., “RIOT: An Open Source Operating System for Low-
End Embedded Devices in the IoT,” IEEE Internet Things J., 2018.

[11] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, 2014.

[12] J. Iyengar and M. Thomson, “QUIC: A UDP-based Multiplexed and
Secure Transport,” draft-ietf-quic-transport-34. 2021.

[13] M. Bishop, “Hypertext Transfer Protocol Version 3 (HTTP/3),” draft-ietf-
quic-http-34. 2021.

[14] B. Rawal, R. K. Karne, and A. L. Wijesinha. “Splitting HTTP Requests
on Two Servers,” The Third International Conference on Communication
Systems and Networks: COMSNETS 2011, January 2011, Bangalore,
India.

[15] S.Almutairi, R. K. Karne and A.L. Wijesinha, “A Bare PC Text Based
Browser,” International Conference on Computing, Networking and
Communications (ICNC), Honolulu, Hawaii, February 2019.

[16] P. Appiah-Kubi, R. K. Karne, and A. L. Wijesinha. “A Bare PC TLS
Webmail Server,” International Conference on Computing, Networking
and Communications (ICNC), Maui, Hawaii, January 2012.

[17] R. Yasinovskyy, A. Alexander, A. L. Wijesinha and R. K. Karne. “Bare
PC SIP User Agent Implementation and Performance for Secure VoIP,”
International Journal on Advances in Telecommunications, vol 5 no 3 &
4, 2012.

[18] G. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S. Girumala. “A
Peer-to-Peer Bare PC VoIP Application,” IEEE Consumer
Communications and Networking Conference, Seamless Consumer
Connectivity (CCNC), Los Vegas, Nevada, January 2007.

[19] A. Tsetse, A. Wijesinha, R. Karne, A. Loukili and P. Appiah-Kubi, “An
Experimental Evaluation of IP4-IPV6 IVI Translation,” Applied
Computing Review, March 2013, Vol. 13, No. 1.

[20] H.Alabsi, R. K. Karne, A. Wijesinha, R. Almajed, B. Rawal, and F.
Almansour, “A Novel SQLite-Based Bare PC Email Server,” 15th
International Conference: Beyond Databases, Architectures and
Structures,” BDAS, Ustron, Poland, 2019.

[21] H. Chang, R. K. Karne and A.L. Wijesinha, “Migrating a Bare PC
Webserver to Multi-core Architecture,” IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC), Atlanta, Georgia,
2016.

[22] N.Soundararajan, H.Chang, R.K.Karne, A.L.Wijesinha, and N. Ordouie.
“Design Issues in Running a Web Server on Bare PC Multi-core
Architecture,” IEEE 44th Annual Computer Software and Applications
Conference (COMPSAC), 2020

[23] N.Soundararajan, R.K.Karne, A.L.Wijesinha, N.Ordouie, and B.Rawal.
“A Novel Client/Server Protocol for Web-based Communication on a
Server Architecture based on UDP on a Bare Machine,” IEEE Student
Conference on Research and Development (SCOReD), 2020.

[24] Intel, “Intel ® 64 and IA-32 Architectures Software Developer's Manual
Volume 3A : System Programming Guide, Part 1,” System, 2010.

Fig. 15. Initialization in the ASM Code

 Fig. 16. Fill TSS Function for the BSP Processor

Fig. 17. Set Timer

Fig. 18. Main Control Flow

Fig. 19. Activating APs

Fig. 20. APs Flow Control (Starting Processes)

Fig. 21. Timeouts

Fig. 22. No Matches and Out-of-Order Packets

Fig. 23. Outstanding Requests

Fig. 24. Average Processing Time

