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Abstract—Over the years, operating systems (OSs) have grown 

significantly in complexity and size providing attackers with more 

avenues to compromise their security. By eliminating the OS, it 

becomes possible to develop general-purpose non-embedded 

applications that are free of typical OS-related vulnerabilities. 

Such applications are simpler and smaller in size, making it easier 

secure the application code. Bare machine computing (BMC) 

applications run on ordinary desktops and laptops without the 

support of any operating system or centralized kernel. Many BMC 

applications have been developed previously for single-core 

systems. We show how to build BMC applications for multicore 

systems by presenting the design and implementation of a novel 

UDP-based bare machine prototype Web server for a multicore 

architecture. We also include preliminary experimental results 

from running the server on the Internet. This work provides a 

foundation for building secure computer applications that run on 

multicore systems without the need for intermediary software. 
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I. INTRODUCTION  

Operating systems (OSs) continue to grow in complexity and 
size. This makes it increasingly difficult to secure the OS and 
the applications that depend on it. There are many secure OSs 
and numerous techniques are used to harden an OS. An 
alternative approach is to eliminate the OS. It is then easier to 
analyze the application code for security flaws because of the 
reduction in system complexity and size. Bare Machine 
Computing (BMC) is a novel alternative approach to 
conventional OS-based computing that enables general-purpose 
non-embedded applications to run on an ordinary desktop or 
laptop without the support of any OS or kernel. Previously, a 
variety of BMC applications were built that run on single core 
systems. In this paper, we show how to build BMC applications 
for a multicore architecture by presenting details of the design, 
and implementation of a new UDP-based BMC multicore Web 
server. While this server is a prototype and the results presented 
are preliminary, our work shows the feasibility of developing 
BMC applications for a multicore architecture that will be easier 
to secure because of reduced system complexity.   

BMC applications are currently designed for Intel x86-based 
CPUs. The entire BMC application has no dependence on any 
intermediary or external software. USB mass storage (a flash 
drive) is used as an external detachable medium to store all the 

code and data for the server and likewise for the client. The 
BMC application integrates the application code with the 
necessary network and security protocols, and device drivers. 
For example, a bare driver that works with an Intel Gigabit 
Ethernet controller is integrated with the server code.  

The focus of this paper is on providing developers with the 
details needed to build a BMC application for a multicore 
system. As such, we do not undertake a security analysis of the 
code or demonstrate that this BMC application can withstand 
typical attacks that target the underlying OS or kernel. 
Nevertheless, we believe that the design and implementation 
details provided here can be used in the future for building 
secure OS-independent applications that run on multicore 
systems.   The rest of the paper is organized as follows. Section 
II describes related work. Section III describes the system 
architecture, gives a step-by-step approach for bare machine 
multicore application design, and provides key implementation 
details of the server. Section IV presents preliminary Internet 
measurements using the server and a bare client. Section V 
contains the conclusion. 

II. RELATED WORK 

OSs have grown in size and complexity over the years, and 
a variety of techniques have been devised to move some of the 
OS functions to applications and reduce the OS footprint. Such 
techniques are used in Exokernel [1], Microkernel [2], Tiny-OS 
[3], IO_Lite [4], Palacio and Kitten [5], Bare Metal Linux [6], 
OS-Kit [7] and Raw Architecture [8]. BMC systems are similar 
to existing minimal systems except that applications run with no 
OS or kernel support. It is possible to write a simple operating 
system from scratch as in [9], and to build one’s own OS with 
small image sizes as in [10]. However, such systems typically 
use OS concepts to build rapid prototypes that are compatible 
with existing evolutionary applications. Pushing parts of kernel 
code to applications has many benefits. For example, UDP is 
used for HTTP clients and servers enabling Web applications to 
avoid the complexity and overhead of TCP. CoAP for IoT 
devices [11] and the QUIC protocol [12], support UDP-based 
Web applications. QUIC provides similar services to those 
offered by TCP and TLS, and serves as the basis for HTTP/3 
[13]. HTTP over UDP for a multicore BMC server in this paper 
is a customized minimal application protocol design that is 
considerably simpler than QUIC and not dependent on any OS. 
This will make it easier to analyze the code and make it secure. 



The BMC HTTP over UDP protocol likewise has no relation to 
CoAP although it can also be adapted for use with a multicore 
proxy serving IoT devices. 

A variety of BMC applications have been built and tested in 
real environments including local LANs and the Internet. They 
include Web servers [14], text-only browsers [15], mail servers 
[16], SIP servers [17], VoIP clients [18], IPv6-IPv4 translators 
[19], and SQLite database engines [20]. A TCP-based BMC 
multicore Web server is described in [21], and design issues 
relevant to such servers are discussed in [22]. The present UDP-
based multicore BMC Web server differs from a UDP-based 
BMC Web server [23] in three important ways. Firstly, that 
server was designed only for a single core. Secondly, optional 
ACKS and TIME_OUTS were not used as in the present server 
to handle UDP packet loss on the Internet. Thirdly, we used the 
data header format shown in Fig. 3 that has new fields to 
simplify the bare client and improve reliability. The new UDP-
based application multicore design has the benefits of being 
simpler, more general, and efficient. It can thus be more easily 
used to develop and secure general-purpose (non-embedded) 
BMC multicore applications in the future. 

III. ARCHITECTURE AND DESIGN 

The design of a BMC application requires knowledge of the 
underlying system. A step by step bottom-up approach is used 
to design, develop, and test such applications. The following 
sub-sections give details of the design methodology and include 
code snippets to illustrate the simplicity and novelty of this 
approach. These snippets provide basic programming nuggets to 
construct other bare PC applications or suites. 

When there is no OS or kernel running in the machine, the 
application program becomes event driven. This requires prior 
knowledge of the execution of program threads as the program 
might have to wait for required resources. In such cases, the 
application programmer uses the “Suspend()” mechanism to 
wait until an event occurs. This avoids the scheduling problem 
that is required in a centralized OS or kernel approach. The 
anticipated event will wake up a suspended thread to continue 
execution. This logic becomes part of the application program 
and eliminates the need for an OS or kernel. 

Process management is avoided by simply creating known 
processes a priori in the program. For example, a TCP Web 
server requires a receive task, and many HTTP tasks. A pool of 
tasks can be created and used at run time as needed. A single 
main entry in the application will provide execution for tasks 
based on the relevant scheduling method. In this approach, a 
TSS (task segment state) required for a given task is also part of 
the application program, thus avoiding process management by 
a kernel. Also, there is no user/privileged mode switch. All 
applications run in privileged mode and they are self-contained, 
self-executable and self-manageable entities. Similarly, file 
management and disk management are also avoided as they are 
part of the application. This does not imply that a general-
purpose management system is needed as with a traditional OS. 
The management functions only focus on the requirements of 
the given application suite and are tailored to it. 

Fig. 1 shows the simple system architecture used in this 
paper for developing and testing the multicore BMC server and 

client, and for making preliminary performance measurements. 
Fig. 2 shows the HTTP over UDP message exchange.  

A. Boot Code 

The first step is to boot the machine with customized boot 
code (boot.bin).  When the PC is powered on, based on the BIOS 
configuration, a BIOS interrupt transfers the boot sector from a 
designated device to the memory location at 0x7c00. The BIOS 
loads the PC (program counter) with the this address, and then 
the CPU starts running the boot code, which is usually one 
sector. Fig. 4 shows the boot process in IBM desktops. The 
system starts in  real mode in Intel processors, implying that the 
CPU only understands real memory addresses limited to 1 MB 
or 20-bit addresses. The small boot code is usually written in 
assembly code, has minimal functionality, and validates a 
signature at the end to indicate success. Commonly in boot code, 
a tiny loader loads the startup program. 

 

 

 

 

 

 

 

Fig. 1. System Architecture 

 

Fig. 2. Client-Server Message Exchange  

In real mode, startup code (entry.bin) is loaded from the flash 
drive to a memory location at 0x2000 by using INT 13H. This 
is a BIOS interrupt, and it uses a data structure that facilitates 
loading the entry or start up program (Fig. 5). Once the startup 
(entry.bin) is loaded, the program performs a jump to go to the 
startup code. The system is still in real mode and it will never 
return to the boot program as it performed a jump instruction 
(hard boot). Alternatively, with a soft boot, it jumps to the boot 
code at a given point in the program, In many address exception 
cases, the system usually reboots and executes the boot code. 

B. Real-Protected Modes 

Once boot code loads the startup program (entry.bin), the 
startup program runs in real mode. In this case, memory is 
limited to 1 MB. In order to run large programs, a switch to 
protected mode is needed to access the full address space and to 
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also protect the memory. In real mode, there is access to BIOS 
interrupts that are not available while in protected mode. Video 
memory is available in both modes to display text data. The 
BIOS interrupt 13H was used to load programs and data from 
mass storage as shown in the previous section. In the startup 
code, the actual application code is loaded in memory above 1 
M (protected mode area) by using the same BIOS interrupt. This 
requires the program to read a sector in real mode and store the 
data read in protected mode. As the file system is not available 
at this point of execution, INT 13H is the only option to load the 
application program (test.exe). One sector at a time is loaded to 
make the code simple for reading and writing to the protected 
mode area of memory. A data structure similar to the one used 
in the boot code is also used here for reading sectors from the 
flash drive. This loader is more sophisticated than the one used 
in the boot code. Fig. 6 shows a simple control flow of this 
mechanism. The first time the processor is in real mode, the CR0 
is saved and reloaded whenever it goes back to real mode. CR0 
plays a major role in switching between real and protected mode. 

 

Fig. 3. UDP Data Header    

 

Fig. 4. Boot Process 

In order to switch to protected mode, address bit 20 must be 
enabled (unless it is automatically enabled). Fig. 7 shows the 
code snippet for enabling address bit 20. The address bit 20 in 
real mode is the highest bit for addressing and it is disabled. It 
needs to be enabled in protected mode to address above 1 MB 
and up to the limit of its address space. There are some key 
instructions in this code. The instructions CLI and STI are 
assembly instructions to disable and enable interrupts 
respectively. While enabling the address bit 20, no interrupts 
should be processed. Another key element in this code is to 
balance PUSH and POP instructions, since otherwise the stack 
will go out of order and cause major issues in the program. In 
assembly functions, it is customary to push registers that are 
used in the call and pop those registers back before leaving the 

function. This will guarantee register contents before the 
function is called. 

 
Fig. 5. INT 13h Data Structure and its Call 

It is necessary to keep separate stacks for real and protected 
modes. Switching to protected mode involves control register 1; 
details are shown in Fig. 8. The important bits to modify in CR0 
are PE (protected mode enable bit to 1) and CD (cache disable 
to 0). After the PE bit is enabled in CR0, the GDT and IDT 
registers must be loaded to address memory and process 
interrupts respectively. In real mode, segment registers are used 
to address beyond one segment (size of 64K). In protected mode, 
segment registers are loaded with selectors to address memory. 
A selector points to an 8-byte descriptor located in the GDT 
(global descriptor table). Descriptors are simply indexed from 
the beginning of the GDT in memory. For a given application 
program, code selector, data selector and stack selector have to 
be defined to address the memory. Each descriptor provides a 
start address and a limit for a memory region. The hardware 
checks for these addressing limits for each memory access. The 
control flow shown in Fig. 6 accomplishes loading of an 
application suite into the protected memory area. All application 
code, data and stack are situated in the protected mode area of 
memory. Once this loading process is done, issues related to 
processes and multiple cores are handled. 

C. Process Setup 

GDT and IDT Setup: In 32-bit mode, in order to create a 
separate process, a GDT (Global Descriptor Table) entry and a 
TSS (Task Segment State) table are needed. The GDT entry is 
an index in the GDT table, and it is used as a selector for 
addressing and validating memory. These selectors are loaded 
into the segment registers as needed to address memory. In the 
multicore architecture, the boot processor is designated as BSP 
(Boot Strap Processor) and other processors are referred to as 
APs (Application Processors). Fig. 9 shows three sample 
selectors for code, data and stack for the BSP process, and other 
important details of the 8-byte descriptor, such as the 8 bytes 
illustrating the “appcodedesc.” In this model, a 4GB limit and 
base address of 0x00110000 is assumed. In addition, it uses 
system privilege level (DPL 00 – lowest ring), granularity of 4K 
segments (making it to 4GB address space) and 32-bit segments. 
More details of the descriptors are in [23]. The descriptors must 



be defined appropriately as shown in the figure to guarantee 
correct operation of the system. The descriptor fields provided 
here are the actual GDT descriptors used in the prototypes. Other 
descriptors for AP1, AP2, and AP3 are similarly defined. Notice 
that the selector base address is at 0x00110000, forcing the 
program to be loaded above 1MB. These selectors cannot be 
used to address real mode memory below 1MB. In order address 
the entire address space, there is also need for a ZERO selector, 
which can address the entire memory. In this selector, the base 
address is simply all zeros. 

Usually, in 32-bit mode, tasks (processes) are created using 
interrupt gates. In addition, there are trap gates and interrupts 
that use them. Each type of gate plays its own role  in their usage. 
Fig. 10 shows the format for these three possible descriptors.  
Mostly, 0 – 31 are used for hardware exceptions such as divide 
by zero. Interrupts 0-31 use trap gates as these are hardware 
exceptions. In the Web server prototype, only the timer interrupt 
and keyboard interrupts are used and they are mapped to 
interrupts 32 and 33 respectively. These interrupts are hardware 
interrupts that use interrupt gates. The BSP, AP1, AP2 and AP3 
in this system use task gate interrupts. Fig. 11 shows key details 
used in the design and the actual descriptors used for each type 
of gate. Byte 5 in the descriptor defines the type of gate. The 
TGATE, IGATE and KGATE macros help to define all 256 
interrupts in Intel x86. These 256 definitions of interrupt 
descriptors are placed in the IDT (interrupt descriptor table). 
Similarly, all GDT descriptors are placed in the GDT table. The 
IDTR (IDT register) is loaded with the starting point of the IDT 
table. Similarly, the GDTR register is loaded with the starting 
point of the GDT table. Trap Gate and Interrupt Gate descriptors 
can point to the interrupt service routine (usually referred to as 
ISR) as shown in the figure  

 

Fig. 6.   Real-Protected Mode Cycle 

 

Fig. 7.   Enable Address Bit 20 

 

Fig. 8.   Switch to Protected Mode 

 

Fig. 9.   GDT descriptors 

TSS Setup: A task gate is used to create a process or a task. 
The interrupts INT 232, INT233, INT234, INT235 are used for 
creating tasks for AP1, AP2, AP3 and BSP respectively. Fig. 11 
shows the BSP task gate as an example. There is no ISR address 
in this descriptor. Task gates use the TSS (task segment state) 
structure in Intel 32-bit multicore. When this interrupt is called, 
its associated hardware stores the state of the machine in the 
current TSS and then jumps to the TSS that it is supposed to run. 
During this process, the link field in the new TSS is modified to 
point to the previous TSS. This mechanism provides a means to 
return to the previous task when needed. Thus, the TSS is the 
key data structure for task management in Intel 32-bit. Fig. 12 
shows a sample template for the TSS. General purpose registers, 
program counter, stack pointers and all CPU-related information 
is stored in the TSS, so that each task can fill in its own state in 
the CPU. This template is used to create other TSSs by simply 
filling in appropriate fields for a given task.  

Process Invocation: Four processes BSP, AP1, AP2 and 
AP3 are created using the following methodology. Processes for 
the APs are created, but they will not run until the BSP enables 
them to run. As there is no task concept in the entry.asm code up 
to this point, a dummy TSS is created for each core. A dummy 
TSS for the BSP is shown in Fig. 13, where the appropriate 
values are filled in with the entry.asm selectors and related 
pointers. Similarly, other three dummy TSSs are created for 



AP1, AP2 and AP3. When a task switch occurs, the dummy TSS 
will be filled in with the current state of the machine and a move 
to the next process occurs. The BSP task invocation steps are 
shown in Fig. 14. These steps are crucial to the proper invocation 
of a BSP task.  

In the multicore architecture, there is a different mechanism 
for interrupt handling (not discussed here). The task register is 
loaded with the Demo selector, which is a demo TSS used to 
start the BSP processor. Peripheral interface controllers must be 
initialized in the multicore architecture. Timer and keyboard 
interrupts are ignored until the BSP starts running in a new task. 
Fig. 15 shows a part of the assembly code for this initialization. 
Using the FillTSS0 function (Fig. 16), its TSS is filled in with 
the appropriate data. The EIP or program counter, is initialized 
to 0x1000. The base address 0x00111000, 0x00110000 of the 
test.exe was in the descriptor. For Microsoft executables, the 
starting address is usually at 0x1000. The timer is set up to run 
at ¼ millisecond speed using the set timer function (Fig. 17). 
Calling INT 235 invokes the task gate and makes the appropriate 
task switching to run the BSP code (test.exe), starting at address 
0x00111000 where test.exe was loaded. All cores run 
concurrently following the boot process after BSP activates 
them. In the entry.asm code, a shared memory flag (at location 
0x8750) is stored by the BSP to enable APs to run after they 
have been reactivated. Here we assume that only the BSP is 
running (the APs are not running). Process creation for APs is 
described later. 

D. Multicore Setup 

The BSP process starts running at main() in test.exe. Fig. 18 
shows the main control flow logic after it starts. All cores go 
through entry.bin as well as the test.exe code. However, when 
they enter the test.exe flow, they will take different routes as 
shown in the figure. When they are in the entry.bin code, they 
also take different paths based on whether the BSP has set a 
shared memory flag or not. The BSP only sets the shared 
memory flag just before they are activated. After the BSP flow 
is complete, it goes to its MainTask() function and assumes its 
server role.  The BIOS constructs the MP Configuration Table 
where each processor is identified by a unique local APIC ID 
(Advanced Programmable Interrupt Controller). The APs are all 
in sleep or halted mode and passively monitor the APIC bus. 
They react only after special interrupts like INIT IPI and 
STARTUP IPI are issued. These are special Inter Processor 
Interrupts (IPI). Figs. 19 and 20 respectively show details 
concerning AP activation and AP flow control. Upon receiving 
an INIT IPI, the local APIC causes an INIT at its processor. 
STARTUP IPI enables the processor to start executing in real 
mode from address 000VV000h, where VV is an 8-bit vector 
that is part of the IPI message. The Interrupt Command Register 
(ICR) is used to send IPIs between the processors, and writing 
to the ICR causes the IPI message to be sent. 

E. Client-Server Systems 

      The client design is similar to the server design, except that 
it is inverted to communicate with the server. In this server 
prototype, the BSP is running the Web server system and the 
other APs are simply running in an idle loop while waiting to 
share the workload from the BSP. Load balancing strategies are 
not considered here. The client and server systems are 

implemented in C/C++ supplemented by a small amount of 
assembly code. The server executable (test.exe) is 549 sectors 
and the client executable (test.exe) is 230 sectors. Currently, the 
client is a text-only system used to stress test the server.  

 

 

Fig. 10.   IDT Descriptor Formats 

 
Fig. 11.   Example IDT Descriptors 

IV. PRELIMINARY INTERNET MEASUREMENTS 

In this section, we present the results from limited 
performance studies using the prototypes. Recall that UDP 
packet loss is handled by timeouts and retransmissions. Also, 
out-of-order packets are handled by storing and reordering them 
after all packets arrive. UDP does not keep any state in a client 
request, so the client and server maintain some state to ensure 
reliable transmission at the application level. The maintenance 
of state for each request results in large queue sizes. This was 
avoided by doing frequent timeouts every 4 seconds. Such 
settings may need to be dynamically adjusted in a real system. 
We were only able to run up to 3000 requests at the client site 



on the Internet, whereas earlier studies using a UDP-based 
single core Web server in a LAN achieved over 13000 
requests/per second. It is possible that UDP throttling at the ISP 
level affected our test results. Some interesting and unexpected 
findings based on the tests are discussed below.  

 

Fig. 12.  TSS Template 

 

 Fig. 13.  Demo TSS for BSP 

 

Fig. 14.   BSP Invocation 

Experiment I: These test results are derived from Wireshark 
traces and some code measurements using the system 
architecture shown in Fig. 1. The bare server and client 
connected to the Internet via a pair of gigabit Ethernet switches 
and their respective ISP routers (Wireshark ran on a Windows 
machine). HTTP requests for a 4K file are sent to the server at 
250, 500, 1000, 2000, and 3000 requests per second. Timeouts, 
outstanding requests, out of order requests and no-matches were 
measured. Timeouts occur every 4 seconds at the server, if the 

last ACK does not arrive, and at the client if all data packets do 
not arrive. These timeouts happen asynchronously and result in 
the removal of requests from their queues. With the present 
design, out of order requests are easily detected at the client. The 
non-matches occur due to timeouts, and in some cases due to 
out-of-order packets. The results also show outstanding requests 
in the queue (linear lists are used for queues) that are ready to be 
processed, which determines the degree of parallelism that can 
be achieved using multiple cores. Each run is made for 5 minutes 
on the Internet to collect data. The data collected is from the bare 
server and client based on probe points in the code. 

Fig. 21 shows the timeouts for client and server runs using 
250, 500, 1000, 2000 and 3000 requests per second. The 
timeouts vary dramatically as seen in the figure. It was found 
that these timeouts are directly related to the traffic volume at 
the ISP router. The difference between timeouts at the server and 
at the client are due to packet losses or delays at each end. The 
timeouts increase dramatically after 2000 requests per second at 
the client, as the client capacity is limited due to the ISP 
bottleneck. The no-matches and out of order results in Fig. 22 
also indicate that after 2000 requests, there are increased no-
matches and out of order data. This is directly correlated to the 
timeouts in the client and the server. Fig. 23 shows the 
outstanding requests at the client and server. Notice that they 
both follow the same pattern. The linear list (queue) sizes at 
client and server is 30000. The outstanding requests observed 
during the measurements reached a maximum of 1000, but they 
always converge to the numbers shown in the plot. This is not a 
queue size issue. Due to timeouts and queue cleanup, the server 
and client can handle requests without any queue size problems. 
The client and server systems were run overnight, and they never 
reached any saturation point or errors during their operation. 

Experiment II: For this test, both client and server are 
connected to Ethernet hubs since there were no switches with 
port mirroring capability in the home environments used for 
testing. In order to measure average processing times for 
requests, Wireshark traces are used, and average times are 
calculated for 5 random requests. Each run in the measurement 
is made for 5 minutes on the Internet. Fig. 24 shows the average 
processing time of a request. We observed some outliers in the 
traces, which are not included in the average time. As expected, 
the hub contributes to more delays and timeouts. 

V. CONCLUSION 

We described a step-by-step approach for developing bare 
machine applications for a multicore architecture. We illustrated 
the approach by designing and implementing a UDP-based 
multicore Web server. We included internal code snippets that 
can be used to build similar systems for file transfer, Web mail 
and other bare machine applications. The design is based on a 
novel bottom-up approach. Because code images are small and 
the application only performs intended functions, bare machine 
systems have less complexity than their OS-based counterparts. 
This reduction in complexity coupled with the elimination of 
OS-related vulnerabilities will enable applications to be built in 
the future that are easier to secure and harder to attack. The 
Internet performance measurements indicate that these systems 
can be used to communicate between bare machine servers and 
clients with tolerable delays. More complex bare machine 



applications that run on multicore architectures can be built by 
extending the prototypes described in this work. Further 
research is needed to address scalability and security issues with 
respect to multiple cores and multiple nodes. 
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Fig. 15.   Initialization in the ASM Code 

 

 Fig. 16.   Fill TSS Function for the BSP Processor 

 

Fig. 17.  Set Timer 



 

Fig. 18.   Main Control Flow 

 

Fig. 19.   Activating APs 

 

 

Fig. 20.  APs Flow Control (Starting Processes) 

 

Fig. 21.   Timeouts 

 

Fig. 22.   No Matches and Out-of-Order Packets 

 

Fig. 23.   Outstanding Requests 

 
Fig.  24.   Average Processing Time

 


