
APPLICATION-ORIENTED OBJECT ARCHITECTURE: CONCEPTS AND
APPROACH

Ramesh K. Karne, Rajavardhan Gattu, Xubo Zhang, and Ramesh Dandu

Department of Computer and Information Sciences, Towson University, Towson, MD 21252

ABSTRACT
 The evolutionary computer systems and applications
growth has been astronomical and spreads across many
dimensions. We propose a radical architecture that is in
its conceptual phase, which is based on applications and
object-oriented paradigm, instead of computer and
system environments. In its initial phases, the
application-oriented object architecture has a potential
of running on a bare machine without any need for a
conventional operating system. This approach bundles
the operating system facilities needed with its
application program and expects the hardware to
communicate with software in an intelligent manner.
This paper presents the architecture, identifies its issues
related to design and implementation and describes its
current state. The proposed architecture is currently
demonstrated using existing computer environments
and small example applications. Further research is in
progress to demonstrate complex examples that can be
run on the application-oriented object architecture.

KEY WORDS
AOA, application-oriented, bare machine, computer
environments.

1. Introduction
 The evolution of information technology can be
viewed as having at least eight dimensions: 1. Vendors
(each vendor has their own implementation and
possibly different hardware organization) 2. Hardware
releases (frequent product releases due to technology
improvements) 3. Software releases (frequent product
releases due to new functionality or improvements) 4.
Operating systems (many types and versions), 5.
Programming languages and tools (proliferation of
languages, paradigms, and environments) 6.
Application environments (fast growth in desktop,
Internet, multimedia, database, networking, security,
etc) 7. Applications (exponential growth in real-world
computer applications) 8. Secure systems (secure
protocols and architectures). As technology evolves in
these multiple dimensions, it spawns increasingly
complex computer systems and environments.

 It can be inferred that current computer systems and
environments cause the following problems:

(a) incompatibility among products and tools
(b) obsolescence due to hardware, software, tools and

applications
(c) personnel re-training as a result of new

environments, programming languages, and tools
(d) wastage of hardware, software, applications, and

skills (waste of money)
(e) proliferation of products, languages, interfaces,

architectures, platforms, and tools
(f) dumping of obsolete computer hardware and

software products (environmental effects, dump
sites)

(g) lack of portability, extensibility, maintainability
and inter-operability

(h) many layers between applications and hardware
resulting in numerous transformations.

 It is not proven, but apparent that the above
problems may have stem from the evolutionary path
chosen to build computer systems over the past few
decades. Our motivation emerged from the above
problems and frustration and resulted in a simple
computer architecture that may possibly reduce above
proliferations. It may seem that it is going back to a
stone age by revisiting the evolution, however, it may
be the only approach available to reduce this
proliferation and obsolescence of computer
environments.

 The first and foremost software system that comes
close to hardware is an operating system. An operating
system provides services to computer applications and
acts as a layer to shield user applications from hardware
intricacies. However, an application program to run in
a given hardware has all the intricacies of hardware and
its interfaces embedded into its program through
compilers, linkers, loaders, operating system libraries,
device drivers and so on. An application program does
not see this complexity but the system does to run in its
current environment.

 We propose a solution that focus on repackaging the
application programs with operating system and
environment related programs (bundle them together).
That means, there is only one program unit that has the
sole knowledge of its creation, execution and retention.
The program can also runs on a bare machine so that
there is no other program loaded a priori before an
application program is run.

2. Related Research
 Over the years, related research has explored
different paradigms and methodologies to make
computing more effective and efficient for
computations. Such approaches spread across many
fields in computer science, and address some of the
problems in current computer systems. In the early
80’s, Myers [1] clearly identified the existing semantic
gap between computer applications and computer
implementations, concluding that it is necessary to
reduce this gap to achieve maximum performance and
stability in computer systems. The object-oriented
paradigm offers many benefits and provides features to
extend the existing objects to future objects; object-
oriented technology is mature and became the de-facto
standard in many areas. Object-oriented programming
languages such as Java provide platform independent
software and offer portability and reusability. Open-
systems and architectures such as Open Software
Foundation (OSF), Common Object Request Broker
Architecture (CORBA), Enterprise Java Beans (EJB),
and Enterprise Frameworks [2] help to develop
interoperable systems. The building block approach in
software systems [3] provides easier techniques to build
and extend software. Dedicated architectures [4] will
help in speeding up some specialized applications.
However, research has shown that it is very difficult to
develop homogeneous software [5] to build
interoperable systems, as there is an architectural
mismatch in software systems. Exokernel research work
at MIT [6] focuses on increasing the performance of
applications using Exokernel instead of commercial
operating systems (treating operating system like an
application). Bare PC research at Utah [7] may
eventually help users to write application programs with
the interfaces available in OS Kit, which enables PCs to
run without major operating systems. The object-engine
[8], and OO techniques in hardware design indicate that
there is a need for integrated hardware approaches to
address current computer system design problems.
Virtual computer systems and global software [9,10]
provide an alternate approach to cope with the myriad
of platforms and millions of computers connected to the
Internet. It should be noted that most of these research
efforts mesh with the evolution of technology [11] that
began decades ago.

 The above solutions address design issues such as
portability, extensibility, reusability, interoperability,
and modularity, yet fail to pay attention to obsolescence
and the proliferation of computer systems and
applications resulting from the "eight-dimensional
cube" (vendors, hardware, software, operating systems,
programming languages, application environments,
applications, and security). Consequently, despite many
technological advances, we still replace our desktops
and operating systems every two years, and do not
recycle most of our computer hardware and software
[12]. The object-oriented computer architecture

introduced by the PI in [13], and the global computer
architecture described in [14], led to the Application-
oriented Object Architecture (AOA) proposed here.

3. Architecture
 The proposed Application-oriented Object
Architecture (AOA) solution is simply a two-layer
architecture consisting of an application layer and a
hardware layer. The application layer is implemented
using application objects (AOs). The hardware layer is
implemented using application units (AUs). AOs and
AUs communicate through standard interfaces shown in
Figure 1. For example, a display AU has its own
interface with its AO. A CPU AU has another interface
with its own AO. For example, a given application
object can request a CPU directly for its time, starting
of execution, stopping of execution, availability of
CPU, and so on. Similarly, the application units will
also keep track of their own resources and interact with
AOs. A set of application objects forms a computer
application. A set of application units forms a computer
hardware system. Some of the features of the
architecture are briefly described in this section. Due to
space limitations, detailed descriptions and
implementation issues are avoided. The major
characteristic of this architecture is that it does not
require any operating system to be resident in the
hardware layer to run AOs.

 In this architecture there is a bare machine that can
communicate to an application object every time it
needs to be executed. The bare machine has to be
intelligent to keep track of its own resources and able to
communicate with software (AOs). The application
object must contain all necessary programs to load,
execute and manage its own resources. By bundling all
the programs with the application, it will help
standardize the application units and avoid
obsolescence and proliferation of products. Every AU
must follow the standard communication to their AOs.
The interfaces to AOs must be built right into AUs to
facilitate this communication. The current computer
systems do not do this as the AUs have no knowledge
of their own resources and they are being managed by
the operating system and also there is no well-defined
external interface to current AUs as they only interface
with the host operating system.

3.1 AO/AU Objects
 A set of AOs forms a real-world application.
Editing a resume is a real-world application that
constitutes a set of AOs that may need to communicate
to a set of AUs. A real world application such as editing
a resume consists of all knowledge and control needed
to execute its application. It is self-controllable and self-
executable given required resources or AUs. It is self-

controllable as it has all the information related to a
given application and it is self-executable as it also sets
an execution environment in AUs to run its own
application. Thus, an AOA application negotiates with
AUs for its resources, load itself, set up its resources,
execute itself, monitor errors, process exceptions, and
leave the AUs when it is complete. There is no other
program in the AUs other than the programs in the
AOs.

AUAUAUAU

AOAOAOAO

Hardware Layer

Application Layer

AO/AU Interfaces

Figure 1. Application-oriented Object Architecture
(AOA)

 A set of AUs are real-world hardware objects in
hardware layer that provides all the required resources
for a given application. It is simply a hardware unit
consisting of a processor, memory, disk, display,
network card and other related elements required for
AOs. An AU acts like a server to an AO, in the sense
that an AO can make service requests to the AU. Some
of the AO’s requests are as follows: allocate memory,
acquire a CPU for execution (and possibly for a given
amount of time), de-allocate memory, put the processor
in a wait state, start loading a program, stop the
processor, check authentication, validate its signature,
and request processor or memory availability. As there
is no operating system in an AU, the AU unit and its
elements should keep track of their own resources in an
intelligent manner. For example, a CPU element or an
AU will keep track of its AO currently in execution and
the AO’s execution time, its interface to the AOs, the
amount of time allocated for each AO, whether it can
serve a given AO request or not. If the AUs manage
their own hardware resources intelligently, and the
AOs have all the necessary software, then these units
could function in harmony eliminating the need for an
external operating system.

3.2 AO/AU Interfaces
 There is a need for standard interface between AUs
and AOs. For example, a keyboard must have a
standard interface (similar to BIOS calls) to a keyboard
AO. Similary, a CPU should have a standard interface

to a CPU AO and so on. Once these standard interfaces
are defined, they must only extend to cover new
functionality, but not to abandon the old interface. That
means, the hardware and as well as software must
follow object-oriented methodology in their
architecture, design and implementation.

3.3 Example Illustration
 The example shown in Figure 2 illustrates a resume
application in the AOA system. A resume application
has functions such as access control, signature
validation, edit, store, and spell-check. In a
conventional environment, as shown in Figure 2(a),
Microsoft Word, and the underlying OS will enable a
user to perform the above functions for the resume
application. In the AOA system, as shown in Figure
2(b), an AO consists of a program text object as well as
application control objects.

 Object-oriented analysis and design could be
performed on similar applications such as books,
documents, newspapers, magazines and technical
journals that may share common objects with the
resume object. These similar entities form the basis to
build AOs that constitute a specific application domain.
In general, we can capture AOs based on applications
and hide all the necessary data and control. Also, once
all application domains are modeled as application
objects, much redundancy will be avoided.

4. Design and Implementation
 Today’s hardware such as a 386 chip does not
provide the interfaces that are required for the AOA.
One possible approach is to define the AU component
interfaces such as CPU, memory, keyboard, display,
network card, mouse, and disk in assembly language or
C, letting these interfaces enable communication
between AU elements and AOs. However, when such
assembly language interface objects are developed to
interface with AOs, they should use BIOS calls for
hardware functions to make the interfaces stable
(assuming that BIOS are part of hardware). The BIOS
calls only work in real mode; thus, one must learn how
to swap back and forth from real mode to protected
mode, if protected mode is used for high memory and
32-bit addressing. We need a clean approach to develop
these interfaces that are stable and robust for all
application objects.

 As shown in Figure 2 for resume object, in general,
we need to develop generic interfaces to communicate
between AOs and AUs. Once these interfaces are well
understood and defined, then it is possible to integrate
these interfaces into AUs. For example, a CPU
interface can be integrated into the CPU, and a memory
interface can be integrated into memory. In this

approach, a memory unit knows how much of it is
being used and who is using it. It also knows how to
communicate with an AO and respond according to its
available memory and performance. If the AOA system
becomes a commodity, then it is possible to envision
custom designs for AUs using a coarse-grained
approach, in which multiple elements can be integrated
into a single AU, and dynamically re-configured for AO
requirements. This means there will be many AUs for
specific application objects; such AUs will become a
commodity in computer systems. We need further
research for a variety of design approaches for AUs,
and their pros and cons.

5. Prototype
 We have built an AOA prototype using 386 based
PC and Visual C++ 6.0 and MASM 6.11 assembler
programs. This prototype does not use any operating
system related functions except ROM BIOS (we
assume ROM BIOS are hardware related and stable).
We have modeled about three small applications such
as resume, bubble sort, and hello and these applications
can run with out any use of DOS or Windows or NT
operating system. Some of the high lights are listed
below:
 functions for application operating objects for a

resume object are identified and implemented
 requirements for AO design and implementation

are identified
 AO designs for a resume object and other sample

objects are complete
• created a bootable disk whereby the resident

operating system can be bypassed
• created protected mode where 32-bit addressing

and large physical memory can be accessed
• wrote a loader program which can read programs

from a floppy disk and load them into selected
locations in memory

• created a user interface for AOA where different
application programs (such as a resume object,
bubble sort, etc.) can be defined, loaded, and
executed in the AU

• implemented all hardware interfaces and operating
system type interfaces using ROM BIOS calls

• implemented call gates to provide inter-segment
transfers in memory and task gates to create multi-
tasking environment

• replaced JMP, CALL, and RET instructions which
are linker and loader sensitive with the AOA based
interfaces

• found many Web sites and related interest groups
(DJGPP, NASM, OSKIT, Exokernel) for free code
that works with non-commercial OS environment.

 The prototype demonstrates that a C++ application
program can run on a bare machine without any

operating system resident in the hardware. However,
the ROM BIOS need to be resident in the machine.

 A bootable disk is created with AOA interfaces
where upon booting the machine with a floppy disk will
load the AOA interface programs in the memory below
1M range. This AOA interface programs will enable the
user to load AOA applications and run them with out
any assistance from the standard operating system calls.

 In order to do that, the application programs must be
written without any *.h files that are related to
operating systems. Instead, the programmer must use
AOA interface calls.

 A real-mode to protected mode and vice versa
interface is also developed which will enable the
applications to be loaded above 1M and use real-mode
facilities such as keyboard, and monitor. An
application program can be loaded any where above 1M
as specified by the user. When a program is complete,
the control is returned back to the user program to
terminate.

 In protected mode, we have also written AOA
interfaces for keyboard, and display using interrupts
and BIOS calls.

 Currently, all the programs have to be loaded
through a floppy disk, however, one can modify the
interface to load it from a hard disk.

 We are also studying more complex applications
such as TCP/IP to run with the AOA system. The
prototype is also being used to develop other AO and
AU interfaces and serves as a Testbed for AOA
applications.

6. Further Research
 Initial work in exploration of AOA indicate that
there are no major road blocks to pursue this
exploration. However, demonstration of AOA using the
existing computer environment is a daunting task. We
identify the following research areas to make AOA
successful in real world applications:

 demonstrate a complex application using AOA
 develop the standard interfaces for AOs/AUs
 study the integration of AO/AU interfaces into

AU
 study the issues related to AO communication

and sharing of resources
 study the multi-processing issues related to

AOA implementation
 study performance and memory needs for

AOA.

 The above research issues identified requires vast
amount of research and funding resources. We believe
that when a complex application such as TCP/IP
protocol is demonstrated on AOA, then this research
will become more fruitful and it will demonstrate a
greater potential for laying a foundation for future
computer architectures.

7. Conclusions
 This paper presented a radical architecture that
bundles operating system functions and applications as
a single object. The architecture presented is at a
conceptual level and only simple applications are
demonstrated at this point. The architecture poses many
questions than answers, however, we believe that it has
tremendous potential to develop a new generation of
computer systems and applications for the future.

8. Acknowledgements
 This research was supported by National Science
Foundation, SGER grant, CCR-0120155. Dr. Frank
Anger and Dr. Spencer Rugaber’s support and
confidence in this project started a first milestone for a
possible revolution in computer architectures.

REFERENCES

[1] G.J.Myers, Advanced Computer Architecture (John
Wiley & Sons, 1982, 17).

[2]G.Larsen, Component-based Enterprise Frameworks,
Communications of the ACM, October 2000, Vol. 43,
No. 10, 2530.

[3] F.J.Van Der Linden, and J.K.Muller, Creating
Architectures with Building Blocks, IEEE Software,
November 1995, 51-60.

[4] G.Borriello, and R.Want, Embedded Computation
Meets the World Wide Web, Communications of the
ACM, May 2000, Volume 43, Number 5, 59-66.

[5] D.Garlan, R.Allen, and J.Ockerbloom, Architectural
Mismatch: Why Reuse Is So Hard, IEEE Software,
November 1995, 17-26.

[6] D.R.Engler, The Exokernel Operating System
Architecture, Ph.D. Thesis, MIT, October 1998.

[7] B.Ford, G.Back, G.Benson, J.Lepreau, A.Lin, and
O.Shivers, The Flux OSKit: A Substrate for OS and
Language Research. In Proc. of the 16nth ACM Symp.
on Operating Systems Principles, St. Malo, France, Oct.
1997, 38-41.

[8] F.Cummins, R.Cunis, and G.Harris, The Object
Engine: Foundation for Next Generation
Architectures,” OOPSLA ‘95, 123-127.

[9] J.Z.Gao, C.Chen, and D.Leung, Engineering on the
Internet for Global Software Production, Computer,
May 1999, 38-47.

[10] A.S.Grimshaw, Wm.A.Wulf, and the Legion
team., The Legion Vision of a Worldwide Virtual
Computer, Communications of the ACM, January 1997,
Vol. 40, No. 1, 39-45.

[11] J.Hennessy, The future of systems research,
Computer, August 1999, 27-33.

[12] J.Whitley, A Study of Computer Obsolescence and
Its Impact, M.S Thesis, Department of Computer and
Information Sciences, Towson University, Towson,
MD 21252, December 2001.

[13] R.K.Karne, Object-oriented Computer
Architectures for New Generation of Applications,
Computer Architecture News, December 1995, Vol. 23,
No. 5, 8-19.

[14] R.K.Karne, and J.Bradley, A Global Computer
Architecture: A Revolutionary Approach For Global
Computing of the Future, AoM/AΦM 14th Annual
International Conference, Conference Proceedings,
Toronto, Canada, August 1996, 213-225.

(a) Conventional
Resume

Application
Environment

Hardware

Windows NT OS

Microsoft Word

Resume Application

(b) AOA Resume
Application

Environment

Application
Layer

Hardware
Layer

C
PU

 In
te

rf
ac

e

disk

bootupnetwork
card

Interrupts

modem

memoryprinter
Keyboard

mouse speaker

security
AU Components

display

CPU

editor
negotiator

loader

signaturenetwork

fonts

access-
perms

printingspell
check

file
char.

life
cycle

security
program text

object

Application Control

Objects

B
oo

tu
p

In
te

rf
ac

e

D
is

pl
ay

 In
te

rf
ac

e

M
ou

se
 In

te
rf

ac
e

Pr
in

te
r I

nt
er

fa
ce

N
et

w
or

k
I n

t e
r f

ac
e

K
ey

bo
ar

d
In

te
rf

ac
e

D
is

k
In

te
rf

ac
e

M
em

or
y

In
te

rf
ac

e

Figure 2. Resume Object

	ABSTRACT
	KEY WORDS
	1. Introduction
	2. Related Research
	3. Architecture
	3.1 AO/AU Objects
	3.2 AO/AU Interfaces
	3.3 Example Illustration
	4. Design and Implementation
	5. Prototype
	6. Further Research
	7. Conclusions
	8. Acknowledgements
	REFERENCES
	Figure 2. Resume Object

