
Ethernet Bonding on a Bare PC Web Server with Dual NICs

Faris Almansour
Department of Computer &

Information Sciences

Towson University

Towson, MD 21252

falmansour@towson.edu

Ramesh Karne
Department of Computer &

Information Sciences

Towson University

Towson, MD 21252x 6221
rkarne@towson.edu

Alexander Wijesinha
Department of Computer &

Information Sciences

Towson University

Towson, MD 21252

awijesinha@towson.edu

 Bharat Rawal
IST Department

Penn State Abington

Abington, PA 19001

bsr17@psu.edu

ABSTRACT

Bare PC1 applications run without the support of an operating

system (OS) or kernel and include the necessary hardware

interfaces and network device drivers with each application. We

describe a novel implementation of Ethernet bonding on a bare PC

Web server using dual NICs, where both NICs can send but only

one NIC can receive. The split send-receive design is easily

extended to more than two NICs and other send/receive NIC

configurations. Conventional Ethernet bonding requires some

form of OS or kernel support. In the bare PC implementation, OS

overhead and OS-related vulnerabilities are eliminated. We

describe the dual NIC bare server architecture and

implementation, and present experimental results to measure

server performance. The results confirm that client connection and

response times are better than for a bare server with two cards that

each receive and send. This implementation of Ethernet bonding

on a bare PC Web server is the first step towards building secure

bare PC servers that can optimize performance using multi-core

processors and multiple NICs.

CCS CONCEPTS

• Networks • Networks~Network adapters • Networks~Link-

layer protocols • General and reference~Performance

KEYWORDS

Bare machine computing, bare PC, operating system, Ethernet

bonding

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s).

SAC’18, April 9-13, 2018, Pau, France

© 2018 Copyright held by the owner/author(s). 978-1-4503-5191-1/18/04. . . $15.00

DOI: xx.xxxx/xxx_x

ACM Reference format:

F. Almansour, R. Karne, A. Wijesinha, and B. Rawal. 2018. In

Proceedings of ACM SAC Conference, Pau, France, April 9-13, 2018

(SAC’18), 8 pages. DOI: xx.xxxx/xxx_x

1 INTRODUCTION

Minimalist platforms are characterized by low cost and system

simplicity [1]. Bare machine computing (BMC) [2] is a novel

minimalist approach that has been used to build applications such

as Web servers [3], mail servers [4], high performance servers [5],

VoIP systems [6], IPv4-IPv6 gateways [7] and SQLite databases

[8] without using any OS or kernel. Bare applications run on

ordinary desktop hardware without using a hard disk (i.e., on a

bare PC). The main advantages of BMC applications are the

elimination of both OS overhead and OS-related vulnerabilities.

BMC applications are also easier to analyze for security

vulnerabilities because of their simple design and small footprint.

Ethernet NIC bonding [9] combines network interfaces on a

device. It is widely used in practice, for a variety of reasons

including load balancing and reliability. Ethernet bonding on Web

servers typically requires some form of OS or kernel support and

has not been previously done on a bare PC. We implement a novel

form of Ethernet bonding using dual NICs with a bare PC Web

server application. In the bare PC Ethernet bonding

implementation, both NICs can send but only one NIC can

receive. The approach can be extended to work with more than

two NICs and a variety of send/receive NIC configurations. In

future, NIC bonding can be used with bare PC Web servers

running on multi-core architectures and with other high

performance or high security BMC applications.

To illustrate the dual NIC split send-receive approach in a

BMC application, consider the intertwined HTTP/TCP protocols

as implemented in a bare PC Web server with a single NIC [3].

Protocol intertwining is inherent in BMC applications due to their

underlying task design discussed later. While a bare Web server

can use TLS for security, in this paper (for reasons of simplicity),

SAC’18, April 9-13, 2018, Pau, France F. Almansour et al.

2

we only discuss HTTP connections to port 80. Fig. 1 shows the

intertwined protocol messages exchanged by client and server due

to a single request from a client, which can be any conventional

OS-based Web browser. A bare PC NIC driver consists of send

and receive data structures as shown in Fig. 2. In the driver, the

send path using the transcript descriptor list (TDL) and the receive

path using the receive descriptor list (RDL) are separate and

parallel paths in the hardware. Send and receive controls such as

enable and disable, and associated configuration parameters are

also different in the driver. In essence in the NIC and also in the

driver, send and receive paths can be treated as two separate

entities.

In the bare Web server single NIC implementation shown in

Fig. 3, send and receive paths are also different. When a packet is

received in RDL, its Ethernet header is removed and IP

processing is done on the packet as usual. After the IP header is

removed, TCP and HTTP processing are done in an intertwined

manner on the packet. For a given client’s IP address and port, a

unique entry for the request is created in the TCP table. This

unique entry is kept in the table until the completion of the client’s

request.

A client HTTP Get or Post requires a server response, which

consists of the response data prefixed with an HTTP header. The

response is inserted into one or more packets with TCP, IP and

Ethernet headers. These packets are inserted into the TDL. The

Ethernet NIC sends packets from the TDL and receives packets

from the RDL. All of these steps are part of the Web server

application since there is no OS or kernel in a BMC system. The

monolithic executable, unique tasking (discussed later), and

integration of all protocol code with the application facilitates the

separation of send and receive paths in the design of the bare PC

Web server. In effect, send and receive paths are naturally disjoint

in a bare Web server at the task level, NIC level, driver level,

protocol level and application level. This enables Ethernet

bonding to be implemented without any OS or kernel support.

The rest of the paper is organized as follows. Section 2

discusses related work. Section 3 describes the dual NIC

architecture, design and implementation. Section 4 gives

experimental results and Section 5 concludes the paper.

2 RELATED WORK

The growing popularity of virtualized OSs and containers have

resulted in the recent introduction of several so-called minimalist

OSs [10], including the Docker platform, Ubuntu Core, Core OS,

and Atomic Host. Minimalist OSs may focus on protecting against

failures and attacks, target embedded systems, IoT and the cloud,

or be designed for speed. There are also many lightweight Linux

distributions that run on older x86 hardware. One of the earliest

attempts to provide a small kernel with minimal functionality for

applications is Exokernel [11]. Subsequently, lightweight OSs

supporting high-performance applications were introduced as in

[12]. In contrast, BMC systems are non-virtual and non-

embedded. They enable applications to run without any OS or

kernel support by providing direct interfaces to the hardware [13].

Ethernet bonding on Linux systems [9] has numerous driver

options and allows bonding configurations to be based on

requirements of high availability or maximum throughput for

single and multiple switches. The performance of Ethernet

bonding is studied in [14], and it is found that active backup mode

has low switch-over time in case of failure, while round robin

mode with dual NICs almost doubles the throughput achieved

without bonding. In Oracle VM, network bonding is designed

primarily for redundancy although increased throughput

requirements are also supported [15].

Figure 1: Integrated HTTP/TCP protocol.

Figure 2: Transmit and receive descriptors.

Ethernet Bonding on a Bare PC Web Server with Dual NICs SAC’18, April 9-13, 2018, Pau, France

 3

3 DUAL NIC BARE PC WEB SERVER

3.1 Architecture

As noted earlier, it is natural to split send and receive logic in a

BMC application from the NIC hardware level to the application

level. We modify the single NIC bare PC Web server enabling it

to use dual NIC Ethernet bonding by splitting the send and receive

paths. Fig. 4 shows the bare PC Web server architecture for

Ethernet bonding with dual NICs. Many clients can connect to the

Web server where each client request is identified as usual by the

unique IP address and port number combination. The two NICs

are associated with respective IP addresses IP1 and IP2, and MAC

addresses MAC1 and MAC2. The server uses only one MAC

address to receive packets, which is the server’s MAC (MAC1)

for the receive NIC (R-NIC). All packets from the clients are thus

received at the server on MAC1. ARP broadcasts are used to

ensure that the default gateway or any local clients only send

packets to the server using MAC1. No switch configuration is

needed. The server can use either NIC for sending data based on

load balancing requirements.

When a BMC system is booted, it goes to the MAIN task,

which runs continually whenever no other task is running. This is

different from the way an OS/kernel-based system works: in a

bare PC, tasks are created and used as needed by a given BMC

application suite. When a packet arrives, the RCV task is run to

read a packet from the RDL and it continues running while

Ethernet, IP and TCP processing is done on the packet until the

state is updated in the TCP table. When an HTTP Get or Post

command is received, a unique HTTP task is created to process

the client request. A connection may be alive for many GET or

POST requests. However, a unique HTTP task handles a given

request.

The relation between the MAIN, RCV and HTTP tasks used in

the bare Web server is shown in Fig. 5. The RCV and HTTP tasks

process client packets that are received or that need to be sent. In

an OS-less BMC system, tasks run to completion and only

suspend themselves when waiting for an event. Suspended tasks

are resumed when they are ready to run. Notice that the bare

server has an inherently parallel design with respect to client

requests.

3.2 Design

In a dual NIC system, there are many ways to send and receive

packets using the NICs. In Fig. 1, the server receives SYN, SYN-

ACK-ACK, GET, DATA-ACK and FIN-ACK from the client;

and sends SYN-ACK, GET-ACK, Data and FIN-ACK-ACK to

the client. The HTTP and TCP protocols can be split based on

send and receive interfaces. Also, for HTTP requests, packets

received by the server except for GET are small (about 60 bytes),

while data packets sent to the client are large. Thus, when dual

NICs are used for send and receive separately, the load is not

balanced with respect to the two cards.

One approach with dual NICs is to dedicate one NIC for

sending and one NIC for receiving. Sent packets use IP2 and

MAC2 but the send NIC does not receive any data from a client.

Similarly, a receive NIC does not send any data. This simplex

connection of dual NICs may have potential security benefits due

to isolation of send and receive paths. We do not investigate such

benefits in this paper.

Another alternative is to receive on one card and send on two

cards to load balance the data. When two cards are used for

sending, small packets can be sent on one card and large data

packets on the other. The decision of which card to use for

sending a given packet can be made based on load balancing

requirements.

We investigated a variety of strategies for load balancing NICs

based on the novel bare PC Web server design. As shown in

previous studies using OS-based systems, simple load balancing

based on the data alone is not sufficient to achieve optimal

performance in a dual NIC architecture. It is also known that

using two different cards for the same request does not improve

any performance, as the client has to handle two NICs

simultaneously (data level parallelism). In order to achieve

optimal dual NIC performance using the bare PC Web server

design, we exploited the parallelism in the client requests, where

each request can be treated as being independent of the others

(request level parallelism). Although not investigated in this

paper, the single core dual NIC design can be extended to multi-

core level parallelism using essentially the same approach.

Figure 3: Single NIC bare PC Web server flow.

3.3 Implementation

Implementation of Ethernet bonding using dual NICs in a bare

PC Web server for optimal performance requires that the NIC for

sending data to clients be dynamically adapted based on the load.

To simplify the design, we used two identical Ethernet NICs. One

NIC is enabled for receive and send, and the other NIC is only

enabled for sending data. This strategy is simple to implement in

the bare PC Web server as the NIC driver code is part of an

application program.

In the bare PC Web server design, two instances of the

Ethernet object are created to interface with the two NIC drivers.

When a SYN packet arrives from a client, the load balancing

strategy is implemented based on request level parallelism. In

addition, for a given client, a dedicated NIC will send the data and

all other packets on the connection. For example, if there are two

SAC’18, April 9-13, 2018, Pau, France F. Almansour et al.

4

clients sending requests, client 1 will get data from NIC 1 and

client 2 from NIC 2. If a third client comes at the same time, half

of its responses are sent using NIC 1 and the other half using NIC

2. If there are n simultaneous requests then n/2 use NIC 1 and

remainder use NIC 2. This strategy is easily implemented in the

bare PC application itself (without any OS or kernel involvement).

When a TCP SYN packet arrives, a send-id (1 or 2) is set in

the TCP table to handle sending data using NIC 1 or NIC 2

respectively. A new function is written to send data based on the

send-id. Minor modifications in the code enabled us to extend the

existing single NIC Web server to a dual NIC architecture with

load balancing implemented in the application itself. As the client

requests are parallel, the two NICs and the two HTTP tasks run in

parallel to provide a parallel path from the NIC hardware to the

application. With a single core, this optimizes the use of dual

NICs.

The Web server and the NIC driver are implemented using

C/C++. Intel gigabit NICs are used to implement the Web server

system. About 20 lines of assembly code are used in the NIC

driver, which required two functions to read and write to the host

controller configuration registers.

To further understand the details, recall that bare PC

applications include the necessary network protocols and directly

use the Ethernet interface without going through intermediate

layers. This optimization avoids the need for buffer copying and

also reduces procedure call and other overhead. An API is

provided for bare PC applications to access the Ethernet interface

as there in no centralized OS or kernel in the system.

The code segment in Fig. 6 illustrates how the TCP level code

in a bare PC Web server application using an Intel gigabit NIC

interacts with the Ethernet interface. This approach is not the

same as offloading TCP functions to a NIC in an OS-based

system. In the BMC system, calls are made directly by the TCP

code (which is intertwined with code for HTTP and the bare PC

Web server application) to methods that format the TCP, IP, and

Ethernet headers before sending the packet. These calls are made

within a single thread of execution avoiding the need for

switching between layers. The Ethernet buffers are accessed

directly and the send buffer address is formed in step 1.

Formatting headers and aligning the data is done in steps 2

through 7. In the above code, EO is EO1 for NIC 1 and EO2 for

NIC 2 based on send-id 1 or 2 respectively. These seven steps

enable the bare PC Web server application to send a packet using

an Ethernet NIC without any OS or kernel overhead.

Figure 4: Dual NIC Web server architecture.

Figure 5: Task state transition diagram.

4 PERFORMANCE MEASUREMENTS

This section gives performance measurements for single and

dual Intel external gigabit NICs [16] installed on a bare PC Web

server running on an Optiplex 960 desktop machine. The HTTP

stress tool http_load [17] is used to send requests and collect

measurement data. The experiments are used to study bare PC

Web server performance differences between single and dual

NICs for different values of the load parameters. The requested

file sizes vary from 4K to 1MB. Connection time and initial

response times are used as performance metrics.

Ethernet Bonding on a Bare PC Web Server with Dual NICs SAC’18, April 9-13, 2018, Pau, France

 5

Figure 6: Application directly accessing Ethernet buffers.

Figure 7: Each client has a dedicated send NIC.

4.1 Load Balancing Strategy

Two NICs can be used in a variety of ways to send and receive

packets. We consider load balancing for dual NICs with split send

and receive paths, where one NIC is dedicated for receiving

packets and either NIC is able to send packets to a client.

Several strategies can be easily implemented to choose the

NIC for sending packets. For example, packets can be sent by

randomly picking the NIC to use for a given client, or

alternatively, the NIC to send can be chosen based on throughput,

packet size, connection time and/or response time. We consider a

simple strategy, where a given NIC is dedicated for sending data

to a given client as shown in Fig. 7. For an even number of

clients, both NICs send data by sharing the number of requests

equally. For an odd number of clients, the server uses NIC 1 for

half of the responses to send data and NIC 2 for the other half.

Figure 8: Connection time (two clients).

Figure 9: Response time (two clients).

4.2 Two Clients

Fig. 8 shows connection times for a single NIC (1 NIC) and

dual NICs: (1 send, 1 receive) or (2 send, 1 receive). Connection

time with one NIC increases as the file size increases, which is

expected as it takes more time to send larger files. When dual

NICs are used, one for sending only and one for receiving only,

the performance is very close to one NIC. This is because the

receive card is not as heavily loaded as the send card. Also,

received packets associated with GET requests are small (about

SAC’18, April 9-13, 2018, Pau, France F. Almansour et al.

6

60 bytes each except for the GET request itself). Since the two

NICs are not sharing the load equally, there is no significant

performance improvement.

When two NICs are used, where both can send data, the lowest

connection time is seen because the NICs are now parallelized

with respect to clients (each NIC serves one individual client). For

4K and 1 MB file sizes, we used respective rates of 1000 and 30

requests per second for each client. For large files, the request rate

is limited by buffers allocated at the server. The maximum

improvement in connection time is about 44% for a 1 MB file. We

do not see any connection time improvement for small file sizes

as the NICs are not load balanced. As shown in Fig. 9, the

improvement in initial response time for a 1 MB file is 29%.

Figure 10: Connection time (three clients).

Figure 11: Response time (three clients).

4.3 Three Clients

Fig. 10 shows connection times for three clients. Client 1 is

served by NIC 1 and Client 2 is served by NIC 2. Half of Client

3’s requests are served by NIC 1 and the other half are served by

NIC 2. For a 1 MB file, the connection time improvement is 42%,

and the initial response time improvement (shown in Fig. 11) is

21%.

5 CONCLUSION

We described the architecture, design and implementation of a

dual NIC Web server with split send-receive paths that runs on a

bare PC. Performance measurements were given to illustrate the

improvement in connection and initial response times as the load

is increased. Associating a given client’s request with a given NIC

for sending data was found in our studies to be optimal for load

balancing with dual NICs in a bare PC Web server. Other

strategies for load balancing multiple NICs can be investigated in

the future.

The dual NIC approach is shown to exploit the natural

partition on send and receive logic at the NIC level, Ethernet

driver level and the Web server implementation level. Isolating

send and receive paths provides simplicity and better

performance. Although not investigated here, multiple NICs can

be used to completely separate the send and receive channels for

security purposes. This approach for Ethernet bonding on servers

without any OS or kernel support extends to multicore systems.

With a single NIC for communication (as in an ordinary desktop),

the multi-core processors share memory and the NIC. When dual

or multiple NICs are used, they can be allocated to cores thus

improving performance. It is also possible to integrate NICs with

multicores on the same chip.

REFERENCES
[1] S. Soumya, R. Guerin and K. Hosanagar, “Functionality-rich vs. Minimalist

Platforms: A Two-sided Market Analysis”, ACM Computer Communication

Review, vol. 41, no. 5, Sept. 2011, pp. 36-43.

[2] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed, “DOSC: dispersed

operating system computing”, 20th Annual ACM Conference on Object

Oriented Programming, Systems, Languages, and Applications (OOPSLA),

2005, pp. 55-61.

[3] L. He, R. K. Karne, and A. L. Wijesinha, “The design and performance of a

bare PC Web server”, International Journal of Computers and Their

Applications, IJCA, Vol. 15, No. 2, June 2008, pp. 100-112.

[4] G. H. Ford, R. K. Karne, A. L. Wijesinha, and P. Appiah-Kubi, “The design

and implementation of a bare PC email server”, 33rd Annual IEEE

International Computer Software and Applications Conference (COMPSAC),

2009, pp. 480-485.

[5] B. Rawal, R. K. Karne, and A. L. Wijesinha. “Mini Web server clusters for

HTTP request splitting,” IEEE Conference on High Performance, Computing

and Communications (HPCC), 2011, pp. 94-100.

[6] R. Yasinovskyy, A. Alexander, A. L. Wijesinha, and R. K. Karne, “Bare PC

SIP user agent implementation and performance for secure VoIP”, International

Journal on Advances in Telecommunications, vol 5 no 3 & 4, 2012, pp. 111-

119.

[7] A. Tsetse, A. Wijesinha, R. Karne, A. Loukili and P. Appiah-Kubi, “An

experimental evaluation of IP4-IPv6 IVI translation”, ACM SIGAPP Applied

Computing Review, March 2013, vol. 13, no. 1, pp. 19-27.

[8] W. Thompson, R. Karne, A. Wijesinha, and H. Chang, “Interoperable SQLite

for a bare PC“, Beyond Databases, Architectures and Sturctures Conference

(BDAS), 2017, pp. 177-188.

[9] Linux Ethernet bonding driver HOWTO,

https://www.kernel.org/doc/Documentation/networking/bonding.txt, accessed:

Sep 2017.

[10] P. Salvatore, “The new minimalist operating systems”,

https://blog.docker.com/2015/02/the-new-minimalist-operating-systems/,

accessed: Sep 2017.

[11] D. R. Engler and M.F. Kaashoek, “Exterminate all operating system

abstractions”, Fifth Workshop on Hot Topics in Operating Systems, USENIX,

1995, p. 78.

[12] J. Lange, et. al, “Palacios and Kitten: new high performance operating systems

for scalable virtualized and native supercomputing,” 24th IEEE International

Ethernet Bonding on a Bare PC Web Server with Dual NICs SAC’18, April 9-13, 2018, Pau, France

 7

Parallel and Distributed Processing Symposium, 2010.

[13] R.K. Karne, K. V. Jaganathan, and T. Ahmed, “How to run C++ applications

on a bare PC,” 6th ACIS International Conference on Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing

(SNPD), 2005, pp. 50-55.

[14] H. Tran-Viet, et. al, “Experimental study on the performance of Linux Ethernet

bonding”, Inernational Conference on Testbeds and Resaerch Infrastructures:

Development of Networks and Communities (TridentCom), 2014, pp. 307-317.

[15] Network Bonding, https://docs.oracle.com/cd/E27300_01/E27309/html/vmusg-

network-bonding.html, accessed: Sep 2017.

[16] Intel; PCI/PCI-X Family of Gigabit Ethernet Controllers Software Developer’s

Manual.

[17] http_load-multiprocessing http test client,

http://www.acme.com/software/http_load/, accessed: Sep 2017.

