
A Lean USB File System for Bare Machine Applications

 Songjie Liang Ramesh K. Karne Alexander L. Wijesinha

 Department of Computer and Department of Computer and Department of Computer and

 Information Sciences Information Sciences Information Sciences

 Towson University Towson University Towson University

 Towson, Maryland, USA Towson, Maryland, USA Towson, Maryland, USA

 jeffliang1@gmail.com rkarne@towson.edu awijesinha@towson.edu

Abstract

 USB file management systems for mass storage are

supported on many platforms and commonly used today by

a variety of applications. These file systems vary depending

upon the underlying operating system and environment. We

consider the design of a USB file system that is

independent of any operating system or application

environment. Specifically, we describe the design and

development of a lean USB file system for supporting bare

PC applications that run with no OS or kernel support of

any kind, and give details of its architecture, design, and

implementation. Our design leverages the design

characteristics and inherent features of USB mass storage.

Bare machine USB file management systems enable

computer applications to access mass storage at run-time

without the operating system and environmental

dependencies of conventional file management systems.

 Keywords – File System, FAT32, USB, Bare Machine

Computing, Application Object.

1 INTRODUCTION

 File systems provide higher level abstractions for use in

building computer applications. They are typically closely

tied to the underlying operating system (OS). File systems

are complex and depend upon mass storage technology and

the services provided by the OS. We address the question

of how to make the popular USB file system independent

of its OS environment. Such a file system can then be used

by computer applications that run on a bare machine with

no underlying OS or kernel. It can also serve as a possible

first step towards developing customized file systems for

supporting secure applications that cannot be readily

exploited by conventional attacks. Our approach takes

advantage of some inherent features of a USB system such

as its similarity to a memory system enabling it to be

addressed as a linear block device. However, designing

and developing such file systems for a bare machine is

different from USB mass storage management for an

embedded system, which requires some form of embedded

kernel or lean OS.

 We provide details of a lean USB file system for bare

machines. We discuss several related architectural issues

and then describe the design of the bare file system,

including disk map, root directory, sequencing operations,

tasks, and user interface. The file system runs on an Intel

x86 based bare PC. For comparison purposes, essentially

the same system, but with minimal system calls, was

implemented on a Linux OS.

 The rest of the paper is organized as follows. Section II

considers related work, and Section III describes the lean

file management system. Section IV discusses architecture

and issues, Section V narrates some design details, Section

VI shows implementation, Section VII outlines novel

features of our approach, Section VIII deals with functional

operation and testing, and Section IX presents the

conclusion.

2 RELATED WORK

 We implemented a lean file system on a bare PC with no

kernel or OS running on the machine. Bare PC applications

[6] use the Bare Machine Computing (BMC) or dispersed

OS computing paradigm [7], wherein self-supporting

applications run on a bare PC. The application is written in

C++ and runs as an application object (AO) [7] by using its

own interfaces to the hardware [8] and device drivers.

Using the BMC paradigm, we have built a variety of

applications including Web servers, email servers, SIP

servers and VoIP clients. For example, bare Web servers

and clusters are described in [6,13].

 While the BMC concept resembles approaches that

reduce OS overhead and/or use lean kernels such as

Exokernel [3], IO-Lite [11], Palacios and Kitten [9], there

are significant differences such as the lack of centralized

code in the form of a kernel to manage system resources.

Recently, there has been considerable interest to use flash

memory in mass storage devices. The Umbrella file system

[5] demonstrates a versatile file system that uses a hard disk

and flash memory. This system also illustrates how to

integrate two different types of storage devices. Other

research has dealt with adding cache systems at a driver

level to gain performance improvements [1]. The design

and implementation of a FAT32 file system for high

mailto:jeffliang1@gmail.com
mailto:rkarne@towson.edu
mailto:awijesinha@towson.edu

performance clusters is discussed in [2]. As the capacity of

flash drives continues to increase and their cost is reducing,

they are expected to become an important component of

future mass storage systems.

3 FILE MANAGEMENT SYSTEM

 A lean file management system is designed and

implemented to demonstrate our approach. We have built

two functionally equivalent compatible file systems: one

runs on the Linux OS and the other one runs on a bare PC.

The code that runs on a Linux system uses minimal system

calls. The code that runs on a bare PC uses no OS or kernel.

In the bare file system, there are minimal file commands

including create a directory, delete a directory, list a

directory, create a file, delete a file, open a file, close a file,

read a file, write to a file, and copy a file. These file

commands are implemented in C/C++. The commands

were tested on both the bare PC and Linux systems.

 The file system is based on FAT32 [10]. Fig.1 shows the

FAT32 disk map. In the bare file system, the master boot

record (MBR) contains the bare boot code that enables the

PC to boot from the USB. The USB needs to be properly

partitioned and made bootable by installing the appropriate

configuration on the device. A Linux based “parted” tool

is used to install the appropriate partition on the USB

device. The disk map including the contents in the MBR

and the reserved sectors are different depending on the

USB vendor. Thus, the bare file system needs to consider

such variations when designing the bare file system

application. In Fig.1, FAT1 is the file allocation table entry

for the device, FAT2 is the backup for FAT1, the root

directory structure has the 32 byte file records for each file

entry, and the rest of the device is used to store data files.

The bare file system designer needs to know details of the

disk map and its individual records and fields.

 In addition, bare machine applications also contain their

own bare USB device driver. The bare USB driver is

written based on the USB specification [12], enhancer host

controller interface specification [4], and universal serial

bus mass storage class specification [15]. The details of the

bare USB driver are not described in this paper since our

focus here is on the file management system. However, it is

an essential part of the application object (AO) that

contains the file system application.

 Our lean USB file system can be used on a bare PC

environment without any OS or kernel, and it is also usable

in a Microsoft Windows environment. The version that

runs on Linux can also be run on Windows. Using FAT32

as the basis for the file system enables it to be compatible

with Microsoft Windows and other OSs. We now discuss

the architecture, design and implementation of the bare file

system.

4 ARCHITECTURE

 The architecture of a file system that can run on a bare

PC and is also compatible with the Microsoft Windows file

system is based on the bare machine computing paradigm.

This paradigm requires a unique style of programming that

requires the programmer to be aware that a bare application

must run without an OS/kernel or environment support. In

this approach, an end user application is modeled as a

single AO. It may consist of a set of applications a user

may want to use at a given point in time. For example, a

user may use a file system and upload a file through a

Browser and also edit a file to cut and paste some data. All

of the above tasks can be modeled as a single self

controlled AO. AO is self-controlled, self-executed and

self-managed. As there is no OS or kernel in the system, an

AO programmer controls the operating environment

including: boot, loader, static and dynamic memory, thread

or process management, interrupts and I/O control. In

particular, there is a single AO that implements the file

management system. However, when this AO executes, it

runs as a single thread of execution with no interrupts. The

file management system consists of direct hardware

interfaces to the USB driver, which are known as the bare

hardware API. This hardware API is accessible to the AO

programmer to design and implement the necessary file

functions for a given application.

 Figure 1. Bare File System Disk Map

 For example in case of a bare Web server, files are

stored on the USB and accessed using the bare hardware

API. The Web server AO object can create a hash table

with file names as key attributes and maintain file indexes

through this hashing mechanism. The file management

system hardware API described in this paper can thus be

used by an AO programmer to support a bare PC

application such as a bare Web server.

 The file management system architecture is based on the

disk map shown in Fig. 1 and the FAT32 specification and

hardware API for the USB. The bare USB driver provides

this hardware API to access the device directly within its

C/C++ code. Several architectural issues that arise when

building a bare file management system are described

below.

4.1 Formatting

 There are many file formats such as FAT16, FAT32 and

NTFS. Each one provides different formats and requires a

different organization with its own structures. Some OS-

based file systems support many formats. The bare file

system supports only the FAT32 format. Support of this

single format enables the design and implementation of the

bare file system to be simpler. Furthermore, it is also easier

to build and demonstrate a working bare file system based

on FAT32.

4.2 Boot Record

 The boot record on the USB (0th sector) provides a

variety of parameters that are needed to identify the file

structure and its layout on the USB. In a bare PC without

any OS or kernel, it is necessary to deal with variations in

the boot record parameters. We followed the Microsoft

Windows boot format in order to address this issue. Some

parameters such as bytes per sector, reserved sectors,

number of fats, total sectors, and fat size have to be read

from the boot sector to locate the disk map as shown in

Fig.1.

4.3 USB Vendors and Types

 Each USB, depending on its size, version and vendor,

provides a variety of options and storage configurations.

The bare file system generalizes these options by

identifying key parameters that are essential to the

operation of mass storage devices. These parameters have

to be read at boot time when a USB device is used for

booting. Some BIOS (basic input output system) calls are

used to identify the vendor and device type and its address.

4.4 USB Standard

 The USB standard 2.0 is used to implement the bare file

system and driver. This standard is very detailed (about

1000 pages) and continues to be updated. While the bare

device driver is compatible with the standard, it only

implements essential features in order to reduce

complexity.

4.5 SCSI Commands

 There are numerous small computer system interface

(SCSI) commands that are provided in the standard. Each

USB vendor implements only a subset of these commands.

We have chosen a minimal subset of commands for

implementation. Some of the commands implemented in

our driver include: Test Unit Ready, Sense, Read (10),

Write (10). The device driver internally implements these

commands via USB commands. The commands are

processed by the host controller in the bare machine.

4.6 USB Driver

 Most USB drivers are developed for a given operating

system or kernel. We have built a bare USB driver from

scratch to make it independent of any OS or kernel

environments.

4.7 USB Plug-and-Play

 The plug-and-play features of the USB architecture

require initialization and configuration/re-configuration of

the USB every time it is inserted or removed. This requires

special thread handling within the bare file management

system.

4.8 USB Monitoring

 USB operations require monitoring and polling of the

USB with the Test Unit Ready command. The designer

needs to decide how often this command needs to be done

(it does not appear to be specified in the standard). We

invoke this command before we do any read or write

operation.

4.9 USB Operation and Sequencing

 As the USB standard is complex and there are a large

number of variables in the USB specification, it is

challenging to build a bare USB driver and file system that

runs without any OS or kernel. We used a Beagle Analyzer

[14] and reverse-engineered the driver using a Windows

analyzer trace.

4.10 Scalability

 Several design issues arise when building a file system

that can work with both small and large size USBs. To

address varying USB capacities, it is necessary to make

appropriate adjustments to cluster sizes and block sizes,

and to the layout of the disk map. The current bare file

system has only been tested with 2 GB USBs. This design

needs to be enhanced in future to address the issue of

scalability.

4.11 Enhanced FAT32 Requirements

 The FAT32 standard allows large file names, grouping

capabilities and clustered file systems. We have designed

the lean bare system with only a minimal set of features.

For example, the directory entry for a given file is limited

to 32 bytes. The extension of a directory entry is not

possible at present.

Figure 2. MBR/Root Directory Structure

5 DESIGN

 The lean USB file management system for bare

machines supports a given bare machine application. The

key design elements of the system are discussed below.

5.1 Disk Map

 Fig. 1 shows an example disk map layout for a USB of

size 2 GB. During the initialization, a boot sector is read

and its parameters as shown in Fig. 2a are parsed. Based on

those parameter values, the entry points for FAT1, FAT2,

root directory and data are calculated as shown below.

FAT1Entry = Number of Reserved Sectors

FAT2Entry = FAT1Entry + Sectors per FAT

DirectoryDataFileEntry = FAT1Entry +

 Number of FATs * Sectors per FAT

 Once these basic values are calculated, the starting point

for user files can be computed. For each USB, the disk map

layout may be different. Also, the disk map must be

updated whenever the file system gets updated during USB

operation. The master boot record contains the parameters

needed to compute the disk map.

5.2 Root Directory

 The root directory structure consists of a 32-byte data

structure for each file resident on the mass storage USB

device. When the size of the file system increases, it may

consist of several linked data structures. Fig. 2b shows the

structure of a root directory and its fields. Many of these

fields require dynamic updates during operation. In this

case, caching techniques are needed to improve

performance.

Figure 3. Control and operations

5.3 Plug-and-play

 The plug-and-play nature of the USB mass storage

device requires that it have special handling capabilities.

For instance, when the USB device is plugged, it needs to

be immediately detected, initialized, configured and setup

for operation. Similarly, when the device is detached, it

needs to be disconnected and appropriate store-back

techniques are needed.

5.4 Control

 Fig. 3 shows the operation sequence to control a USB

device. Every time a USB is plugged-in, numerous

descriptors are read and their relevant information is stored

by the system. These descriptors such as device,

configuration, interface and endpoint are essential USB

entities for controlling the device. The mass storage USB

device also has the characteristics of a bulk-transfer device

[15]. For example, bulk transfer devices use IN and OUT

endpoints to communicate between the driver and the

controller. The bulk transfer uses SCSI commands that are

encapsulated in USB commands as specified in [15].

5.5 USB Operations

 There are many USB low-level device operations

described in the standard [12]. Some operations such as set

address, clear feature, test unit ready, sense, read, and write

are implemented in the driver. Such operations are invoked

using high-level calls from the file system. The mass

storage class document [15] specifies internal device

operation details that are needed to design a USB driver.

However, designing a bare USB driver is different from

designing a conventional driver since it has to work as part

of a bare application that runs with no OS support.

5.6 Bare PC System

 Previous work has dealt with the design and

implementation of bare PC applications and systems

including [6, 7, 8, 13]. The lean USB bare file management

system can be integrated with many bare PC applications.

Since the bare file system is independent of any

conventional OS or kernel, it is designed to be part of the

bare PC application that it supports. For example as noted

previously, a bare PC Web server can have its own file

system as part of the server application code that runs in

user mode. In essence, a given bare application is

intertwined with the bare file system itself i.e., there is no

special component that implements a bare file system

independently of its application.

5.7 Tasks

 Bare PC systems have a task structure that determines

how execution of a bare application is managed. This task

structure is also part of the bare application program. The

present file system includes two types of tasks: the Main

task and USB file tasks. The Main task, which is present in

all bare applications, runs continually whenever no other

task is running. It gives control to the USB file task as

needed, and the latter returns control to the Main task when

a given operation is complete. In a system with n USB

ports, there will be n USB tasks i.e., each port has its own

task to manage its operation. The Main task also detects

the plug-and-play actions of each port. The simplicity of

the task structure enables it to be easily customized for a

given application. The bare PC application programmer

controls execution flow and task management from within

the application itself.

5.8 Bare PC USB Driver

 The bare PC USB driver implements low-level

operations as noted in item 5 above. We do not discuss

details of driver design and implementation since they are

not within the scope of this paper.

5.9 User API

 File system commands implemented in our system are

mentioned in Section 3. Commands such as Open(), Read()

and Write() use low-level USB driver commands such as

Test Unit Ready(), ReadOp(), and WriteOp(). These USB

driver commands can also be directly accessed by bare

application programmers to build their own file

management applications. This provides a complete control

of file system and USB driver control to an AO

programmer. All file and driver commands run in user

mode. These commands can be easily adapted to work with

other pervasive USB devices.

5.10 Integrated application

 As noted earlier, each bare PC application is a single

entity that integrates all of its components within the

application itself. Since the bare file system is also

integrated into a given application, control of the file

system all the way down to low-level USB commands is

completely controlled by the code written by the bare PC

application programmer.

6 IMPLEMENTION

 The implementation of the lean bare file management

system is done using C/C++. Due to the simplicity of the

system, the code size is very small. Initially, the code was

written for and tested in a Linux environment. However,

this code does not use the existing Linux file system. The

same code was then modified enabling it to run on a bare

PC by removing appropriate system calls and OS-related

constructs. In the bare PC code, a direct hardware API is

substituted to make it run on it. The Linux and bare systems

were validated and used for testing as described in the next

section. State transition diagrams were used to implement

USB operations and their sequencing. The task structure

that runs in the bare PC file system is similar to that used

for bare Web servers [6], and runs on any Intel-based CPU

that is IA32 compatible. It does not use a hard disk, but

uses the BIOS to boot the system. The file system, boot

code and the application are contained on the same USB.

A bootable USB along with its application is generated by a

special tool designed for bare PC applications.

7 NOVEL FEATURES

 Since a bare application is self-supporting, it can be

carried on a mass storage device such as a USB and run on

any bare PC or bare machine. The mass storage device

carries its own boot, loader and applications along with the

file management system. An application programmer has

total control of the application since it is independent of

any external software such as an OS or kernel i.e., the bare

system constitutes a single programming environment with

no dependencies on any other vendor or software. This

approach can be used to enhance the operation of bare

email servers and bare Web servers by integrating the bare

file system with these applications.

 The lean USB file management system proposed here

can be easily adapted for other pervasive devices including

cell phones, smartphones, and other mobile devices. It is

also possible to design a lean API for a file management

system that can be used on a variety of such devices.

8 FUNCTIONAL OPERATION AND TESTING

 The file management system was tested using the

equivalent Linux and bare PC versions. A Total Phase

(Beagle) analyzer [14] was used to capture functional traces

to validate the systems. The internal timings were also

measured to identify any basic performance issues. We

found that the performance of the lean file management

systems implemented on Linux and a bare PC are similar.

For example on Linux, an open file command takes about

25.7 milliseconds as measured using the Beagle analyzer.

Most of this time is spent in the driver and only 894

microseconds were spent in the file system. The results for

the bare PC system were not significantly different. Thus,

the efficiencies gained due to the bare PC approach were

limited by the reduced speed of the USB controller when

performing read and write operations. Since a USB mass

storage device (I/O-bound) is much slower than a CPU,

improvements in the file management systems are hard to

measure using a USB-based file management system. More

work is needed to compare these file systems using special

benchmarks over a longer period of time to evaluate the

overall system performance.

9 CONCLUSION

 We demonstrated the feasibility of building a lean USB

file management system that runs on a bare PC. We

described the architecture, design and implementation of

such a system, and performed preliminary tests using

equivalent bare and Linux-based systems. The bare USB

file system can be easily adapted to work with pervasive

USB devices. Furthermore, the lean file system can be

integrated with existing bare applications such as Web

servers and email servers. A performance comparison

between equivalent bare and Linux file systems was not

conducted since preliminary tests showed that the USB

device controllers are much slower than the CPU, and the

performance gains in bare PC file systems were limited by

the slow device controller speeds. Further studies are

needed to evaluate OS-based and bare PC USB file

systems.

10 REFERENCES

[1] Y. H. Chang, P. Y. Hsu, Y. F. Lu, and T. W. Kuo “A

Driver-Layer Caching Policy for Removable Storage

Devices”, ACM Transactions on Storage, Vol. 7, No. 1,

Article 1, June 2011, p1:1-1:23.

[2] M. Choi, H. Park, and J. Jeon, “Design and

Implementation of a FAT File System for Reduced Cluster

Switchign Overhead”, 2008 International Conference on

Multimedia and Ubiquitous Engineering.

[3] D. R. Engler and M.F. Kaashoek, “Exterminate all

operating system abstractions”, Fifth Workshop on Hot

Topics in operating Systems, USENIX, Orcas Island, WA,

May 1995, p. 78.

[4] Intel Corporation, Enhanced Host Controller Interface

Specification for Universal Serial Bus, March 2002, Rev 1,

http://www.intel.com/technology/usb/download/ehci-

r10.pdf

[5] J. A. Garrison and A. L. N. Reddy, “Umbrella File

System: Storage Management across Heterogeneous

Devices”, Vol. 5, No. 1, Article 3, March 2009, p3:1-3:24.

[6] L. He, R. K. Karne, and A. L. Wijesinha, “The Design

and Performance of a Bare PC Web Server”, International

Journal of Computers and Their Applications, IJCA, Vol.

15, No. 2, June 2008, pp. 100-112.

[7] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “DOSC:

Dispersed Operating System Computing”, OOPSLA ’05,

20th Annual ACM Conference on Object Oriented

Programming,Systems, Languages, and Applications,

Onward Track, ACM, San Diego, CA, October 2005, pp.

55-61.

[8] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to

run C++ Applications on a bare PC”, SNPD 2005,

Proceedings of NPD 2005, 6th ACIS International

Conference, IEEE, May 2005, pp. 50-55.

[9] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L.

Xia, P. Bridges, A. Gocke, S. Jaconette, M. Levenhagen, R.

Brightwell, “Palacios and Kitten: New High Performance

Operating Systems for Scalable Virtualized and Native

Supercomputing”, Proceedings of the 24th IEEE

International Parallel and Distributed Processing

Symposium (IPDPS 2010), April, 2010.

[10] Microsoft Corp, “FAT32 File System Specification”,

http://microsoft.com/whdc/system/platform/firmware/fatgn.

rnspx , 2000.

[11] V. S. Pai, P. Druschel, and Zwaenepoel. “IO-Lite: A

Unified I/O Buffering and Caching System”, ACM

Transactions on Computer Systems, Vol.18 (1), ACM, Feb.

2000, pp. 37-66.

[12] Perisoft Corp, Universal Serial Bus Specification 2.0,

http://www.perisoft.net/engineer/usb_20.pdf.

[13] B. Rawal, R. K. Karne, and A. L. Wijesinha. “Mini

Web Server Clusters for HTTP Request Splitting”, 2011,

IEEE International Conference on High Performance,

Computing and Communications, Banff, Canada, p94-100.

[14] Total Phase Inc., USB Analyzers, Beagle,

http://www.totalphase.com.

[15] Universal Serial Bus Mass Storage Class, Bulk Only

Transport, Revision 1.0, 1999, http://www.usb.org.

http://www.intel.com/technology/usb/download/ehci-r10.pdf
http://www.intel.com/technology/usb/download/ehci-r10.pdf
http://www.perisoft.net/engineer/usb_20.pdf
http://www.totalphase.com/
http://www.usb.org/

