
A Bare PC Text Based Browser

 Saleh Almutairi Ramesh K. Karne Alexander L. Wijesinha

 Department of Computer Department of Computer Department of Computer

 & Information Sciences & Information Sciences & Information Sciences

 Towson University Towson University Towson University

 Towson, Maryland, USA Towson, Maryland, USA Towson, Maryland, USA

 salmut2@students.towson.edu rkarne@towson.edu awijesinha@towson.edu

Abstract—Most Web browsers require an OS or kernel based

environment to run. In addition to being vulnerable to OS-based

attacks, such browsers implement numerous features that can

be exploited by attackers. We design and implement a text-

based browser (TBB) that runs as a bare machine computing

(BMC) application without the support of an operating system

(OS) or kernel. We first describe the TBB architecture, task

design and parser. We then demonstrate its basic functionality

by accessing sample Web sites and showing the displayed

content. Advantages of the TBB include reduced complexity,

small code size, and intrinsic security due to BMC

characteristics and the absence of an OS.

Keywords-Bare Machine Computing (BMC); bare PC; bare

PC Web browser; text based browser; Web client.

I. INTRODUCTION

Text-based browsers (TBBs) are useful in environments
where the functionality and features of a conventional Web
browser are not needed. TBBs used currently include Lynx
[1], Links [2], W3m [3] and Browsh [4]. Links also supports
graphics mode, while popular browsers such as Chrome and
Mozilla support a text-only mode. Advantages of a TBB
include enhanced performance and increased security.
However, vulnerabilities in the Lynx TBB have been found
[5]. Moreover, TBBs and Web browsers in text-only mode
typically run with the support of an operating system (OS) or
kernel, which makes them susceptible to attacks that target
OS vulnerabilities and features [6]. A TBB that does not
require an OS or kernel to run may provide an alternative to
existing browsers with both security and performance
benefits. We describe the design and architecture of a novel
TBB that runs as a bare machine computing (BMC)
application without requiring additional system software
such as an OS or a kernel.

BMC applications run on a bare machine, which is just an
ordinary laptop or desktop PC. Even if an OS or kernel is
present in the machine, it is not used by the BMC application.
In a BMC system, attackers can only exploit flaws in the
application itself since there is no OS or kernel. BMC
applications are also smaller and simpler than their OS
counterparts, making it easier to analyze the code for security
flaws and performance bottlenecks.

The bare PC TBB (referred to simply as the TBB from
now on) is a self-contained, self-managed and self-controlled
application. As with any BMC application, there is no
software running in the background other than the TBB itself,
and no permanent resident storage (such as a hard disk) is
present in the bare machine. The TBB does memory
management and uses its own API to communicate with the

underlying hardware. It also creates and manages its own
threads. All execution resides on a removable USB flash
drive, which also includes the code for booting and loading
the application. If high security is not a requirement, a USB
could also be used for storing files. The TBB uses a
customized TCP/IP stack and Ethernet NIC driver that only
implement the necessary minimal functionality.

II. SYSTEM ARCHITECTURE

The TBB system architecture differs from that of a
conventional Web browser [7] as there is no OS or kernel. In
particular, the TBB has direct control of the underlying
hardware resources via a BMC API that is customized for the
application. The TBB application may be viewed as an event
based system, where the occurrence of an event triggers
execution of the relevant parts of the code. Fig. 1 illustrates
the internals of the TBB architecture.

When the bare PC is powered up after inserting the USB
with the TBB application, the boot sector of the USB is
loaded into a boot address (0x7c00 in our prototype) using a
BIOS (basic input output system) interrupt. This boot code,
which consists of 512 bytes, has a mini-loader using interrupt
13h. The mini-loader loads an initial program called the
prcycle (protected/real-mode cycle), which enables the
system to switch between real and protected modes. The TBB
application can be customized based on an individual user’s
requirements. It is possible to authenticate the user, the USB,
and the TBB application code.

If a packet arrives, the main task (MT) gives control to the
Receive Task (RT). The RT processes the packet stored in the
Ethernet buffer after copying it to the TCP buffer and sends
a response to the server if needed. The state of each TCP
connection is stored in the TCP Table (TCB). The Web
client’s port number and server’s IP are used as a hash index
to the TCB entry.

The Interface Task (IT) provides a keyboard interface to
the TBB. The IT is started by the MT. It runs when a user
event occurs. The TCP Task (TT) implements the TCP
protocol interactions for the TBB as shown in Fig. 2. The
Web Task (WT) provides functions associated with browsing
the Web, parsing packet content, and displaying the text.
These five tasks (MT, RT, IT, TT, WT) provide the complete
functionality needed for the TBB application.

The MT and RT are single tasks whereas TT, IT and WT
are allocated for each client connection. The latter three tasks
are created as task pools and stored in their respective stacks.
When a task is needed, it is placed in the Task Circular List
(TCL) that is serviced in a first-come-first-serve (FCFS)

2019 Workshop on Computing, Networking and Communications (CNC)

978-1-5386-9223-3/19/$31.00 ©2019 IEEE 334

manner as shown in Fig. 1. The task system as described
provides the multi-processing capabilities in the TBB.

The TBB interfaces with the user via the simple menu
shown in Fig. 3. The menu enables a user to enter an IP
address for a Web site and access its content. The browser
provides multiple windows to show Web content. A desired
window can be accessed by using the UP and DOWN arrow
keys. Menu option 1 allows user to enter the link address,
option 2 provides browsing capabilities, and option 3 allows
the user to search a given web site. Other information shown
in Fig. 3 is used for debugging and monitoring purposes.

Figure 1. TBB architecture

Figure 2. TCP client/server message exchange

Figure 3. Web browser interface menu

Figure 4. Tasks

III. DESIGN

The TBB functions as a single monolithic system. Unlike
in a conventional system, the TBB application includes the
necessary system components including interfaces for directly
accessing the hardware. While some conventional
applications include system functionality in user space, a
BMC application does not have any OS or kernel modules.
We now discuss more details of the TBB design.

A. Task Interactions and TBB Control Flow

The interactions between the MT and the other tasks in
the TBB are shown in Fig. 4. The BMC paradigm requires
that when another task has no work to do, it should suspend
itself and return control back to the MT. As noted earlier,
when a TT, WT or IT task is ready to run, it is placed in a
circular list; and when it is done, it is pushed back onto its
respective stack. When these tasks are placed in the FCFS
circular list, each task/client request is considered to have the
same priority. The TBB application controls all aspects of
task creation, execution and termination.

2019 Workshop on Computing, Networking and Communications (CNC)

335

The interaction between the IT, WT and TT tasks are
shown in Fig. 5. There are no complex OS-type concurrency
control mechanisms required for a BMC application running
in a single core system. This is because each task runs a small
program thread and then returns to the MT. The IT
communicates with the WT and TT tasks using a shared
object called the Interface Object. The IT stores interface
commands and command information in this object so that
the TT and WT tasks can access the information needed to
start. There is also a cache object shared between the TT and
WT tasks. This object stores the data received from the server
in cache memory and makes it available to the WT task.

The unique TCB entry that corresponds to a client request
and maintains the state of the request is also used to provide
concurrency among the requests. The control flow of each
request is shown in Fig. 6. The control flow in the TBB
transitions through the normal TCP states (connection, data
transfer, and termination). The state of each HTTP request is
also maintained in the TCB and access to a TCB entry is
provided using a hash index as noted earlier. The TBB
interacts with the server to access the Web content. Once the
data for a given request has been collected, the TBB parses
the data and displays the results on the screen.

B. Parsing and Display

The TBB parses only the input data that is relevant. We
used state transition diagrams to simplify the parser and
discard the unnecessary information. Fig. 7 shows the design
of the parser. The design can be easily extended to add other
features such as graphics and images. The HTML tags parsed
are shown in the diagram. Notice that we only parse web page
title, printable text, and related links.

In text only mode, we use video memory to display the
text. No graphics or images are displayed in the system. The
video memory area is 4000 bytes (at 0xb8000) which is in
real memory. Each character requires 2 bytes, one for the
ASCII code and another for the color codes. The text in a
screen has 25 lines, where each line is 80 characters wide.
This requires 4000= 25*80*2 bytes in memory.

In order to have multiple screens, we used UP and DOWN
arrows (keys) as the means to move from one screen to the
next. The browser is currently limited to 100 screens (0-99),
but the design enables extension to more screens if needed.
The UP and DOWN arrow enable respectively higher or
lower screen numbers. The video memory shown in Fig. 8 is
copied to its screen location depending on the screen number.
Each screen also maintains its own cursor position and is
saved in its own screen memory. The printing functions
automatically print the text starting at the current cursor
position. When a screen is full, the current screen is
automatically saved and the next screen is displayed.

Figure 5. IT, WT and TT task interactions

Figure 6. TBB control flow

Figure 7. Parser state transition diagram

2019 Workshop on Computing, Networking and Communications (CNC)

336

Figure 8. BMC video memory

IV. IMPLEMENTATION AND USAGE

The TBB is implemented in C/C++ including the API to
the hardware. It uses an on-board Intel Gigabit Ethernet
network interface controller (NIC) and a BMC NIC driver.
The executable size for the entire TBB is 241,664 bytes. This
includes the application program and the required execution
environment code that enables the TBB application to be self-
contained, self-managed and self-controlled. A user
controlled USB drive contains the TBB executable including
its boot code, which is used to boot up a bare PC and run this
application. The TBB runs on any Intel x86 architecture
based PC or laptop. It can be extended to work with other
CPU architectures by simply developing a hardware API for
other instruction set architectures (ISAs).

To launch the TBB, the USB drive containing its
application is inserted into a PC or a laptop and the power is
turned on. Once the application boots, a mini loader in the
boot code will load a BMC menu. This menu can be used to
load the application using a BMC loader, run the TBB, or
debug the application if needed. When the TBB is running, it
is the only running application in the bare PC (nothing else
can be run unless the PC is shut down). The user menu shown
earlier in Fig. 3 is used to access the Web. The IP address of
a site is entered using menu option 1, and menu option 2 is
used to browse the site.

We accessed the Web sites listed in Table 2 using the
TBB. Fig. 9 shows the content for a sample Web site using a
conventional browser (page 0). Fig. 10 shows the same
content using the TBB in a bare PC environment (screen 0 as
shown in the top left corner). Web links for this page are
shown on each line and the title is shown on the top of the
page. Figs. 11 and 12 respectively compare display of
multiple pages in a conventional browser and the TBB (page
14/page e). The TBB shows each bullet and links on separate
lines in the bare PC screen.

TABLE I. SAMPLE WEB SITES

Figure 9. LADBS Web site in conventional browser (page 0)

Figure 10. LADBS Web site in TBB (page 0)

V. RELATED WORK

Similar approaches to the BMC paradigm include [8] and
[9] in which the OS footprint is reduced to improve
application performance. Systems with a hardened OS such
as SELinux [10] have some similarities to BMC systems. The
main difference between applications running on a minimal
OS and BMC applications is that no OS or kernel runs in the
background when a BMC application executes. BMC

2019 Workshop on Computing, Networking and Communications (CNC)

337

applications including the TBB are based on the BMC
paradigm, which originated from the dispersed operating
system concept [11]. Existing BC applications include a
Webserver [12], a TLS Webmail server [13], and an HTTP
split server [14]. A general approach to implementing BMC
applications is detailed in [15], and the development of
gigabit Ethernet BMC NIC drivers is described in [16].

Figure 11. LADBS Web site in conventional browser (page 14)

Figure 12. LADBS Web site in TBB (page e)

VI. CONCLUSION

Conventional browsers are complex and provide a variety
of features making them difficult to secure and often
degrading their performance. While OS-based TBBs can
provide better performance and enhanced security by
eliminating unnecessary features, the underlying OS or
kernel can be targeted by attackers. We presented a novel
TBB that runs on a bare PC with no OS. We described the

architecture, design and implementation of the TBB
including its task design and parser. It is possible to extend
the TBB enabling it to handle links, display images and
graphics, and resolve Web link addresses. Further studies are
needed to investigate the security and performance aspects of
the TBB.

REFERENCES

[1] Lynx Information [online] Available at: http://lynx.browser.org/
[Accessed 27 July 2018].

[2] Twibright Labs: [online] Available at:
http://www.jikos.cz/~mikulas/links// [Accessed 27 July 2018].

[3] W3m Homepage [online] Available at: http://www.w3m.org/
[Accessed 27 July 2018].

[4] Browsh. [online] Available at: https://www.brow.sh/ [Accessed 27
July 2018].

[5] Lynx Lynx: List of security vulnerabilities [online] Available
at:https://www.cvedetails.com/vulnerability-list/vendor_id-
5836/product_id-9869/Lynx-Lynx.html [Accessed 27 July 2018].

[6] M. Šilić, J. Krolo, and G. Delač, “Security vulnerabilities in modern
web browser architecture”, 33rd IEEE International Convention
(MIPRO), 2010, pp. 1240-1245.

[7] H. J. Wang, X. Fan, J. Howell, and C. Jackson, “Protection and
communication abstractions for web browsers in MashupOS”, ACM
SIGOPS Operating Systems Review, 41(6), 2007, 1-16.

[8] D. R. Engler and M.F. Kaashoek, “Exterminate all operating system
abstractions”, Fifth Workshop on Hot Topics in Operating Systems,
USENIX, 1995, p. 78.

[9] J. Lange. et. al, “Palacios and Kitten: New High Performance
Operating Systems for Scalable Virtualized and Native
Supercomputing,” 24th IEEE International Parallel and Distributed
Processing Symposium , Apr. 2010.

[10] SELinux wiki [online] Available at:

https://selinuxproject.org/page/Main_Page [Accessed July 27, 2018].

[11] R. K. Karne, K. Venkatasamy, N. Rosa, and T. Ahmed, “Dispersed
Operating System Computing (DOSC),” Object-Oriented
Programming, Systems, Languages and Applications, Onward Track
(OOPSLA) 2005.

[12] L. He, R. Karne, and A. Wijesinha, “The Design and Performance of a
Bare PC Web Server”, International Journal of Computers and their
Applications, vol. 15, June 2008, pp. 100 - 112.

[13] P. Appiah-Kubi, R. K. Karne, and A. L. Wijesinha, “A bare PC TLS
Webmail Server”, International Conference on Computing,
Networking and Communications, (ICNC), 2012.

[14] B. Rawal, R. Karne, and A. L. Wijesinha, “Splitting HTTP requests on
two servers”, 3rd Conference on Communication Systems and
Networks (COMSNETS), 2011.

[15] G. H. Khaksari, R. K. Karne and A. L. Wijesinha. A Bare Machine
Application Development Methodology, International Journal of
Computers and Their Applications (IJCA), Vol. 19, No.1, March 2012,
pp. 10-25.

[16] F. Almansour, R. K. Karne, A.L. Wijesinha, H. Alabsi and R. Almajed,
Middleware for NICs in Bare PC Applications, 26th International
Conference on Computer Communications and Networks (ICCCN),
2017.

2019 Workshop on Computing, Networking and Communications (CNC)

338

