
Middleware for NICs in Bare PC Applications

Faris Almansour, Ramesh Karne, Alexander Wijesinha, Hamdan Alabsi, and Rasha Almajed

Department of Computer and Information Sciences

Towson University

Towson, MD

Abstract—A bare PC application runs without the support of

an operating system (OS) or kernel and includes the necessary

device drivers with the application. We describe the

implementation of novel OS-independent middleware that enable

bare PC applications integrated respectively with bare Ethernet

drivers for 3COM and Intel network interface cards to use either

driver/card combination. This work provides insight into

developing middleware usable with bare PC drivers for a variety

of Ethernet cards.

Keywords—bare machine computing; bare PC; middleware;

NIC; OS-independent NIC driver

I. INTRODUCTION

Bare PC applications run on ordinary Intel Architecture 32-
bit (IA-32) compatible PCs without the support of any
operating system (OS) or kernel. Advantages of bare PC
applications include the elimination of OS/kernel overhead and
a limited attack surface: no administrative privileges, no DLLs,
and no support for scripts. A bare PC application integrates a
network interface controller/card (NIC) device driver as part of
its application code. Middleware is needed to enable two bare
PC applications integrated with their respective NIC drivers to
work with both drivers. We design and implement such
middleware for a bare PC Web server [1] integrated with a
driver for an Intel 82540EM NIC [2]; and a bare PC Webmail
server [3] integrated with a driver for a 3COM 905CX NIC [4].
We also identify features of NICs that will be useful for
designing a generic NIC architecture for bare PC applications.

II. RELATED WORK

In [5], static analysis tools are used to analyze the code of
Linux device drivers, and the interaction between drivers, the
OS, and the hardware is examined. In [6], hardware abstraction
and APIs for hardware and software interfaces are used as a
basis for developing device drivers, and a device object model
to separate OS-dependent and device-dependent driver
components is presented. The Uniform Driver Interface (UDI)
is intended for developing device drivers that are portable with
respect to platforms and OSs [7]. The Network Driver Interface
Specification (NDIS) library is supported by many Windows
versions, while the NDIS wrapper [8] enables Windows drivers
to be used with Linux.

III. DESIGN AND IMPLEMENTATION

An API is provided for bare PC applications to directly
access the Ethernet interface. The code segment in Fig. 1
illustrates how calls are made by the application to methods

that format the TCP, IP, and Ethernet headers in an outgoing
packet. These calls are made within a single thread of
execution avoiding the need for buffer copying and switching
between layers. The Ethernet buffers are accessed and the send
buffer address is formed in step 1. Formatting headers and
aligning the data is done in steps 2 through 7.

Fig. 1. Bare PC application calling the Ethernet driver.

Fig. 2. NIC access via middleware.

TPTR

SIN SOUT

DESCRIPTOR

RPTR

RIN ROUT

#0 #1 #n

#0 #1 #n

DESCRIPTOR

Fig. 3. Circular list send and receive data structures.

Fig. 2 shows four configurations/paths through the
middleware. The “0” and “1” paths are the same as each server
accessing its original driver except that access is now through
the middleware. The “2” and “3” paths require middleware
functions that allow the respective server to access the second
driver. To dynamically choose the driver and NIC to be used
by a server, a variable called “NIC_FLAG” taking values 0-3
is used. Fig. 3 shows two circular list data structures, one for
sending and one for receiving. Each list consists of
“descriptor” elements that store information needed to
communicate with the NIC. Pointers SIN/SOUT and
RIN/ROUT are used to insert and remove items from the send
and receive lists that have head pointers TPTR and RPTR. The
circular list size depends on the queue size required for sending
and receiving. Sizes of 4096 (3COM) and 20,000 (Intel) are
sufficient to buffer packets based on the data rates for the NICs
(100 Mbps for 3COM and 1 Gbps for Intel). The NIC
descriptor sizes are 32 and 16 bytes for 3COM and Intel
respectively. The middleware works at the driver interface
level and only needs details of some fields e.g., memory
address, and previous/next link pointers.

The Init() functions in the two applications are specific to
each application and perform different tasks. Applications use
NIC interfaces (functions) and global variables (static in a
class) to compute the values of other variables or data. For
example, an application uses SIN and SOUT pointers to
compute the descriptor address to access the data structure and
modify its controls. These pointers are not directly addressable
by the application as it uses the middleware, which accesses
the actual NIC driver. We address this issue by writing
getSIN(), setSIN(), getSOUT(), and setOUT() functions to
replace the SIN and SOUT variables. In general, all NIC
variable instances must be replaced with equivalent functions
to access the variables. Additionally, global variables are used
in some expressions. For example, TDLPointer may occur in
an expression E that is used to compute a value X. Then a
function getTDLPointer() is defined in the middleware that
returns the value of TDLPointer, and this function is used
instead of TDLPointer in the expression E to form a new
expression newE. Also, a new function getXNew() is defined
in the middleware to compute X using the expression newE
instead of E.

The applications instantiate the NIC interfaces using the
middleware object EtherObj (EO), which accesses the 3COM
or Intel driver objects. The existing Ethernet objects were
renamed as EthernetObjIntel and EtherObj3Com to distinguish
the drivers. The new middleware object EO is included in the
system as part of the application. This requires some changes
to the bare PC compile and link commands. The middleware
class consists of a header and a class file. The header file
consists of all function prototypes needed for the middleware,
and some constants needed for initializing data structures.
There is a separate memory map for the NIC in existing server
applications. In the middleware, a new memory area is used for
data structures. This allows an application to use the respective
Intel and 3COM memory maps for the data structures
depending on which NIC is accessed. The memory map

defines the DPD, UPD, TDL, and RDL addresses, and their
sizes. These entities are different for the 3COM and Intel
server applications and needed to be redefined. The
implementation file for this class consists of functions that call
the 3COM and Intel driver methods. The middleware code is
written in C++. The NIC middleware was tested by running the
servers on a Dell Optiplex 960 desktop.

IV. GENERIC NIC ARCHITECTURE

The key elements used to communicate with a NIC are its
data structure and controls. The device driver for a NIC
manages these descriptors and ensures that they are used
correctly. The data buffer and length fields in the transmit
descriptor are required in both NICs. The transmit status field
occupies 4 bytes in 3COM and 4 bits in Intel. Frame start, send
flag, and previous pointers are not available in Intel; and the
fields CSO, CSS and CMD are not applicable to 3COM.
Similarly, in the receive descriptor, many fields are not used, or
reserved. Also, the status and error fields are not applicable to
3COM. A generic NIC architecture could use a uniform 32-
byte descriptor for transmit and receive. It would include
common functionality for the 4-byte fields Descriptor
Command, Status, Data Buffer Pointer, Data Buffer Length,
Enable/Disable, Packet ID, Next DPD Ptr, and Next UPD Ptr.

V. CONCLUSION

We designed OS-independent NIC middleware that enables
a bare PC application integrated with one driver to use a driver
integrated with another application. We discussed a generic
NIC architecture that will serve as a first step towards unifying
NICs at the data structure and descriptor levels. The
middleware needs to be extended in the future so that it can be
used with many bare PC applications and NICs.

REFERENCES

[1] L. He, R. K. Karne, A. L. Wijesinha, and A. Emdadi, A study of bare PC
Web server performance for workloads with dynamic and static content,
11th IEEE International Conference on High Performance Computing
and Communications (HPCC), 2009, pp. 494-499.

[2] Intel; PCI/PCI-X Family of Gigabit Ethernet Controllers Software
Developer’s Manual.

[3] P. Appiah-Kubi, R. K. Karne, and A. L. Wijesinha. The design and
performance of a bare PC Webmail server, 12th IEEE International
Conference on High Performance Computing and Communications,
(HPCC), 2010, pp. 521-526.

[4] 3COM; 3C90xC NICs Technical Reference. (1999).

[5] A. Kadav and M. M. Swift, Understanding modern device drivers, 7th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2012.

[6] A. Amar, S. Joshi and D. Wallwork, Generic Driver Model,
http://www.design reuse.com/articles/a8584/generic-driver-model.html,
[Accessed: 28-Apr-2017].

[7] Uniform Driver Interface, http://www.projectudi.org/, [Accessed: 28-
Apr-2017].

[8] NDISWrapper,
http://ndiswrapper.sourceforge.net/wiki/index.php/Main_Page
[Accessed: 28-Apr-2017].

