
Migrating a Bare PC Web Server to a Multi-core Architecture

Hojin Chang, Ramesh Karne, and Alexander Wijesinha
Department of Computer and Information Sciences

Towson University
Towson, MD, US

{hchang,rkarne,awijesinha}@towson.edu

Abstract—Bare PC applications run without the support of any
OS, kernel, or embedded software. Many bare PC applications
such as Web servers, mail servers, SIP servers and VoIP clients
have been developed previously for the x86 Intel architecture.
We migrate a bare PC Web server application enabling it to
run on a 64-bit multicore desktop processor. Migration poses
many challenges as this application runs on a bare PC. The 64-
bit CPU architecture is significantly different from its 32-bit
counterpart, making migration non-trivial. First, an attempt
was made to run the existing code as is on the 64-bit processor
without using any 64-bit CPU architectural features. Second,
paging required by the 64-bit architecture was implemented.
This requires many design changes to deal with paging and
virtual memory issues since the Web server application is
based on real memory without any paging. Finally, multi-
tasked execution of the Web server on multicore is undertaken.
This phase of migration is complex due to the complexity in 64
bit architecture and its intricacies. We give technical details
underlying the migration process and present results of testing
functional operations with some preliminary data to validate
this approach.

Keywords- Bare Machine Computing, Bare PC, Intel x86,
Multi-core, 64-bit architecture, Web server.

I. INTRODUCTION
Bare Machine Computing (BMC) [1] is based on running

computer applications on a bare machine without any
resident operating system (OS). The BMC programming
paradigm differs from a conventional programming
paradigm in that the programmer manages all the necessary
system resources. This paradigm enables full control of the
system via the application software, which directly
communicates with and controls the underlying hardware.
BMC applications are written in mostly in C/C++ with some
use of assembly language (MASM, NASM or TASM) as
needed. As described in [2], one or more end-user
applications can be written as a single entity referred to as an
application object (AO) that runs on a bare machine. Existing
BMC applications include Web servers [3], mail servers [4],
SIP Servers [5] and VoIP systems [6]. BMC applications can
run as multi-threaded programs with thousands of threads
and yield high performance with high security as there is no
centralized OS or kernel, no external dependencies and no
resident mass storage.

Many low-overhead operating systems and kernels have
been developed for a vari\ety of environments. For example,
TinyOS is an OS for low-power wireless devices [7]. On the

other hand, Kitten is a lightweight high-performance OS that
can be used together with Palacios, a virtual machine
monitor for applications running in a virtualized environment
[8]. The elimination of OS abstractions was originally
proposed in [9]. In contrast, the BMC paradigm eliminates
all intermediary software providing the combined benefits of
improved performance and security.

As newer machines are based on a 64-bit processor and
multi-core, 32-bit bare PC applications need to be migrated
to the new environment. Many techniques have been
proposed for migrating applications to multi-core in an OS
environment. In [10], tools for migrating applications to
multi-core based on Windows and Linux are surveyed. The
use of components and partitions for multi-core migration of
legacy real-time systems is described in [11]. In [12], the
difficulty of migrating real-time software used in the
automotive industry to multi-core is discussed and an
approach for developing an automated tool based on static
program analysis is suggested.

Migrating bare PC code to run on the 64-bit architecture
is not the same as migrating OS-based applications. The
primary difference is the absence of any OS or other
intermediary software between bare PC applications and the
hardware. This means that a bare PC application, regardless
of whether it is 32-bit or 64-bit, has to itself manage system
resources. We describe the technical details underlying the
migration process for a 32-bit bare PC Web server. In
particular, we consider design and implementation
differences in 32-bit versus 64-bit bare PC applications with
a view towards building a tool for automating the migration
process in the future.

Figure 1. 4K Paging

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.15

216

The rest of the paper is organized as follows. Section 2
outlines some basic problems in migrating a 32-bit bare PC
application to run on 64-bit. Section 3 describes how paging
is handled, including the related architectural and design
issues. Section 4 illustrates the migration path to multicore
and related implementation issues. Section 5 gives
preliminary results to validate multicore functionality and its
operation. Section 6 discusses issues unique to migration that
are specific to bare machine computing and possible future
research. Section 7 presents the conclusion..

II. BASIC ISSUES IN MIGRATION
The original bare PC Web server application [3] was

written in Visual Studio 10 using C/C++ (32 bit) code and
some MASM (Microsoft assembler) code. It also used
TASM (Turbo assembler) and NASM (Netwide assembler)
code for startup and boot code. The server ran on a single
CPU x86 desktop (Dell Optiplex 520) with no paging, and
no hard disk. A USB flash drive is used to store the entire
application (boot, startup and application code including
data). In order to migrate the 32-bit code to run on an
x86_64-bit multicore desktop (Dell Optiplex 9010), the first
attempt was to run the original server code without changes.
Several issues were identified, some of which are discussed
below.

Static variables had incorrect values in them stored in
BSS (block started by symbol) although the BSS segment
was not used in the 32-bit code). This did not appear to cause
any problems on the 32-bit machine. Bare PC applications
use batch files to compile and link i.e. Visual Studio 10
“/bin” files are used for compilation without any use of
header files (or libraries). The problem was fixed by adding a
“/MERGE:.bss=.data” option in the link for running on 64-
bit machine. This option merges all data into a single data
section. It was also found that the 64-bit machine hangs if
dummy block braces “{….}” were used (without any
conditions preceding). This was not an issue in 32-bit; the
braces were simply removed to fix this problem. Lastly, we
note that the same C++ class was compiled in two directories
and linked, which should not be the case. Simply renaming
the class in one directory solves this problem..

III. PAGING AND SINGLE CORE
The 32-bit bare PC code has no paging i.e., the CR0

(control register 0) PG (paging) bit and CR4 (control register
4) PAE (physical address extension) bits are zeros [14]
(p.1961). As the Web server is a 32-bit application, paging
mode was enabled by setting the CR0 PG bit to 1. This
needed to be done before the Web server tasks are created.
We therefore created a paging data structure and initialized
the structure with the necessary memory before paging was
turned on. The entire Web server executable is 325KB and a
1GB of address space is used for the application including
code, data and stack. We used a 4K paging scheme and
created a data structure as shown in Figure 1. It also shows
the actual values used in the PDE (page directory entry) and
PTE (page table entry) entries. The CR3 is initialized with
0x20000000 (512MB), which is the base address of page
directory (PD). This initialization is done in the TSS (task

state segment) for the Web server application. There are
1024 entries in PD (there is only one PD in the system). Each
PD entry (PDE) points to a separate page table (PT), and
there are 1024 PTs. Each page table entry (PTE) points to a
page, where the offset is used to address the exact location in
memory. The paging is managed by the CPU, and software
only initializes the data structures. All entries were provided
in order to address up to 4GB memory.

The 32-bit server uses physical memory up to 1GB. This
memory is contiguously mapped in our paging structure, thus
avoiding page replacement overhead and page faults, i.e.
each logical page is mapped to one physical page. The 32-bit
server also uses LDT (Local Descriptor Table) in addition to
GDT (Global Descriptor Table). This causes a problem in
paging mode as it needs separate paging structures for LDT.
We addressed this problem by eliminating LDT and creating
new GDTs for paging. As the Web server uses a single
address space and there is a single AO running in the bare
PC, this paging model is efficient. However, adding paging
to the 32-bit code posed some implementation and testing
difficulties especially when the entries have wrong values or
are not initialized.

IV. MULTICORE MIGRATION
Multicore migration poses many challenges in that a bare

PC application has to deal with architectural, design and
implementation issues in addition to functional operation,
testing, and the unique bare PC programming and computing
paradigm. A bare PC Web server is a complex system that
differs significantly from its OS-based counterparts. Figure 2
shows a high level view of the bare PC Web server
architecture. There is a main task (MTSK), receive task
(RTSK) and several http tasks (HTSK). The MTSK is
always running in the system. When a packet arrives, the
RTSK runs as a single thread of execution. The RTSK
processes packets as they arrive and updates a table that
keeps track of TCP parameters and state (known as the
TCB). Each entry in the TCB maintains the status of its
corresponding client request from start to finish. A task pool

Figure 2. Current Webserver Architecture

217

is created and stored in advance in a stack to serve client
requests. When a client’s HTTP Get request arrives, an
existing task from the task pool is popped and inserted into a
circular list. When this task is complete, it is pushed back
onto the stack for reuse. The 32-bit server can run over 6000
concurrent tasks on a single core Dell Optiplex 260 [15]. The
code size is about 636 sectors, which is the entire AO needed
for the application. The server is designed strictly as a Web
server and only performs HTTP requests, which provides
protection against conventional attacks that require an OS
and other functionality:

A. BSP Flow
The Web server executable has two separate executables.

The first is prcycle.exe (PEX), which has the boot, load and
startup code. PEX loads and runs the second executable,
test.exe (TEX), which is the Web server application. The
display menu enables a user to load, run and debug programs
in addition to multi-core options. The Optiplex 9010 uses a
quadcore 64 bit processor model. These cores play different
roles in the bare PC Web server. The first core is referred to
as a boot strap processor (BSP); the other three cores are
known as application processors (AP1, AP2, and AP3).
Initially, BSP runs the boot code and loads the Web server
application executable. The BSP is automatically configured
to run by BIOS (basic in-put/output system) and APs are not
enabled at boot time. In the boot loader code, we set a CPU
flag (0x01) at location 0x7c00 (boot address) to identity BSP
as a boot processor for the Web server system. When BSP
recognizes its role, it resets the CPU flag (0x00) at location
0x7c00 before activating APs.

BSP begins execution at an entry point main(), which is
same in the 32-bit Web server code. Figure 2 shows this
entry point and also an extension point “1E.” This extension
point shows the additional code needed for migration (shown

in Figure 3). The entry point in BSP starts with
McoreBSPmain() function. This reads the CPU type flag
(using getCpuTypeFlag()) as stored in the boot sector, and
identifies itself as a BSP processor as described above. The
BSP calls InitializePaging() to create and initialize paging
data structures (S1). The 32-bit Web server used GDT, LDT
and IDT (interrupt descriptor table) entries that were
implemented in PEX using TASM code. These entries work
only in real mode and the Web server code has interrupt
gates to transfer between real and protected modes
(real<>protected). Thus, TEX runs in protected mode and
PEX runs in real mode. In order to reach hardware interfaces,
it uses (real<>protected) mode cycle which serves as a
bridge between these two modes.

IDT entries are used to address interrupt service routing
and GDT entries are used to address the application’s code,
data and stack. In order to migrate the 32-bit code, we need
to implement new GDT and IDT entries and eliminate LDT
(new processors use protected mode GDT and IDT
structures). Also, PEX is written in TASM (64 bit compilers
do not support this assembler). Thus, new GDT and IDT
entries were created, and initialized using init_gdt() and
init_idt() functions (S2). The new entries GDT and IDT can
be used in protected mode, which is required for migration.
For example, 32-bit Web server code used a real mode timer
interrupt at 0x08, whereas the new code uses 0x20 interrupt
in protected mode. The PIC (programmable interrupt
controller) chips have to be disabled (S3) and new APIC
(advanced PIC) [13] (p.25) have to be enabled for migration
(S4).

The next step in the migrati on process is to obtain
multiprocessor (MP) configuration information [13] (p.37)
(S5). This is implemented in getMPConfigurationInfo()
function. This information gathering can be done in many
ways [13] (p.38). The MP configuration information is used
to manage APs and interrupts. The basic information stored
in the MP configuration includes PIC mode, virtual wire
mode via local APIC, virtual wire mode via I/O APIC, and
I/O symmetric mode.

Figure 3. BSP Flow (1E)

Figure 4. Wait Command Flow

218

The information is stored in Extended BIOS memory area in
many places as it is accessed by a floating pointer structure.
It is necessary to obtain the MP Floating Pointer Structure
Address (e.g 0x000fda10, _MPFLOATINGPOINTER),
which can be found in one of the three places in memory: (1)
first KB of extended BIOS data area (EBDA); (2) within the
last KB of system memory (639K-640K for 640K systems
and 511K-512K for 512K systems); or (3) BIOS ROM
address between 0f0000h and 0fffffh. As the information is
“floating” in the above areas, we need to search those areas
with a signature _MP_ to obtain the information. In the
system used for migration, we found this address in the
EBIOS memory area.

Using this address, we accessed the MP Configuration
Table address (for example, the 0x000fd6d0,
_MPCNFIGURATIONTABLEHEADER). The MP floating
pointer structure in this system requires use of the MP
configuration table instead of the default MP configuration,
and virtual wire mode support instead of PIC mode. The first
processor entry structure address can be obtained by adding
0x2c to the MP Configuration Table address (0x00fd6d0),
i.e. 00fd6fc. The subsequent processor entries can be found
by adding another 20 bytes for each entry. The processor
parameters listed in the _PROCESSORENTRY are used to
identify a given processor complex and configuration. The
processor parameters obtained in this step are used to
manage multi-cores in the system including interrupt vectors
and control. The MP configuration structures are complex
and suited for conventional OS-based systems as they use
system calls and other libraries. Managing these structures in
a bare PC, which uses the bare machine computing
paradigm, is non-trivial and requires thorough understanding
of the intricacies of 64-bit architecture and multi-core
architecture to migrate 32-bit applications.

The BSP invokes waitCommand() function (S6), which
provides a sequence of commands to run an application as
shown in Figure 4, these options are provided by user Menu.
Each processor has its own APIC to control interrupts. The
interrupt requests come to an I/O APIC controller, which
will be delegated to each processor APIC. Thus, to activate
multi-core, the BSP performs two steps. The first step
involves reading the MSR register using the “rdmsr”
assembly instruction, ORing with the 0x800 value and
writing back using the “wrmsr” assembly instruction. In the
second step, it activates its own local APIC by changing the
spurious interrupt vector register (0xfee00000 (base) + 0xf0
(offset)) with a value 0x100 [13] (p.77). At this point,
interrupts are directed to only the BSP. In order to direct
interrupts to other APs, we need to activate I/O symmetric
mode. In symmetric mode, it is not possible to use virtual
wire mode interrupt routing [13] (p.85).

The MP configuration table must be set up to do
appropriate interrupt routing to APICs. This implementation
is complex and depends on the APIC architecture and
interrupt load balancing. In this system, timer interrupts are
directed to APs and all other interrupts are processed by the
BSP. Finally, when run option provided by the uer Menu is
chosen, the BSP creates MTSK and starts executing that
task. At this point, the BSP is in MTSK and all other APs are
activated and running their individual idle tasks.

B. AP Flow
Once the interrupts are set properly, we can create an idle

task which will run in the AP as a never ending loop in the
processor (A7). We created three idle tasks (APIdle_1,
APIdle_2, APIdle_3) with their own GDT indexes (i.e
0x208, 0x210, 0x218) and their corresponding GDT entries.
We have also created one IDT entry for each AP: an
interrupt vector 0x40 operates as a task gate to do task

Figure 5. AP Flow (4E)
Figure 6. AP IDLE Task

219

switching from init task to idle task (A8).
 Each AP will run its own idle task and monitor for any

tasks assigned to it by the BSP. In order to go to idle task,
we need an interrupt 0x40 to do task switching. The idle task
will be running and waiting for any future tasks to be
assigned by the BSP processor. The runIdleasm32() will
enable the task switch from init to idle task by invoking
interrupt 0x40. Figure 6 illustrates some details of creating
the idle task in the AP.

C. Task Scheduling Flow
The This section describes the migratory code added for

the Web server at point “2E” in Figure 2. When a Get
request arrives from an HTTP client, the server pops an
HTTP task (HTSK) from the task pool and inserts it into a
circular list. Each request is an independent HTSK that
handles data transfer and termination of the task. The
connection part of the HTSK is done by RTSK. The MTSK
and RTSK run on the BSP only. When there is only one
core, all tasks are in the same processor.

When a HTSK is ready to be dispatched, it calls the
function runTask(n) to run a task with task id n. In order to
run task n, we have to do task switching from MTSK to
HTSK. MTSK GDT index (in the 32-bit server) is 29. The
new code uses the same GDT index with a new TSS. In the

32-bit server, HTSK has its own GDT index (28) and its own
TSS. The new code uses the same GDT and TSS structures
with no change. The task switch logic is not changed for
migration. When APs are enabled, for a given AP, we set
task id and core id in a shared memory location for each p

rocessor, where a core can access its own coreid.
setHTaskIDasm32(taskid) and setAPIdx2asm32(coreid) are
functions that will store the values in shared memory at
0x06fe0 and 0x06ff0 for core 1. Similarly, for core 2 and
core 3, the values are stored in shared memory at different
locations. As described before, APs are running in an APIdle
loop and check for the match of their coreid in the shared
memory. If the coreid matches, the core will invoke
runTask(n) to run the HTSK. In a given AP, when the
HTSK is complete, it returns back to the idle task. In the 32-
bit Web server, there is only one processor to schedule
MTSK, RTSK and HTSK. As shown in Figure 2, “3E”
connection point illustrates the new configuration for
migration. In this case, we have BSP, AP1, AP2 and AP3
processors connected to the circular list. These execution
elements have to be load balanced to achieve high
performance, which is not the focus of this paper.

V. FUNCTIONAL OPERATION AND DATA
After Results of performance studies using the 32-bit

bare PC Web server in single mode and in split server mode
are given in [3] and [15] respectively. This Web server is
implemented using C/C++/MASM/NASM languages. The
new code implemented for migration includes 1,595 lines of
assembly and 9,366 lines of C/C++ code (with comments).
Additional code will be needed for optimization and load
balancing of cores in the future. The server is tested on an
Optiplex 9010 with 4 core for functional operation. It is
tested using an IE browser (Internet Explorer 11, but can be
any other browser) and the http_load stress tool [16]. This
section includes functional testing measures and data to
validate the design and implementation of migration.

In the first migration attempt, no multi-core operations
are used. The http_load stress tool is used to collect this data.
This data shows the stress tool output for 600 seconds
requesting 1000 requests per second. The important data to
be considered is mean connect time (0.185272 milli-secs)
and first response time (0.169373 milli-seconds) measured in
this run. We next considered single core with paging. In this
case, http_load was run for 1000 requests per second over a
10-minute period. The output shows the mean connect time
is 0.193595 milli-secs and first response time is 0.145881
milli-secs. It can be seen that this is a little slower than in the
first attempt in connect time, but response time is faster. We
also run this with and without paging. There is not much of a
difference in their performance as all page entries are
populated for the given size of memory, and there were no
page faults in the bare implementation.

VI. DISCUSSION
Our migration approach results in a unique bare machine

Web server design that leverages the multi-core architecture.
Many intricacies are involved in implementing the multi-

Figure 7. Multi-core Bare PC Display

220

core architecture on a bare PC. The implementation details
provided will be useful not only for bare PC systems but also
for other application domains and platforms such as sensor
networks and embedded systems, where there is no need for
a conventional OS. Migration provides a basis for future
research in innovative multi-core designs for bare machine
applications.

The first attempt at migrating bare PC code illustrates the
flexibility of this code and the ability to make it work with
just a few changes on a 64-bit system when 64-bit/multi-core
features are not used. Several novelties of bare PC
applications are evident in the migration outcomes. For
example, we saw that it is possible for an end user program
to have complete control of applications, interrupts, GDT,
IDT, MP configuration, and direct hardware interfaces. The
multi-core code developed is completely independent of any
other environment, application, or external software i.e. it
only depends on the underlying multi-core processor and
Intel architecture. To optimize performance it is also
necessary to investigate synchronization and concurrency
control mechanisms needed for bare PC applications running
on multi-core. Future possibilities for research include
migrating other bare PC applications to multi-core in a
similar manner, and applying the split-server concept to
multi-core by splitting protocols, applications and individual
components.

VII. CONCLUSION
We presented a novel approach for migrating a bare PC

Web server from a single processor system to a multi-core
system. Our work also demonstrated a first step in migration
that does not require any multi-core features to be
implemented. We further showed how paging could be
implemented in a basic bare PC system to make it
compatible with the 64-bit architecture. In particular, we
detailed how to run applications on multi-core processor
systems and configure, control and manage their internal
elements, including registers and control data needed for
implementing a working system. This paper also discussed
novel features of this approach and some possibilities for
further research. The methodology used for migrating the 32-
bit Web server will enable existing and future bare PC
applications to be run on a multi-core 64-bit architecture.
Moreover, the bare machine computing paradigm can be
used to build simple, scalable, secure and high performance
systems by exploiting the upcoming growth in multi-cores.

REFERENCES
[1] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed, “DOSC:

dispersed operating system computing”, 20th Annual ACM

Conference on Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2005, pp. 55-61.

[2] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to run C++
applications on a bare PC”, SNPD 2005, Proceedings of NPD 2005,
6th ACIS International Conference, IEEE, May 2005, pp. 50-55.

[3] L. He, R. K. Karne, and A. L. Wijesinha, “The design and
performance of a bare PC Web server”, International Journal of
Computers and Their Applications, IJCA, Vol. 15, No. 2, June 2008,
pp. 100-112.

[4] G. H. Ford, R. K. Karne, A. L. Wijesinha, and P. Appiah-Kubi, “The
design and implementation of a bare PC email server”, 33rd Annual
IEEE International Computer Software and Applications Conference
(COMPSAC), 2009, pp. 480-485.

[5] A. Alexander, A. L.Wijesinha, R. Karne, “Implementing a VOIP SIP
server and a user agent on a bare PC”, 2nd International Conference
on Future Computational Technologies and Applications (Future
Computing), 2010.

[6] G. Khaksari, A. Wijesinha, R. Karne, L. He, and S. Girumala., “A
peer-to-peer bare PC VoIP application”, IEEE Consumer
Communications and Networking Conference (CCNC) 2007.

[7] TinyOS, http://www.tinyos.net, accessed December 17, 2015.
[8] J. Lange et al., “Palacios and Kitten: New high performance operating

systems for scalable virtualized and native supercomputing”, 24th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2010.

[9] D. R. Engler and M.F. Kaashoek, “Exterminate all operating system
abstractions”, Fifth Workshop on Hot Topics in Operating Systems,
USENIX, 1995, p. 78.

[10] T. G. Brutch, “Migration to multicore: tools that can help”, Login:
The USENIX Magazine, Vol. 34, No. 5, October 2009.

[11] F. Nemati, J. Kraft, and T. Nolte, “Towards migrating legacy real-
time systems to multi-core systems”, IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), 2008,
pp. 717-720.

[12] J. Schneider, M. Bohn, and R. Robger, “Migration of real-time
automotive software to multicore systems: first steps towards an
automated solution”, 22nd Euromicro Conference on Real-Time
Systems (ECRTS), 2010.

[13] MultiProcessor Specification Version 1.4, Intel, 1997.
http://download.intel.com/design/archives/processors/pro/docs/24201
606.pdf.

[14] Intel® 64 and IA-32 Architectures Software Developers Manual,
Intel, 2015. http://www.intel.com/content/www/us/en/architecture-
and-technology/64-ia-32-architectures-software-developer-vol-3a-
part-1-manual.html

[15] B. Rawal, R. K. Karne, and A. L. Wijesinha, “Mini Web server
clusters for HTTP request splitting”, IEEE International Conference
on High Performance Computing and Communications (HPCC),
2011, pp. 94-100.

[16] http_load – event loop based multiprocessing http test client,
http://github.perusio.org/httpload, accessed December 17, 2015.

[17] Mihai Pricopi, Tulika Mitra, “Task Scheduling on Adaptive Multi-
Core”, IEEE Transactions on Computers, 2014, pp. 2590 - 2603.

[18] Shouzhen Gu, Qingfeng Zhuge, “Optimizing Task and Data
Assignment on Multi-Core Systems with Multi-Port SPMs”, IEEE
Transactions on Parallel and Distributed Systems, 2015, pp. 2549 -
2560.

221

