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Abstract—Bare PC applications run without the support of any 
OS, kernel, or embedded software. Many bare PC applications 
such as Web servers, mail servers, SIP servers and VoIP clients 
have been developed previously for the x86 Intel architecture. 
We migrate a bare PC Web server application enabling it to 
run on a 64-bit multicore desktop processor. Migration poses 
many challenges as this application runs on a bare PC. The 64-
bit CPU architecture is significantly different from its 32-bit 
counterpart, making migration non-trivial. First, an attempt 
was made to run the existing code as is on the 64-bit processor 
without using any 64-bit CPU architectural features. Second, 
paging required by the 64-bit architecture was implemented. 
This requires many design changes to deal with paging and 
virtual memory issues since the Web server application is 
based on real memory without any paging. Finally, multi-
tasked execution of the Web server on multicore is undertaken. 
This phase of migration is complex due to the complexity in 64 
bit architecture and its intricacies. We give technical details 
underlying the migration process and present results of testing 
functional operations with some preliminary data to validate 
this approach. 

Keywords- Bare Machine Computing, Bare PC, Intel x86, 
Multi-core, 64-bit architecture, Web server. 

I. INTRODUCTION  
Bare Machine Computing (BMC) [1] is based on running 

computer applications on a bare machine without any 
resident operating system (OS). The BMC programming 
paradigm differs from a conventional programming 
paradigm in that the programmer manages all the necessary 
system resources. This paradigm enables full control of the 
system via the application software, which directly 
communicates with and controls the underlying hardware. 
BMC applications are written in mostly in C/C++ with some 
use of assembly language (MASM, NASM or TASM) as 
needed. As described in [2], one or more end-user 
applications can be written as a single entity referred to as an 
application object (AO) that runs on a bare machine. Existing 
BMC applications include Web servers [3], mail servers [4], 
SIP Servers [5] and VoIP systems [6]. BMC applications can 
run as multi-threaded programs with thousands of threads 
and yield high performance with high security as there is no 
centralized OS or kernel, no external dependencies and no 
resident mass storage. 

Many low-overhead operating systems and kernels have 
been developed for a vari\ety of environments. For example, 
TinyOS is an OS for low-power wireless devices [7]. On the 

other hand, Kitten is a lightweight high-performance OS that 
can be used together with Palacios, a virtual machine 
monitor for applications running in a virtualized environment 
[8]. The elimination of OS abstractions was originally 
proposed in [9]. In contrast, the BMC paradigm eliminates 
all intermediary software providing the combined benefits of 
improved performance and security.  

As newer machines are based on a 64-bit processor and 
multi-core, 32-bit bare PC applications need to be migrated 
to the new environment. Many techniques have been 
proposed for migrating applications to multi-core in an OS 
environment. In [10], tools for migrating applications to 
multi-core based on Windows and Linux are surveyed. The 
use of components and partitions for multi-core migration of 
legacy real-time systems is described in [11]. In [12], the 
difficulty of migrating real-time software used in the 
automotive industry to multi-core is discussed and an 
approach for developing an automated tool based on static 
program analysis is suggested.  

Migrating bare PC code to run on the 64-bit architecture 
is not the same as migrating OS-based applications. The 
primary difference is the absence of any OS or other 
intermediary software between bare PC applications and the 
hardware. This means that a bare PC application, regardless 
of whether it is 32-bit or 64-bit, has to itself manage system 
resources. We describe the technical details underlying the 
migration process for a 32-bit bare PC Web server. In 
particular, we consider design and implementation 
differences in 32-bit versus 64-bit bare PC applications with 
a view towards building a tool for automating the migration 
process in the future. 

Figure 1. 4K Paging 
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The rest of the paper is organized as follows. Section 2 
outlines some basic problems in migrating a 32-bit bare PC 
application to run on 64-bit. Section 3 describes how paging 
is handled, including the related architectural and design 
issues. Section 4 illustrates the migration path to multicore 
and related implementation issues. Section 5 gives 
preliminary results to validate multicore functionality and its 
operation. Section 6 discusses issues unique to migration that 
are specific to bare machine computing and possible future 
research. Section 7 presents the conclusion.. 

II.  BASIC ISSUES IN MIGRATION 
The original bare PC Web server application [3] was 

written in Visual Studio 10 using C/C++ (32 bit) code and 
some MASM (Microsoft assembler) code. It also used 
TASM (Turbo assembler) and NASM (Netwide assembler) 
code for startup and boot code. The server ran on a single 
CPU x86 desktop (Dell Optiplex 520) with no paging, and 
no hard disk. A USB flash drive is used to store the entire 
application (boot, startup and application code including 
data). In order to migrate the 32-bit code to run on an 
x86_64-bit multicore desktop (Dell Optiplex 9010), the first 
attempt was to run the original server code without changes. 
Several issues were identified, some of which are discussed 
below. 

Static variables had incorrect values in them stored in 
BSS (block started by symbol) although the BSS segment 
was not used in the 32-bit code). This did not appear to cause 
any problems on the 32-bit machine. Bare PC applications 
use batch files to compile and link i.e. Visual Studio 10 
“/bin” files are used for compilation without any use of 
header files (or libraries). The problem was fixed by adding a 
“/MERGE:.bss=.data” option in the link for running on 64-
bit machine. This option merges all data into a single data 
section. It was also found that the 64-bit machine hangs if 
dummy block braces “{….}” were used (without any 
conditions preceding). This was not an issue in 32-bit; the 
braces were simply removed to fix this problem. Lastly, we 
note that the same C++ class was compiled in two directories 
and linked, which should not be the case. Simply renaming 
the class in one directory solves this problem.. 

III. PAGING AND SINGLE CORE 
The 32-bit bare PC code has no paging i.e., the CR0 

(control register 0) PG (paging) bit and CR4 (control register 
4) PAE (physical address extension) bits are zeros [14] 
(p.1961). As the Web server is a 32-bit application, paging 
mode was enabled by setting the CR0 PG bit to 1. This 
needed to be done before the Web server tasks are created. 
We therefore created a paging data structure and initialized 
the structure with the necessary memory before paging was 
turned on. The entire Web server executable is 325KB and a 
1GB of address space is used for the application including 
code, data and stack. We used a 4K paging scheme and 
created a data structure as shown in Figure 1. It also shows 
the actual values used in the PDE (page directory entry) and 
PTE (page table entry) entries.  The CR3 is initialized with 
0x20000000 (512MB), which is the base address of page 
directory (PD). This initialization is done in the TSS (task 

state segment) for the Web server application. There are 
1024 entries in PD (there is only one PD in the system). Each 
PD entry (PDE) points to a separate page table (PT), and 
there are 1024 PTs. Each page table entry (PTE) points to a 
page, where the offset is used to address the exact location in 
memory. The paging is managed by the CPU, and software 
only initializes the data structures. All entries were provided 
in order to address up to 4GB memory.  

The 32-bit server uses physical memory up to 1GB. This 
memory is contiguously mapped in our paging structure, thus 
avoiding page replacement overhead and page faults, i.e. 
each logical page is mapped to one physical page. The 32-bit 
server also uses LDT (Local Descriptor Table) in addition to 
GDT (Global Descriptor Table). This causes a problem in 
paging mode as it needs separate paging structures for LDT. 
We addressed this problem by eliminating LDT and creating 
new GDTs for paging. As the Web server uses a single 
address space and there is a single AO running in the bare 
PC, this paging model is efficient. However, adding paging 
to the 32-bit code posed some implementation and testing 
difficulties especially when the entries have wrong values or 
are not initialized. 

IV. MULTICORE MIGRATION 
Multicore migration poses many challenges in that a bare 

PC application has to deal with architectural, design and 
implementation issues in addition to functional operation, 
testing, and the unique bare PC programming and computing 
paradigm. A bare PC Web server is a complex system that 
differs significantly from its OS-based counterparts. Figure 2 
shows a high level view of the bare PC Web server 
architecture. There is a main task (MTSK), receive task 
(RTSK) and several http tasks (HTSK). The MTSK is 
always running in the system. When a packet arrives, the 
RTSK runs as a single thread of execution. The RTSK 
processes packets as they arrive and updates a table that 
keeps track of TCP parameters and state (known as the 
TCB). Each entry in the TCB maintains the status of its 
corresponding client request from start to finish. A task pool 

Figure 2. Current Webserver Architecture 
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is created and stored in advance in a stack to serve client 
requests. When a client’s HTTP Get request arrives, an 
existing task from the task pool is popped and inserted into a 
circular list. When this task is complete, it is pushed back 
onto the stack for reuse. The 32-bit server can run over 6000 
concurrent tasks on a single core Dell Optiplex 260 [15]. The 
code size is about 636 sectors, which is the entire AO needed 
for the application. The server is designed strictly as a Web 
server and only performs HTTP requests, which provides 
protection against conventional attacks that require an OS 
and other functionality: 

A. BSP Flow 
The Web server executable has two separate executables. 

The first is prcycle.exe (PEX), which has the boot, load and 
startup code. PEX loads and runs the second executable, 
test.exe (TEX), which is the Web server application. The 
display menu enables a user to load, run and debug programs 
in addition to multi-core options. The Optiplex 9010 uses a 
quadcore 64 bit processor model. These cores play different 
roles in the bare PC Web server.  The first core is referred to 
as a boot strap processor (BSP); the other three cores are 
known as application processors (AP1, AP2, and AP3).   
Initially, BSP runs the boot code and loads the Web server 
application executable. The BSP is automatically configured 
to run by BIOS (basic in-put/output system) and APs are not 
enabled at boot time. In the boot loader code, we set a CPU 
flag (0x01) at location 0x7c00 (boot address) to identity BSP 
as a boot processor for the Web server system. When BSP 
recognizes its role, it resets the CPU flag (0x00) at location 
0x7c00 before activating APs.    

BSP begins execution at an entry point main(), which is 
same in the 32-bit Web server code. Figure 2 shows this 
entry point and also an extension point “1E.” This extension 
point shows the additional code needed for migration (shown 

in Figure 3). The entry point in BSP starts with 
McoreBSPmain() function. This reads the CPU type flag 
(using getCpuTypeFlag()) as stored in the boot sector, and 
identifies itself as a BSP processor as described above. The 
BSP calls InitializePaging() to create and initialize paging 
data structures (S1). The 32-bit Web server used GDT, LDT 
and IDT (interrupt descriptor table) entries that were 
implemented in PEX using TASM code. These entries work 
only in real mode and the Web server code has interrupt 
gates to transfer between real and protected modes 
(real<>protected). Thus, TEX runs in protected mode and 
PEX runs in real mode. In order to reach hardware interfaces, 
it uses (real<>protected) mode cycle which serves as a 
bridge between these two modes.   

IDT entries are used to address interrupt service routing 
and GDT entries are used to address the application’s code, 
data and stack. In order to migrate the 32-bit code, we need 
to implement new GDT and IDT entries and eliminate LDT 
(new processors use protected mode GDT and IDT 
structures). Also, PEX is written in TASM (64 bit compilers 
do not support this assembler). Thus, new GDT and IDT 
entries were created, and initialized using init_gdt() and 
init_idt() functions (S2). The new entries GDT and IDT can 
be used in protected mode, which is required for migration.  
For example, 32-bit Web server code used a real mode timer 
interrupt at 0x08, whereas the new code uses 0x20 interrupt 
in protected mode. The PIC (programmable interrupt 
controller) chips have to be disabled (S3) and new APIC 
(advanced PIC) [13] (p.25) have to be enabled for migration 
(S4). 

The next step in the migrati on process is to obtain 
multiprocessor (MP) configuration information [13] (p.37)  
(S5). This is implemented in getMPConfigurationInfo() 
function. This information gathering can be done in many 
ways [13] (p.38). The MP configuration information is used 
to manage APs and interrupts. The basic information stored 
in the MP configuration includes PIC mode, virtual wire 
mode via local APIC, virtual wire mode via I/O APIC, and 
I/O symmetric mode. 

 

Figure 3. BSP Flow (1E) 

Figure 4. Wait Command Flow 
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The information is stored in Extended BIOS memory area in 
many places as it is accessed by a floating pointer structure. 
It is necessary to obtain the MP Floating Pointer Structure 
Address (e.g 0x000fda10, _MPFLOATINGPOINTER), 
which can be found in one of the three places in memory: (1) 
first KB of extended BIOS data area (EBDA); (2) within the 
last KB of system memory (639K-640K for 640K systems 
and 511K-512K for 512K systems); or (3) BIOS ROM 
address between 0f0000h and 0fffffh.  As the information is 
“floating” in the above areas, we need to search those areas 
with a signature _MP_ to obtain the information. In the 
system used for migration, we found this address in the 
EBIOS memory area. 

Using this address, we accessed the MP Configuration 
Table address (for example, the 0x000fd6d0, 
_MPCNFIGURATIONTABLEHEADER). The MP floating 
pointer structure in this system requires use of the MP 
configuration table instead of the default MP configuration, 
and virtual wire mode support instead of PIC mode. The first 
processor entry structure address can be obtained by adding 
0x2c to the MP Configuration Table address (0x00fd6d0), 
i.e. 00fd6fc. The subsequent processor entries can be found 
by adding another 20 bytes for each entry. The processor 
parameters listed in the _PROCESSORENTRY are used to 
identify a given processor complex and configuration. The 
processor parameters obtained in this step are used to 
manage multi-cores in the system including interrupt vectors 
and control. The MP configuration structures are complex 
and suited for conventional OS-based systems as they use 
system calls and other libraries. Managing these structures in 
a bare PC, which uses the bare machine computing 
paradigm, is non-trivial and requires thorough understanding 
of the intricacies of 64-bit architecture and multi-core 
architecture to migrate 32-bit applications.           

The BSP invokes waitCommand() function (S6), which 
provides a sequence of commands to run an application as 
shown in Figure 4, these options are provided by user Menu. 
Each processor has its own APIC to control interrupts. The 
interrupt requests come to an I/O APIC controller, which 
will be delegated to each processor APIC. Thus, to activate 
multi-core, the BSP performs two steps. The first step 
involves reading the MSR register using the “rdmsr” 
assembly instruction, ORing with the 0x800 value and 
writing back using the “wrmsr” assembly instruction. In the 
second step, it activates its own local APIC by changing the 
spurious interrupt vector register (0xfee00000 (base) + 0xf0 
(offset)) with a value 0x100 [13] (p.77). At this point, 
interrupts are directed to only the BSP. In order to direct 
interrupts to other APs, we need to activate I/O symmetric 
mode. In symmetric mode, it is not possible to use virtual 
wire mode interrupt routing [13] (p.85).  

The MP configuration table must be set up to do 
appropriate interrupt routing to APICs. This implementation 
is complex and depends on the APIC architecture and 
interrupt load balancing. In this system, timer interrupts are 
directed to APs and all other interrupts are processed by the 
BSP. Finally, when run option provided by the uer Menu is 
chosen, the BSP creates MTSK and starts executing that 
task. At this point, the BSP is in MTSK and all other APs are 
activated and running their individual idle tasks. 

B. AP Flow 
Once the interrupts are set properly, we can create an idle 

task which will run in the AP as a never ending loop in the 
processor (A7). We created three idle tasks (APIdle_1, 
APIdle_2, APIdle_3) with their own GDT indexes (i.e 
0x208, 0x210, 0x218) and their corresponding GDT entries. 
We have also created one IDT entry for each AP: an 
interrupt vector 0x40 operates as a task gate to do task 

Figure 5. AP Flow (4E) 
Figure 6. AP IDLE Task 
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switching from init task to idle task (A8).  
 Each AP will run its own idle task and monitor for any 

tasks assigned to it by the BSP. In order to go to idle task, 
we need an interrupt 0x40 to do task switching. The idle task 
will be running and waiting for any future tasks to be 
assigned by the BSP processor. The runIdleasm32() will 
enable the task switch from init to idle task by invoking 
interrupt 0x40. Figure 6 illustrates some details of creating 
the idle task in the AP. 

C. Task Scheduling Flow 
The This section describes the migratory code added for 

the Web server at point “2E” in Figure 2. When a Get 
request arrives from an HTTP client, the server pops an 
HTTP task (HTSK) from the task pool and inserts it into a 
circular list. Each request is an independent HTSK that 
handles data transfer and termination of the task. The 
connection part of the HTSK is done by RTSK. The MTSK 
and RTSK run on the BSP only. When there is only one 
core, all tasks are in the same processor.  

When a HTSK is ready to be dispatched, it calls the 
function runTask(n) to run a task with task id n. In order to 
run task n, we have to do task switching from MTSK to 
HTSK. MTSK GDT index (in the 32-bit server) is 29. The 
new code uses the same GDT index with a new TSS. In the 

32-bit server, HTSK has its own GDT index (28) and its own 
TSS. The new code uses the same GDT and TSS structures 
with no change. The task switch logic is not changed for 
migration. When APs are enabled, for a given AP, we set 
task id and core id in a shared memory location for each p 

rocessor, where a core can access its own coreid. 
setHTaskIDasm32(taskid) and setAPIdx2asm32(coreid) are 
functions that will store the values in shared memory at 
0x06fe0 and 0x06ff0 for core 1. Similarly, for core 2 and 
core 3, the values are stored in shared memory at different 
locations. As described before, APs are running in an APIdle 
loop and check for the match of their coreid in the shared 
memory. If the coreid matches, the core will invoke 
runTask(n) to run the HTSK.  In a given AP, when the 
HTSK is complete, it returns back to the idle task. In the 32-
bit Web server, there is only one processor to schedule 
MTSK, RTSK and HTSK. As shown in Figure 2, “3E” 
connection point illustrates the new configuration for 
migration. In this case, we have BSP, AP1, AP2 and AP3 
processors connected to the circular list. These execution 
elements have to be load balanced to achieve high 
performance, which is not the focus of this paper. 

V. FUNCTIONAL OPERATION AND DATA 
After Results of performance studies using the 32-bit 

bare PC Web server in single mode and in split server mode 
are given in [3] and [15] respectively. This Web server is 
implemented using C/C++/MASM/NASM languages. The 
new code implemented for migration includes 1,595 lines of 
assembly and 9,366 lines of C/C++ code (with comments). 
Additional code will be needed for optimization and load 
balancing of cores in the future. The server is tested on an 
Optiplex 9010 with 4 core for functional operation. It is 
tested using an IE browser (Internet Explorer 11, but can be 
any other browser) and the http_load stress tool [16]. This 
section includes functional testing measures and data to 
validate the design and implementation of migration. 

In the first migration attempt, no multi-core operations 
are used. The http_load stress tool is used to collect this data. 
This data shows the stress tool output for 600 seconds 
requesting 1000 requests per second. The important data to 
be considered is mean connect time (0.185272 milli-secs) 
and first response time (0.169373 milli-seconds) measured in 
this run. We next considered single core with paging. In this 
case, http_load was run for 1000 requests per second over a 
10-minute period. The output shows the mean connect time 
is 0.193595 milli-secs and first response time is 0.145881 
milli-secs. It can be seen that this is a little slower than in the 
first attempt in connect time, but response time is faster. We 
also run this with and without paging. There is not much of a 
difference in their performance as all page entries are 
populated for the given size of memory, and there were no 
page faults in the bare implementation. 

 

VI. DISCUSSION 
Our migration approach results in a unique bare machine 

Web server design that leverages the multi-core architecture. 
Many intricacies are involved in implementing the multi-

Figure 7. Multi-core Bare PC Display 
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core architecture on a bare PC. The implementation details 
provided will be useful not only for bare PC systems but also 
for other application domains and platforms such as sensor 
networks and embedded systems, where there is no need for 
a conventional OS. Migration provides a basis for future 
research in innovative multi-core designs for bare machine 
applications. 

The first attempt at migrating bare PC code illustrates the 
flexibility of this code and the ability to make it work with 
just a few changes on a 64-bit system when 64-bit/multi-core 
features are not used. Several novelties of bare PC 
applications are evident in the migration outcomes. For 
example, we saw that it is possible for an end user program 
to have complete control of applications, interrupts, GDT, 
IDT, MP configuration, and direct hardware interfaces. The 
multi-core code developed is completely independent of any 
other environment, application, or external software i.e. it 
only depends on the underlying multi-core processor and 
Intel architecture. To optimize performance it is also 
necessary to investigate synchronization and concurrency 
control mechanisms needed for bare PC applications running 
on multi-core. Future possibilities for research include 
migrating other bare PC applications to multi-core in a 
similar manner, and applying the split-server concept to 
multi-core by splitting protocols, applications and individual 
components. 

VII. CONCLUSION 
We presented a novel approach for migrating a bare PC 

Web server from a single processor system to a multi-core 
system. Our work also demonstrated a first step in migration 
that does not require any multi-core features to be 
implemented. We further showed how paging could be 
implemented in a basic bare PC system to make it 
compatible with the 64-bit architecture. In particular, we 
detailed how to run applications on multi-core processor 
systems and configure, control and manage their internal 
elements, including registers and control data needed for 
implementing a working system. This paper also discussed 
novel features of this approach and some possibilities for 
further research. The methodology used for migrating the 32-
bit Web server will enable existing and future bare PC 
applications to be run on a multi-core 64-bit architecture. 
Moreover, the bare machine computing paradigm can be 
used to build simple, scalable, secure and high performance 
systems by exploiting the upcoming growth in multi-cores. 
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