Integrating an 802.11 Wireless Application in a Linux Kernel Module with a Bare
PC Application

Rasha A. Almajed, William Agosto-Padilla, Ramesh K. Karne, Alexander L. Wijesinha

Department of Computer & Information Sciences, Towson University
Towson MD, 21252, USA

{ralmajed, rkarne, awijesinha} @towson.edu, agopad@gmail.com

Abstract

We describe the novel integration of an 802.11 wireless
Linux kernel module application with a bare PC application
that runs with no OS support. Integration is achieved by
modifying the Linux 802.11 wireless driver. Integration
enables the bare PC to control the Linux system at the
kernel level, and to serve as a backend for offloading kernel
operations. Furthermore, the bare PC can filter and/or
process packets received by the Linux system. Integration
with a bare PC has security advantages since it is not
vulnerable to OS-related attacks, and performance
advantages since it has no OS overhead. We first present the
system architecture and its implementation. We then
demonstrate how: 1) Linux kernel operations can be
controlled using a bare PC; 2) Linux kernel functions can be
offloaded to a bare PC; and 3) packets can be exchanged
directly between the Linux kernel and the bare PC. The
implemented prototype can serve as a basis for studying
performance aspects of integrating Linux and bare systems
in the future.

1 Introduction

OS-based systems are continually patched to eliminate
newly discovered vulnerabilities [1]. Unfortunately, they
make available a large attack surface due to offering a
proliferation of services for the convenience of users. While
hardening OS-based systems is a solution to some security
issues, the presence of an OS or kernel, however small,
provides capabilities that enable exploitation. A bare
machine is an alternative approach to run applications
without the support of an OS, kernel, or intermediary
software. Bare systems have many security advantages
including the following: 1) Bare applications are not
vulnerable to attacks that require OS support; 2) It is not
possible for an attacker to run scripts or escalate privileges
on a bare machine; 3) Bare code is statically compiled (there
are no dynamically linked libraries); 4) Bare systems do not
use any local mass storage, thus reducing the ability of an
attacker to compromise the system; 5) Bare machine code is
also easier to analyze and secure due to its simplicity and

978-1-943436-10-1 / copyright ISCA, CATA 2018
March 19-21, 2018, Las Vegas, Nevada, USA

smaller size, enabling vulnerabilities in a bare application to
be more easily detected and fixed. In addition, running a
bare PC application has performance benefits since it has no
OS overhead. Many bare PC applications including mail
servers [2], Web servers [3], peer-to-peer VoIP clients [4],
SIP servers and user agents [5], and IPv6/v4 translators [6]
have been previously built. Bare PC applications have also
been used to measure protocol performance in the absence
of OS overhead [7].

We implement an 802.11 wireless application as a Linux
kernel module and modify the 802.11 Linux driver to
integrate the application with a bare PC application. The
integrated system is a prototype that could be enhanced to
run 802.11 applications in the kernel to provide better
security than that afforded by user space applications (which
could be more easily compromised by an attacker). In
essence, the prototype demonstrates how a bare PC
application could directly control kernel operations on
Linux wireless devices and also serve as a Linux backend
for offloading security operations. It enables the bare PC to
send control commands such as start/stop and kill to the
Linux system; and to execute input/output commands such
as readln or printk for the Linux system. The Linux system
uses kernel sockets to directly exchange packets with the
bare PC. A similar integrated system could be used in the
future to offload functions from Linux (or Android) wireless
devices to a bare PC.

The rest of this paper is organized as follows. In Sections
2 and 3, we provide an overview of bare machine computing
and related work respectively. In Section 4, we describe the
system architecture. In Section 5, we give design and
implementation details. In Section 6, we demonstrate
operations using the prototype. In Section 7, we present the
conclusion.

2 Bare Machine Computing

Figure 1 illustrates the difference between conventional
computing and bare machine computing. In conventional
computing, devices run an OS or some form of a kernel, or
are embedded systems. In addition, most use local mass

storage or a disk. The basic input/output system (BIOS) is
commonly used to start up the machine and load an OS. The
OS also uses a variety of vendor-specific device drivers.
Conventional computer applications are platform dependent
as they use system calls or an API to reach the hardware.
Java applications are platform independent, but they require
a platform dependent JVM. Conventional computing
applications thus depend on their execution environment
which is provided by an OS.

Bare applications are implemented as application objects
that are self-contained, self-managed, and self-executable
[8]. Applications include the necessary boot and load code,
network protocols, and device drivers and are stored on
removable mass storage (such as a USB) under individual
user control. They are written in a single programming
language such as C/C++ with very little assembly code, and
independent of computing environments [9]. A single bare
application or a bare application suite consisting of several
bare applications is run on ordinary PCs with 1A-32 (Intel)
hardware. The bare applications can communicate with
other bare or conventional applications using conventional
access control and authentication mechanisms if needed. A
bare machine application includes a main task that runs
continually when no other tasks are running. It uses a
receive task to receive packets from an Ethernet connection
and application-specific tasks such as HTTP tasks in case of
a bare Web server.

2

Conventional APPS

. [cru] ’ MEMOnRY] —— - & "‘z';—u;‘m
[vo | [wos | [ml L
| S—) oo N —
[NIC] [WIRELESS l oRnE I |_I

(A) Conventional System

Bare APPS / Device Drivers

(oo | [wewor |

[me | [wmeress |

(B) Bare System

Figure 1. Differences between conventional and bare systems.

Each bare application contains its own (OS-independent)
lean versions of protocols in the TCP/IP suite for
communication with OS-based machines and other bare
machines. Security protocols such as IPsec or TLS are
included as needed. Bare machines can also be used to
evaluate the impact of OS overhead on protocol
performance [6].

Bare PC ——“ | |
upp Ethernet AP Linux PC
Switeh
B43 Module
Bare PC w
upP

Figure 2. Integration architecture.

3 Related Work

Bare machine computing is similar to other approaches
for reducing OS overhead and improving application
performance such as Exokernel [10], OS-Kit [11], Sand-
boxing [12] and Palacio/Kitten [13]. The main difference is
that bare machine applications run without the support of
any OS or kernel. A comprehensive treatment of Linux
kernel networking is provided in [14]. The use of Netlink
sockets to communicate between user space applications
and the Linux kernel is discussed in [15]. The details of an
in-kernel FTP client are given in [16]. A system for
communicating between Linux kernels in cluster computers
using Ethernet broadcast is implemented in [17]. To the best
of our knowledge, there are no systems that offload Linux
kernel functions to a system with no OS or kernel (for
security purposes or otherwise).

4 System Architecture

The architecture shown in the upper part of Figure 2 is
used for the prototype, which integrates the Linux system
(Kernel 3.9.3/Ubuntu 12.10) with the bare PC. Both
machines are Dell GX 960 PCs. The Linux system
associates with an 802.11n access point connected to a
gigabit Ethernet switch. The bare PC connects to the switch.

Other integration architectures are possible: the bare PC
can be on the Internet (lower part of Figure 2); or the
wireless (802.11) connection for the Linux system can be
replaced by an Ethernet connection. While this prototype
only uses the 802.11 Linux driver for integration, other
modules in the Linux kernel could also be integrated with a
bare system.

As shown in Figure 3, we added a new Linux kernel
module called Udpthreads for communicating with a bare
PC. It opens two UDP kernel sockets (send and receive) for
use by the Linux kernel space application. The Udpthreads
module is inserted between the mac80211 (802.11 wireless
MAC) and b43 (Broadcom wireless driver) modules in the

Linux kernel. We modified the code in [18] enabling
Udpthreads to send/receive commands to/from a bare PC,
and replaced a callback routine (that did not work) with
work queues [19].

While UDP is used in the prototype to communicate
between the systems for simplicity and efficiency, TCP
connections could also be used. IP-level communication
between the Linux system and the bare PC can be secured
with IPsec. We do not discuss securing Linux-bare
communication in this version of the prototype.

Linux
'

:

Sockets

Send n
—>| Udpthreads [~~~ F """ """ Bare
¢ Receive
-~ ~ ‘\
e

Figure 3. Bare-Linux communication.

S Design and Implementation

The integrated system is implemented using the
Udpthreads and b43 wireless driver modules in the Linux
kernel (written in C), and the UDP application in the bare
PC (written in C++). The design flow for the Udpthreads
module is shown in Figure 4. Since the Udpthreads module
is inserted before the modified b43 module, the Send socket
is created first and used for sending dummy packets to the
bare PC until the modified b43 module starts running. In the
b43 module, main.c has calls to the Udptest() function in
Udpthreads. This function initiates actions in the
Udpthreads module based on commands (Bare OPs) to
trigger the exchange of packets with the bare PC. The
packets, which are exchanged via Send/Receive, once the
b43 module is running, enable the receiving system to
perform the corresponding operation.

L $lur§ >

| Initialize |}
v
I Croate Sockets]
v
>
Send
@ P i
packeot

Perform
operation

o]
o)
§
®

Sona/fwcoive l

(43 Stop =3

ient 2 . Running on the bare PC. Touson University
3 4 5 b 7 8
RculPtr RewOPtr RXSize upCnSet notFTnd TaskID
#606602E 60660260 608AB6A4
notArIP ARPent [Pcnt SndINPtr SndOUTtr Cod4SCnt
86608663 66AAACC ABAB3IGE
86 CLIENT:ISIATE TCBRNO Retcode PortNo HSTATE IskDel TaskiD
66067063 06680600 06066066 8AB6OARS
runtsk
i 80066060

RetCode HttpCnt TotHITP State Retr TaskID

HaxNReq MaxNTcbs TotReqst DelCount NoOfRsts UnMatReq taskDel
06086001 608AA6E 6AAGAAG1 6AAGEAG BAAABAEE ABBAEAE

RCU% TotRevCnt RCUTine Req/Sec TotMin SynCount FinCount
86006600 60863733 AA26ACE BAA6AAG 0AAGGEA BAGBAAI 6AAGAAGR
16 126568681CCB 86686110 6606BAIS BBBA3GBE
17 1285868836BE
18 Sending connand to terninate for loop
Linux Terninated For Loop
Sending comnand to start for loop
Linux Started the Loop

86060706
86866FAR

Figure 5. Start-Stop command in the bare PC.

Due to the delay between inserting the Udpthreads and
b43 modules, the bind on the receive socket has be done
only after the system is ready to receive packets. Also, we
found that it is necessary to do a bind each time to receive a
packet to ensure that receive does not block. For reasons of
space, we omit details of the methods in Udpthreads that are
needed to enable our Linux kernel space socket application
to work. The bare PC UDP application is designed so that
every time a packet is received from the Linux system, it is
processed and a response is sent.

Sep 25 16:30:56 rkkw-OptiPlex-960 kernel: [415.656288]

RX-130: status flag: 0 <€>[415.656292] RKKW, dma.c,
update max used slots, 0145

Sep 25 16:30:56 rkkw-OptiPlex-960 kernel: [415.6562%4]
RKKAW IN SEND ANSWER

Sep 25 16:30:56 rkkwOptiPlex-960 kernel: [415.6562594])
RKKAW IN SEND ANSWER WHILE LOOP

Sep 25 16:30:56 rkkw-OptiPlex-960 kernel: [415.65629¢]
RKKAW: DATARCVD-SKBUFF: 8 message: EndLoop

Sep 25 16:30:56 rkkw-OptiPlex-960 kernel: [415.656297]
RKKAW: BAREQRCVD: message: Endloop

Sep 25 16:30:56 rkkw-OptiPlex-960 kernel: [415.656297]
RKKAW: DATARCVD-UDPBAREBUFF: message: EndLoop

Sep 25 16:30:57 rkkw-OptiPlex-960 kernel: ([(416.340017])
RECEIVED CO2AND TO TERMINATE FOR LOOP: LCOUNTEZR: 4156

Sep 25 16:30:57 rkkwOptiPlex-960 kernel: [416.340019]
INFIRSTLOOP: 0

Sep 25 16:31:13 rkkw-OptiPlex-960 kernel: [432.500641])
RKKAW IN SEND ANSWER

Sep 25 16:31:13 rkkwOptiPlex-960 kernel: [432.500642)
RKKAW IN SEND ANSWER WHILE LOOP

Sep 25 16:31:13 rkkw-OptiPlex-960 kernel: [432.500644])
RKKAW: DATARCVD-SKBUFF: 10 message: Startloop

Sep 25 16:31:13 rkkw-OptiPlex-960 kernel: [432.5008645]
RKKAW: BAREQDRCVD: message: Startloop

Sep 25 16:31:13 rkkw-OptiPlex-960 kernel: [432.500647]
RKKAW: DATARCVD-UDPBAREBUFF: message: StartLoop

Sep 25 16:31:13 rkkw-OptiPlex-960 kernel: [432.964745]
YY100: DATATOSEND: T2850000085C size: 12

Sep 25 16:31:13 rkkwOptiPlex-960 kernel: [432.572010]
RECEIVED CO2AND TO START FOR LOOP: LCOUNTER: 8148

Sep 25 16:31:13 rkkw-OptiPlex-960 kernel: [432.972012]
LOOP Start AA1l00

Sep 25 16:31:13 rkkw-OptiPlex-560 kernel: [432.972014]
RKKWT7-0 In ksocket_send() udpthreads.: 4278

Figure 6. Start-Stop command in Linux.

J1ent ®2 . Kunning on the bare FL. Towson Un
3 { 5 ; ‘
RevlPtr RevOPtr MXSize wpCnSet notfInd TasklD
FFFFFEFE 09666937 BAAAGARY
wothelp ARPent Ient SndINPtr SndOUTtr CoddSCat
A66AAG25 BAAARRGE AAARAG4C
06 CLIENT:TSTATE 1CBRNO Retcode PortNo HSTATE IskDel TaskID
87 60067663 66BAAEE H6660880 0A660A65
N
f66easn
RetCode HttpCnt TotHTIP State Retr TaskID

HaxNReq MaxNTcbs TotReqst DelCount NoOfRsts UnMatReq taskDel
06666601 0B6AEAR 0ABGAEE1 6BAGAAGE 6ARAARAE BAABAGEE
RCVx TotRcvCnt RCUTine Req/Sec TotMin SynCount FinCount
0666000 06661210 BAGASGY 6OOGAGAC 6BOABAI 6AAAEE1 0AAEA0D
16 126568000459 00666110 B66EOO41 6OGGE7D2
17 128566666702
18 Sending connand to Get PID 8666650C
19 Linux Got the P1D:886645C1
/i) Sending Connand To Kill The Process Nunber:68845C1 86666708

Figure 7. Kill command in the bare PC.

6 Prototype Operations

The following operations are presented only to illustrate
the feasibility of enhancing 802.11 security on Linux by
leveraging bare PC security advantages. In case of an
802.11 Linux client communicating with an Internet TLS
Web server for example, TLS functions could be offloaded
to the bare PC for additional security (larger keys, memory-
based protection of TLS parameters and state, lesser chance
of compromising the wireless link etc.).

Oct 20 12:27:18 rkkw-OptiPlex-960 kernel: ([3633.148314])
RKKAW: DATARCVD-SKBUFF: 7 message: GetPid

Oct 20 12:27:18 rkkw-OptiPlex-960 kernel: [3633.148314]
RKKAW: BAREQDRCVD: message: GetPid

Oct 20 12:27:18 rkkw-OptiPlex-960 kernel: [3633.148315]
RKKAW: BAREQDRCVD to Get The Pid: message: GetPid

Oct 20 12:27:18 rkkw-OptiPlex-960 kernel: [3633.148316]
RKKAW: DATARCVD-UDPBAREBUFF: message: GetPid

Cct 20 12:27:18 rkkw-OptiPlex-960 kernel: [3633.149130]
the current pid: 17857

Oct 20 12:27:18 rkkw-OptiPlex-960 kernel: ([3633.149131]
this is the current pid that we have in decimal: 17857,

pidnum is the pid in hex: 000045C1

Cct 20 12:27:22 rkkw-OptiPlex-960 kernel: [3636.88062€]
RKKAW: DATARCVD-SKBUFF: 9 message: KillProc

Cct 20 12:27:22 rkkw-OptiPlex-960 kernel: [3636.880627]
RKKAW: BAREQDRCVD: message: KillProc

Cct 20 12:27:22 rkkw-OptiPlex-960 kernel: [3636.880628]
RKKAW: BAREQDORCVD To Kill The Process: message: KillProc

Oct 20 12:27:22 rkkw-OptiPlex-960 kernel: ([36€36.880629)
RKKAW: DATARCVD-UDPBAREBUFF: message: KillProc

OCct 20 12:27:22 rkkw-OptiPlex-960 kernel: [3636.880732]
kill the pid:17857

Figure 8. Kill command in Linux.

Press any key to contime...

Bare Received A Consand From Limex To Clear The Screms

Figure 9. Clear command in the bare PC.

2:56 rkkwOptiPlex-960 kernel: [357.880147]
Limix send command to Bare to Clear the Screen
Nov 12 23:22:56 rkkw-OptiPlex-960 kernel: [357.880162)
XX100
Nov 12 23:22:56 rkkwOptiPlex-960 kernel: [357.880163]
BB100
Nov 12 23:22:56 rkkwOptiPlex-960 kernel: [357.880179]
RKKAW: DATARCVD-SKBUFF: 80 message: Bare Received A
Command Fram Linux To Clear The Screen

Figure 10. Clear command in Linux.

Oct 28 16:07:08 rkkw-OptiPlex-960 kernel: [487.576750]
The command flag will change from 2 to 3: 2

Oct 28 16:07:08 rkkw-OptiPlex-960 kernel: ([487.576771]
The command £lag will change from 2 to 3: 2

Oct 28 16:07:08 rkkw-OptiPlex-960 kernel: [487.578004]
the current pid: 16515

Cct 28 16:07:08 rkkw-OptiPlex-960 kernel: [487.57805€]
the current Pid: 16515

Oct 28 16:07:08 rkkw-OptiPlex-960 kernel: ([487.578058]
this is the pid in decimal: 16515

Oct 28 16:07:08 rkkw-OptiPlex-960 kernel: [487.578079]
this is the pid in decimal: 16515

Oct 28 16:07:08 rkkw-OptiPlex-960 kernel: ([487.578081]
this is the pid in hex: 00004083

Oct 28 16:07:08 rkkw-OptiPlex-960 kernel: [487.578101]
this is the pid in hex: 00004083

Oct 28 16:07:12 rkkw-OptiPlex-960 kernel: [491.524779]
The command will change from 3 to 4: 3

Oct 28 16:07:12 rkkw-OptiPlex-960 kernel: [491.524795]
The command will change from 3 to 4: 3

Figure 11. Printk command in Linux.

6.1 Start- Stop Commands

UDPthreads has a never-ending for loop, which sends and
receives packets as long as the thread is running. The stop
command sent from the bare PC is used to stall the for-loop
and force it wait until the start command arrives (for
example, till keys are generated on the bare PC). Figure 5

shows the bare PC screen, and Figure 6 shows the
corresponding Linux trace.

6.2 Kill Command

This command shows how the bare PC application can
kill a thread in the Linux kernel. First, the bare PC sends a
command to the Linux system and requests a PID for the
target process. When the bare PC receives the PID, it sends
a Kill command with the PID to terminate the process.
Figure 7 shows the bare PC screen and Figure 8 shows the
corresponding Linux log file for the Kill command. This
could be used after a TLS Close Notify from a remote
system to Linux for example.

6.3 Clear Command

The Clear command sent by Linux clears the bare screen.
Figure 9 shows the bare PC screen after the clear command,
and Figure 10 shows the Linux log file trace. This command
was found to be convenient during system testing.

6.4 Printk and Readln Commands

The Printk command allows Linux to offload the printing
of its log files to the bare PC system. Figure 11 shows a
trace of the Linux printk data, which is to be sent to the bare
PC for printing. Its counterpart Figure 12 shows this data
printed on the bare PC screen. It is also possible to encrypt
and save this log file in a bare PC file system (on a
removable mass storage device). The Readln command sent
from Linux to bare allows a line to be input at the bare PC
and sent to Linux for processing. Figure 13 shows the data
entered in the bare PC, and Figure 14 shows the Linux log
file trace.

Running on the bare PL., Touson University
] 5 6 7 8
RcvOPtr RXSize upCnSet notFTnd TaskiD
28888BZE CELLLLT el L LT
SndINPtr SndOUTtr CoddSCnt

RevlPtr

ARPent IPent
80660042 BBEA3F6E
TCBRNO Retcode PortNo HSTATE TskDel TaskID
88007663 8000666 88680008 BBBAAAAS
runlsk
i 80008608
RetCode Httplnt TotHTTP State Retr TaskID
HaxNReq MaxNIcbs TotReqst DelCount NoOfRsts UnMatReq taskDel
60086061 00OGGE6O 066AA6A1 66AABEAE 6BAAAAAE BAGABEEE
RCUX TotRcuCnt RCUTine Req/Sec TotMin SynCount FinCount
068606068 B88BA3B7D BBA427AC @ABGAAEG ABBAAAG2 BABEGEA1 AAABABER
88668110

The connand flag will change fron 2 to 3: xd§
the current Pid: xd §

this is the pid in decinal: %df

this is the pid in hex: %s§

The connand will change from 3 to 4: %df

Figure 12. Printk command in the bare PC.

6.5 Packet Transfer

A bare PC can receive packets (via Ethernet) from the
Linux kernel (via 802.11) and return them after processing.
Figure 15 shows a 105-byte UDP packet (34- byte header
and 71 bytes data) in the bare PC’s memory prior to sending

it directly to the Linux kernel. For this packet, Figure 16
shows the Linux log file trace and Figure 17 shows the
packet details in Wireshark. In an actual system, packets
from the Linux kernel on a wireless device can be filtered

ReviPtr notFTnd TaskID

#6880084

upCnSet

RevOPtr RXSize
CLLEEIAY
ARPcnt [Pent SndINPtr SndOUTtr Cod4SCnt
68888661 0BABAAEL
TICBANO Retcode PortNo HSTATE TskDel TaskID
88067683 066A6AGE $0660606 6ABBABAS
runTsk
B9 NAIN: 0BA6A6A4
18 RetCode

HttpCnt TotHTIP State Retr TaskID

NaxNReq MaxNTcbs TotReqst DelCount NoOfRsts UnMatReq taskDel

RCU% TotRevCnt RCUTine Req/Sec TotMin SynCount FinCount

686668110

Bare Received A Command From Linux To Read The Keyboard
This Is A Keyboard Input From Bare PC

Figure 13. ReadIn command in the bare PC.

Nov 5 12:10:05 rkkw-OptiPlex-960 kernel: [737.513386]
Limix sent command to Bare to Read Line From Bare
Kayboard
Nov 5 12:10:05 rkkw-OptiPlex-960 kernel: [737.661153]
RKKAW: DATARCVD-SKBUFF: 20 message: This Is A Keyboard
Input From Bare PC
Nov 5 12:10:05 rkkw-OptiPlex-560 kernel: [737.661157)
RKKAW: DATARCVD-UDPBAREBUFF: message: This Is A Keyboard
Input From Bare PC
Nov 5 12:10:05 rkkw-OptiPlex-960 kernel: [737.661642)
ksocket: RKKAW-UDPTEST-RECEIVE OMD RCVD updcount: 12851
DATAFCRB43: This Is A Keyboard Input From Bare PC

Figure 14. ReadIn command in Linux.

DET4000 16064009 4FORCBRG CAdSERE GABRCA0H 114BA04H 30RGREC 30BARYAC
1530 08acedes eeeceses eaeseses 1C2SFeec
5448 DET40600 19064869 4F7BCBRG BA4Seeee
f
B

4
FESZODAC BCABICES 3253(S6E geee
4760415 44550008 43415056 e
00002860 11480640 76AGFEC T6AR4EC PEGCDDAC ACAACZS ISIISHE BGAA3SH

4
84868680 80406060 6RARARAD ARGRAse 0ARAARAD A3ARAARR ARARAAA AOARARED
Figure 15. Ethernet packet in the bare PC.

Nov 17 13:31:36 ricdkw-OpriPlex-960 kernel: (397.372519)
REFAN: DATARCVD-SKBUTF: €3 message: UDPPACKT:
Nev 17 13:31:36 skkwOptiPlex~960 keznel: [397,372522)
AKIGH: Ethemat Pachet From Bare
Nov 17 13:31:36 rikw-OpuiPlex-960 kernel: (397.372522)
55445050414 3454 3300000674 4894 00018 18 21714 (08004500
00200000400040110c8 (0a370c (4043 70cckd 92 €2 51c000che
155332383500000000000000 6a

Figure 16. Ethernet packet in Linux.

i e e T W -~ =

fe (R Yoo G0 COptoe fube Rty Tuw-: T oo B
eoun TKENeeeTl B0 QRGN

Fhee padd 02

Y tudytkndoroptar Faches TS Doy 671 KA Do 0 DO Fafle Deot

Figure 17. Ethernet packet in Wireshark.

7 Conclusion

We presented a novel system for wireless security that
integrates a Linux kernel-space application on an 802.11
wireless device with a bare machine application. When
kernel security-related operations are offloaded from the
wireless device to the bare machine, security of the
integrated system is improved since the bare machine does
not have an OS or kernel. The implemented prototype can
be enhanced to enable more Linux kernel operations to be
executed on the bare PC. It can also be used for
performance studies of integrated Linux-bare systems.

References

[1] Packet Storm,
accessed October 2017.

[2] G. H. Ford, R. K. Karne, A. L. Wijesinha, and P.
Appiah-Kubi, “The design and implementation of a
bare PC email server”, 33 |EEE International
Computer Software and Applications Conference
(COMPSAC), 2009, pp. 480-485.

[3] B. Rawal, R. K. Karne, and A. L. Wijesinha., “Splitting
HTTP requests on two servers”, 3™ Conference on
Communication Systems and Networks (COMSNETS),
2011, pp. 94-100.

[4] G. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and
S. Girumala, “A peer-to-peer bare PC VolIP
application”, IEEE Consumer Communications and
Networking Conference (CCNC) 2007.

[5] R. Yasinovskyy, A. Alexander, A. L. Wijesinha, and R.
K. Karne, “Bare PC SIP user agent implementation and
performance for secure VoIP”, International Journal on
Advances in Telecommunications, vol 5 no 3 & 4,
2012, pp. 111-119.

https://packetstormsecurity.com,

[6] A. Tsetse, A. Wijesinha, R. Karne, A. Loukili and P.
Appiah-Kubi, “An experimental evaluation of IP4-
IPv6 IVI translation”, ACM SIGAPP Applied
Computing Review, March 2013, Vol. 13, No. 1, pages
19-27.

[7]1 A. Loukili, A. L. Wijesinha, R. K. Karne, and A. K.
Tsetse, TCP's retransmission timer and the minimum
RTO”, 21st International Conference on Computer
Communications and Networks (ICCCN), 2013.

[8] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed.
DOSC: Dispersed operating system computing. 20th
ACM Object-oriented Programming, Systems,
Languages, and Applications Conference (OOPSLA),
2005, pp. 55-62.

[9] R.K. Karne, K. V. Jaganathan, and T. Ahmed, “How to
run C++ applications on a bare PC,” 6th ACIS
International Conference on Software Engineering,
Artificial Intelligence, Net-working, and Parallel /
Distributed Computing (SNPD), 2005, pp. 50-55.

[10]D. R. Engler and M.F. Kaashoek, “Exterminate all
operating system abstractions”, Fifth Workshop on Hot
Topics in Operating Systems, USENIX, 1995, p. 78.

[11] “The OS Kit Project,” School of Computing, University
of Utah, Salt Lake, UT, June 2002,
http://www.cs.utah.edu/flux/oskit, accessed Oct. 2017.

[12]B. Ford, and R. Cox, Vx32: “Lightweight user-level
sandboxing on the x86”, USENIX Annual Technical
Conference, June 2008.

[13]J). Lange, et. al, “Palacios and Kitten: new high
performance operating systems for scalable virtualized
and native supercomputing,” 24th TEEE International
Parallel and Distributed Processing Symposium, 2010.

[14]1R. Rosen, Linux Kernel Networking: Implementation
and Theory. Apress, 2013, vol. 1.

[15]P. Neira-Ayuso, R. M. Gasca, and L. Lefevre,
“Communicating between the kernel and user-space in
Linux using Netlink sockets”, Software-Practice &
Experience, vol. 40, issue 9, pp. 797-810, Aug. 2010.

[16]P. Padala and R. Parimi, “Network programming in the
kernel”, Linux Journal, issue 138, pp. 22-32, Oct. 2005.

[17]P. Werstein, M. Pethick, and Z. Huang, “Locabus: A
kernel to kernel communication channel for cluster
computing”, 5th Conference on Parallel and Distributed
Computing: Applications and Technologies (PDCAT),
pp. 497-504, 2004.

[18]Linux Kernel Newbies, “Simple UDP
http://Kernelnewbies.org, accessed: Oct. 2017.

server”,

[19] GitHub, “iptables_dev_examples”,
http://github.com/joninvski, accessed: Oct. 2017.

