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Abstract 

We describe the novel integration of an 802.11 wireless 

Linux kernel module application with a bare PC application 

that runs with no OS support. Integration is achieved by 

modifying the Linux 802.11 wireless driver. Integration 

enables the bare PC to control the Linux system at the 

kernel level, and to serve as a backend for offloading kernel 

operations. Furthermore, the bare PC can filter and/or 

process packets received by the Linux system. Integration 

with a bare PC has security advantages since it is not 

vulnerable to OS-related attacks, and performance 

advantages since it has no OS overhead. We first present the 

system architecture and its implementation. We then 

demonstrate how: 1) Linux kernel operations can be 

controlled using a bare PC; 2) Linux kernel functions can be 

offloaded to a bare PC; and 3) packets can be exchanged 

directly between the Linux kernel and the bare PC. The 

implemented prototype can serve as a basis for studying 

performance aspects of integrating Linux and bare systems 

in the future. 

1 Introduction 

OS-based systems are continually patched to eliminate 

newly discovered vulnerabilities [1]. Unfortunately, they 

make available a large attack surface due to offering a 

proliferation of services for the convenience of users. While 

hardening OS-based systems is a solution to some security 

issues, the presence of an OS or kernel, however small, 

provides capabilities that enable exploitation. A bare 

machine is an alternative approach to run applications 

without the support of an OS, kernel, or intermediary 

software. Bare systems have many security advantages 

including the following: 1) Bare applications are not 

vulnerable to attacks that require OS support; 2) It is not 

possible for an attacker to run scripts or escalate privileges 

on a bare machine; 3) Bare code is statically compiled (there 

are no dynamically linked libraries); 4) Bare systems do not 

use any local mass storage, thus reducing the ability of an 

attacker to compromise the system; 5) Bare machine code is 

also easier to analyze and secure due to its simplicity and 

smaller size, enabling vulnerabilities in a bare application to 

be more easily detected and fixed. In addition, running a 

bare PC application has performance benefits since it has no 

OS overhead. Many bare PC applications including mail 

servers [2], Web servers [3], peer-to-peer VoIP clients [4], 

SIP servers and user agents [5], and IPv6/v4 translators [6] 

have been previously built. Bare PC applications have also 

been used to measure protocol performance in the absence 

of OS overhead [7]. 

We implement an 802.11 wireless application as a Linux 

kernel module and modify the 802.11 Linux driver to 

integrate the application with a bare PC application. The 

integrated system is a prototype that could be enhanced to 

run 802.11 applications in the kernel to provide better 

security than that afforded by user space applications (which 

could be more easily compromised by an attacker). In 

essence, the prototype demonstrates how a bare PC 

application could directly control kernel operations on 

Linux wireless devices and also serve as a Linux backend 

for offloading security operations. It enables the bare PC to 

send control commands such as start/stop and kill to the 

Linux system; and to execute input/output commands such 

as readln or printk for the Linux system. The Linux system 

uses kernel sockets to directly exchange packets with the 

bare PC. A similar integrated system could be used in the 

future to offload functions from Linux (or Android) wireless 

devices to a bare PC. 

The rest of this paper is organized as follows. In Sections 

2 and 3, we provide an overview of bare machine computing 

and related work respectively. In Section 4, we describe the 

system architecture. In Section 5, we give design and 

implementation details. In Section 6, we demonstrate 

operations using the prototype. In Section 7, we present the 

conclusion. 

2 Bare Machine Computing 

Figure 1 illustrates the difference between conventional 

computing and bare machine computing. In conventional 

computing, devices run an OS or some form of a kernel, or 

are embedded systems. In addition, most use local mass 
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storage or a disk. The basic input/output system (BIOS) is 

commonly used to start up the machine and load an OS. The 

OS also uses a variety of vendor-specific device drivers. 

Conventional computer applications are platform dependent 

as they use system calls or an API to reach the hardware. 

Java applications are platform independent, but they require 

a platform dependent JVM. Conventional computing 

applications thus depend on their execution environment 

which is provided by an OS. 

Bare applications are implemented as application objects 

that are self-contained, self-managed, and self-executable 

[8]. Applications include the necessary boot and load code, 

network protocols, and device drivers and are stored on 

removable mass storage (such as a USB) under individual 

user control. They are written in a single programming 

language such as C/C++ with very little assembly code, and 

independent of computing environments [9]. A single bare 

application or a bare application suite consisting of several 

bare applications is run on ordinary PCs with IA-32 (Intel) 

hardware. The bare applications can communicate with 

other bare or conventional applications using conventional 

access control and authentication mechanisms if needed. A 

bare machine application includes a main task that runs 

continually when no other tasks are running. It uses a 

receive task to receive packets from an Ethernet connection 

and application-specific tasks such as HTTP tasks in case of 

a bare Web server. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Differences between conventional and bare systems. 

Each bare application contains its own (OS-independent) 

lean versions of protocols in the TCP/IP suite for 

communication with OS-based machines and other bare 

machines. Security protocols such as IPsec or TLS are 

included as needed. Bare machines can also be used to 

evaluate the impact of OS overhead on protocol 

performance [6]. 

 

Figure 2. Integration architecture. 

3 Related Work 

Bare machine computing is similar to other approaches 

for reducing OS overhead and improving application 

performance such as Exokernel [10], OS-Kit [11], Sand-

boxing [12] and Palacio/Kitten [13]. The main difference is 

that bare machine applications run without the support of 

any OS or kernel. A comprehensive treatment of Linux 

kernel networking is provided in [14]. The use of Netlink 

sockets to communicate between user space applications 

and the Linux kernel is discussed in [15]. The details of an 

in-kernel FTP client are given in [16]. A system for 

communicating between Linux kernels in cluster computers 

using Ethernet broadcast is implemented in [17]. To the best 

of our knowledge, there are no systems that offload Linux 

kernel functions to a system with no OS or kernel (for 

security purposes or otherwise).  

4 System Architecture 

The architecture shown in the upper part of Figure 2 is 

used for the prototype, which integrates the Linux system 

(Kernel 3.9.3/Ubuntu 12.10) with the bare PC. Both 

machines are Dell GX 960 PCs. The Linux system 

associates with an 802.11n access point connected to a 

gigabit Ethernet switch. The bare PC connects to the switch.  

Other integration architectures are possible: the bare PC 

can be on the Internet (lower part of Figure 2); or the 

wireless (802.11) connection for the Linux system can be 

replaced by an Ethernet connection. While this prototype 

only uses the 802.11 Linux driver for integration, other 

modules in the Linux kernel could also be integrated with a 

bare system. 

As shown in Figure 3, we added a new Linux kernel 

module called Udpthreads for communicating with a bare 

PC. It opens two UDP kernel sockets (send and receive) for 

use by the Linux kernel space application. The Udpthreads 

module is inserted between the mac80211 (802.11 wireless 

MAC) and b43 (Broadcom wireless driver) modules in the 



Linux kernel. We modified the code in [18] enabling 

Udpthreads to send/receive commands to/from a bare PC, 

and replaced a callback routine (that did not work) with 

work queues [19].  

While UDP is used in the prototype to communicate 

between the systems for simplicity and efficiency, TCP 

connections could also be used. IP-level communication 

between the Linux system and the bare PC can be secured 

with IPsec. We do not discuss securing Linux-bare 

communication in this version of the prototype. 

 

Figure 3. Bare-Linux communication. 

 

5       Design and Implementation 

The integrated system is implemented using the 

Udpthreads and b43 wireless driver modules in the Linux 

kernel (written in C), and the UDP application in the bare 

PC (written in C++). The design flow for the Udpthreads 

module is shown in Figure 4. Since the Udpthreads module 

is inserted before the modified b43 module, the Send socket 

is created first and used for sending dummy packets to the 

bare PC until the modified b43 module starts running. In the 

b43 module, main.c has calls to the Udptest() function in 

Udpthreads. This function initiates actions in the 

Udpthreads module based on commands (Bare OPs) to 

trigger the exchange of packets with the bare PC. The 

packets, which are exchanged via Send/Receive, once the 

b43 module is running, enable the receiving system to 

perform the corresponding operation.  

 

Figure 4. UDPthreads module flow. 

 

 

Figure 5. Start-Stop command in the bare PC. 

Due to the delay between inserting the Udpthreads and 

b43 modules, the bind on the receive socket has be done 

only after the system is ready to receive packets. Also, we 

found that it is necessary to do a bind each time to receive a 

packet to ensure that receive does not block. For reasons of 

space, we omit details of the methods in Udpthreads that are 

needed to enable our Linux kernel space socket application 

to work. The bare PC UDP application is designed so that 

every time a packet is received from the Linux system, it is 

processed and a response is sent. 



 

Figure 6. Start-Stop command in Linux. 

 

Figure 7. Kill command in the bare PC. 

6 Prototype Operations 

The following operations are presented only to illustrate 

the feasibility of enhancing 802.11 security on Linux by 

leveraging bare PC security advantages. In case of an 

802.11 Linux client communicating with an Internet TLS 

Web server for example, TLS functions could be offloaded 

to the bare PC for additional security (larger keys, memory-

based protection of TLS parameters and state, lesser chance 

of compromising the wireless link etc.). 

 

Figure 8. Kill command in Linux. 

 

Figure 9. Clear command in the bare PC. 

 

Figure 10. Clear command in Linux. 

 

Figure 11. Printk command in Linux. 

6.1 Start – Stop Commands  

UDPthreads has a never-ending for loop, which sends and 

receives packets as long as the thread is running. The stop 

command sent from the bare PC is used to stall the for-loop 

and force it wait until the start command arrives (for 

example, till keys are generated on the bare PC). Figure 5 



shows the bare PC screen, and Figure 6 shows the 

corresponding Linux trace. 

6.2 Kill Command 

This command shows how the bare PC application can 

kill a thread in the Linux kernel. First, the bare PC sends a 

command to the Linux system and requests a PID for the 

target process. When the bare PC receives the PID, it sends 

a Kill command with the PID to terminate the process. 

Figure 7 shows the bare PC screen and Figure 8 shows the 

corresponding Linux log file for the Kill command. This 

could be used after a TLS Close Notify from a remote 

system to Linux for example. 

6.3 Clear Command 

The Clear command sent by Linux clears the bare screen. 

Figure 9 shows the bare PC screen after the clear command, 

and Figure 10 shows the Linux log file trace. This command 

was found to be convenient during system testing. 

6.4 Printk and Readln Commands 

The Printk command allows Linux to offload the printing 

of its log files to the bare PC system. Figure 11 shows a 

trace of the Linux printk data, which is to be sent to the bare 

PC for printing. Its counterpart Figure 12 shows this data 

printed on the bare PC screen. It is also possible to encrypt 

and save this log file in a bare PC file system (on a 

removable mass storage device). The Readln command sent 

from Linux to bare allows a line to be input at the bare PC 

and sent to Linux for processing. Figure 13 shows the data 

entered in the bare PC, and Figure 14 shows the Linux log 

file trace. 

 

Figure 12. Printk command in the bare PC. 

6.5 Packet Transfer 

A bare PC can receive packets (via Ethernet) from the 

Linux kernel (via 802.11) and return them after processing. 

Figure 15 shows a 105-byte UDP packet (34- byte header 

and 71 bytes data) in the bare PC’s memory prior to sending 

it directly to the Linux kernel. For this packet, Figure 16 

shows the Linux log file trace and Figure 17 shows the 

packet details in Wireshark. In an actual system, packets 

from the Linux kernel on a wireless device can be filtered 

and/or processed by the bare PC. 

 

Figure 13. Readln command in the bare PC. 

 

        Figure 14. Readln command in Linux. 

 

Figure 15. Ethernet packet in the bare PC. 

 

Figure 16. Ethernet packet in Linux. 



 

Figure 17. Ethernet packet in Wireshark. 

7 Conclusion 

We presented a novel system for wireless security that 

integrates a Linux kernel-space application on an 802.11 

wireless device with a bare machine application. When 

kernel security-related operations are offloaded from the 

wireless device to the bare machine, security of the 

integrated system is improved since the bare machine does 

not have an OS or kernel. The implemented prototype can 

be enhanced to enable more Linux kernel operations to be 

executed on the bare PC. It can also be used for 

performance studies of integrated Linux-bare systems. 
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