
Integrating an 802.11 Wireless Application in a Linux Kernel Module with a Bare

PC Application

Rasha A. Almajed, William Agosto-Padilla, Ramesh K. Karne, Alexander L. Wijesinha

Department of Computer & Information Sciences, Towson University

Towson MD, 21252, USA

{ralmajed, rkarne, awijesinha}@towson.edu, agopad@gmail.com

Abstract

We describe the novel integration of an 802.11 wireless

Linux kernel module application with a bare PC application

that runs with no OS support. Integration is achieved by

modifying the Linux 802.11 wireless driver. Integration

enables the bare PC to control the Linux system at the

kernel level, and to serve as a backend for offloading kernel

operations. Furthermore, the bare PC can filter and/or

process packets received by the Linux system. Integration

with a bare PC has security advantages since it is not

vulnerable to OS-related attacks, and performance

advantages since it has no OS overhead. We first present the

system architecture and its implementation. We then

demonstrate how: 1) Linux kernel operations can be

controlled using a bare PC; 2) Linux kernel functions can be

offloaded to a bare PC; and 3) packets can be exchanged

directly between the Linux kernel and the bare PC. The

implemented prototype can serve as a basis for studying

performance aspects of integrating Linux and bare systems

in the future.

1 Introduction

OS-based systems are continually patched to eliminate

newly discovered vulnerabilities [1]. Unfortunately, they

make available a large attack surface due to offering a

proliferation of services for the convenience of users. While

hardening OS-based systems is a solution to some security

issues, the presence of an OS or kernel, however small,

provides capabilities that enable exploitation. A bare

machine is an alternative approach to run applications

without the support of an OS, kernel, or intermediary

software. Bare systems have many security advantages

including the following: 1) Bare applications are not

vulnerable to attacks that require OS support; 2) It is not

possible for an attacker to run scripts or escalate privileges

on a bare machine; 3) Bare code is statically compiled (there

are no dynamically linked libraries); 4) Bare systems do not

use any local mass storage, thus reducing the ability of an

attacker to compromise the system; 5) Bare machine code is

also easier to analyze and secure due to its simplicity and

smaller size, enabling vulnerabilities in a bare application to

be more easily detected and fixed. In addition, running a

bare PC application has performance benefits since it has no

OS overhead. Many bare PC applications including mail

servers [2], Web servers [3], peer-to-peer VoIP clients [4],

SIP servers and user agents [5], and IPv6/v4 translators [6]

have been previously built. Bare PC applications have also

been used to measure protocol performance in the absence

of OS overhead [7].

We implement an 802.11 wireless application as a Linux

kernel module and modify the 802.11 Linux driver to

integrate the application with a bare PC application. The

integrated system is a prototype that could be enhanced to

run 802.11 applications in the kernel to provide better

security than that afforded by user space applications (which

could be more easily compromised by an attacker). In

essence, the prototype demonstrates how a bare PC

application could directly control kernel operations on

Linux wireless devices and also serve as a Linux backend

for offloading security operations. It enables the bare PC to

send control commands such as start/stop and kill to the

Linux system; and to execute input/output commands such

as readln or printk for the Linux system. The Linux system

uses kernel sockets to directly exchange packets with the

bare PC. A similar integrated system could be used in the

future to offload functions from Linux (or Android) wireless

devices to a bare PC.

The rest of this paper is organized as follows. In Sections

2 and 3, we provide an overview of bare machine computing

and related work respectively. In Section 4, we describe the

system architecture. In Section 5, we give design and

implementation details. In Section 6, we demonstrate

operations using the prototype. In Section 7, we present the

conclusion.

2 Bare Machine Computing

Figure 1 illustrates the difference between conventional

computing and bare machine computing. In conventional

computing, devices run an OS or some form of a kernel, or

are embedded systems. In addition, most use local mass

978-1-943436-10-1 / copyright ISCA, CATA 2018
March 19-21, 2018, Las Vegas, Nevada, USA

storage or a disk. The basic input/output system (BIOS) is

commonly used to start up the machine and load an OS. The

OS also uses a variety of vendor-specific device drivers.

Conventional computer applications are platform dependent

as they use system calls or an API to reach the hardware.

Java applications are platform independent, but they require

a platform dependent JVM. Conventional computing

applications thus depend on their execution environment

which is provided by an OS.

Bare applications are implemented as application objects

that are self-contained, self-managed, and self-executable

[8]. Applications include the necessary boot and load code,

network protocols, and device drivers and are stored on

removable mass storage (such as a USB) under individual

user control. They are written in a single programming

language such as C/C++ with very little assembly code, and

independent of computing environments [9]. A single bare

application or a bare application suite consisting of several

bare applications is run on ordinary PCs with IA-32 (Intel)

hardware. The bare applications can communicate with

other bare or conventional applications using conventional

access control and authentication mechanisms if needed. A

bare machine application includes a main task that runs

continually when no other tasks are running. It uses a

receive task to receive packets from an Ethernet connection

and application-specific tasks such as HTTP tasks in case of

a bare Web server.

Figure 1. Differences between conventional and bare systems.

Each bare application contains its own (OS-independent)

lean versions of protocols in the TCP/IP suite for

communication with OS-based machines and other bare

machines. Security protocols such as IPsec or TLS are

included as needed. Bare machines can also be used to

evaluate the impact of OS overhead on protocol

performance [6].

Figure 2. Integration architecture.

3 Related Work

Bare machine computing is similar to other approaches

for reducing OS overhead and improving application

performance such as Exokernel [10], OS-Kit [11], Sand-

boxing [12] and Palacio/Kitten [13]. The main difference is

that bare machine applications run without the support of

any OS or kernel. A comprehensive treatment of Linux

kernel networking is provided in [14]. The use of Netlink

sockets to communicate between user space applications

and the Linux kernel is discussed in [15]. The details of an

in-kernel FTP client are given in [16]. A system for

communicating between Linux kernels in cluster computers

using Ethernet broadcast is implemented in [17]. To the best

of our knowledge, there are no systems that offload Linux

kernel functions to a system with no OS or kernel (for

security purposes or otherwise).

4 System Architecture

The architecture shown in the upper part of Figure 2 is

used for the prototype, which integrates the Linux system

(Kernel 3.9.3/Ubuntu 12.10) with the bare PC. Both

machines are Dell GX 960 PCs. The Linux system

associates with an 802.11n access point connected to a

gigabit Ethernet switch. The bare PC connects to the switch.

Other integration architectures are possible: the bare PC

can be on the Internet (lower part of Figure 2); or the

wireless (802.11) connection for the Linux system can be

replaced by an Ethernet connection. While this prototype

only uses the 802.11 Linux driver for integration, other

modules in the Linux kernel could also be integrated with a

bare system.

As shown in Figure 3, we added a new Linux kernel

module called Udpthreads for communicating with a bare

PC. It opens two UDP kernel sockets (send and receive) for

use by the Linux kernel space application. The Udpthreads

module is inserted between the mac80211 (802.11 wireless

MAC) and b43 (Broadcom wireless driver) modules in the

Linux kernel. We modified the code in [18] enabling

Udpthreads to send/receive commands to/from a bare PC,

and replaced a callback routine (that did not work) with

work queues [19].

While UDP is used in the prototype to communicate

between the systems for simplicity and efficiency, TCP

connections could also be used. IP-level communication

between the Linux system and the bare PC can be secured

with IPsec. We do not discuss securing Linux-bare

communication in this version of the prototype.

Figure 3. Bare-Linux communication.

5 Design and Implementation

The integrated system is implemented using the

Udpthreads and b43 wireless driver modules in the Linux

kernel (written in C), and the UDP application in the bare

PC (written in C++). The design flow for the Udpthreads

module is shown in Figure 4. Since the Udpthreads module

is inserted before the modified b43 module, the Send socket

is created first and used for sending dummy packets to the

bare PC until the modified b43 module starts running. In the

b43 module, main.c has calls to the Udptest() function in

Udpthreads. This function initiates actions in the

Udpthreads module based on commands (Bare OPs) to

trigger the exchange of packets with the bare PC. The

packets, which are exchanged via Send/Receive, once the

b43 module is running, enable the receiving system to

perform the corresponding operation.

Figure 4. UDPthreads module flow.

Figure 5. Start-Stop command in the bare PC.

Due to the delay between inserting the Udpthreads and

b43 modules, the bind on the receive socket has be done

only after the system is ready to receive packets. Also, we

found that it is necessary to do a bind each time to receive a

packet to ensure that receive does not block. For reasons of

space, we omit details of the methods in Udpthreads that are

needed to enable our Linux kernel space socket application

to work. The bare PC UDP application is designed so that

every time a packet is received from the Linux system, it is

processed and a response is sent.

Figure 6. Start-Stop command in Linux.

Figure 7. Kill command in the bare PC.

6 Prototype Operations

The following operations are presented only to illustrate

the feasibility of enhancing 802.11 security on Linux by

leveraging bare PC security advantages. In case of an

802.11 Linux client communicating with an Internet TLS

Web server for example, TLS functions could be offloaded

to the bare PC for additional security (larger keys, memory-

based protection of TLS parameters and state, lesser chance

of compromising the wireless link etc.).

Figure 8. Kill command in Linux.

Figure 9. Clear command in the bare PC.

Figure 10. Clear command in Linux.

Figure 11. Printk command in Linux.

6.1 Start – Stop Commands

UDPthreads has a never-ending for loop, which sends and

receives packets as long as the thread is running. The stop

command sent from the bare PC is used to stall the for-loop

and force it wait until the start command arrives (for

example, till keys are generated on the bare PC). Figure 5

shows the bare PC screen, and Figure 6 shows the

corresponding Linux trace.

6.2 Kill Command

This command shows how the bare PC application can

kill a thread in the Linux kernel. First, the bare PC sends a

command to the Linux system and requests a PID for the

target process. When the bare PC receives the PID, it sends

a Kill command with the PID to terminate the process.

Figure 7 shows the bare PC screen and Figure 8 shows the

corresponding Linux log file for the Kill command. This

could be used after a TLS Close Notify from a remote

system to Linux for example.

6.3 Clear Command

The Clear command sent by Linux clears the bare screen.

Figure 9 shows the bare PC screen after the clear command,

and Figure 10 shows the Linux log file trace. This command

was found to be convenient during system testing.

6.4 Printk and Readln Commands

The Printk command allows Linux to offload the printing

of its log files to the bare PC system. Figure 11 shows a

trace of the Linux printk data, which is to be sent to the bare

PC for printing. Its counterpart Figure 12 shows this data

printed on the bare PC screen. It is also possible to encrypt

and save this log file in a bare PC file system (on a

removable mass storage device). The Readln command sent

from Linux to bare allows a line to be input at the bare PC

and sent to Linux for processing. Figure 13 shows the data

entered in the bare PC, and Figure 14 shows the Linux log

file trace.

Figure 12. Printk command in the bare PC.

6.5 Packet Transfer

A bare PC can receive packets (via Ethernet) from the

Linux kernel (via 802.11) and return them after processing.

Figure 15 shows a 105-byte UDP packet (34- byte header

and 71 bytes data) in the bare PC’s memory prior to sending

it directly to the Linux kernel. For this packet, Figure 16

shows the Linux log file trace and Figure 17 shows the

packet details in Wireshark. In an actual system, packets

from the Linux kernel on a wireless device can be filtered

and/or processed by the bare PC.

Figure 13. Readln command in the bare PC.

 Figure 14. Readln command in Linux.

Figure 15. Ethernet packet in the bare PC.

Figure 16. Ethernet packet in Linux.

Figure 17. Ethernet packet in Wireshark.

7 Conclusion

We presented a novel system for wireless security that

integrates a Linux kernel-space application on an 802.11

wireless device with a bare machine application. When

kernel security-related operations are offloaded from the

wireless device to the bare machine, security of the

integrated system is improved since the bare machine does

not have an OS or kernel. The implemented prototype can

be enhanced to enable more Linux kernel operations to be

executed on the bare PC. It can also be used for

performance studies of integrated Linux-bare systems.

References

[1] Packet Storm, https://packetstormsecurity.com,

accessed October 2017.

[2] G. H. Ford, R. K. Karne, A. L. Wijesinha, and P.

Appiah-Kubi, “The design and implementation of a

bare PC email server”, 33rd IEEE International

Computer Software and Applications Conference

(COMPSAC), 2009, pp. 480-485.

[3] B. Rawal, R. K. Karne, and A. L. Wijesinha., “Splitting

HTTP requests on two servers”, 3rd Conference on

Communication Systems and Networks (COMSNETS),

2011, pp. 94-100.

[4] G. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and

S. Girumala, “A peer-to-peer bare PC VoIP

application”, IEEE Consumer Communications and

Networking Conference (CCNC) 2007.

[5] R. Yasinovskyy, A. Alexander, A. L. Wijesinha, and R.

K. Karne, “Bare PC SIP user agent implementation and

performance for secure VoIP”, International Journal on

Advances in Telecommunications, vol 5 no 3 & 4,

2012, pp. 111-119.

[6] A. Tsetse, A. Wijesinha, R. Karne, A. Loukili and P.

Appiah-Kubi, “An experimental evaluation of IP4-

IPv6 IVI translation”, ACM SIGAPP Applied

Computing Review, March 2013, Vol. 13, No. 1, pages

19-27.

[7] A. Loukili, A. L. Wijesinha, R. K. Karne, and A. K.

Tsetse, TCP's retransmission timer and the minimum

RTO”, 21st International Conference on Computer

Communications and Networks (ICCCN), 2013.

[8] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed.

DOSC: Dispersed operating system computing. 20th

ACM Object-oriented Programming, Systems,

Languages, and Applications Conference (OOPSLA),

2005, pp. 55-62.

[9] R.K. Karne, K. V. Jaganathan, and T. Ahmed, “How to

run C++ applications on a bare PC,” 6th ACIS

International Conference on Software Engineering,

Artificial Intelligence, Net-working, and Parallel /

Distributed Computing (SNPD), 2005, pp. 50-55.

[10] D. R. Engler and M.F. Kaashoek, “Exterminate all

operating system abstractions”, Fifth Workshop on Hot

Topics in Operating Systems, USENIX, 1995, p. 78.

[11] “The OS Kit Project,” School of Computing, University

of Utah, Salt Lake, UT, June 2002,

http://www.cs.utah.edu/flux/oskit, accessed Oct. 2017.

[12] B. Ford, and R. Cox, Vx32: “Lightweight user-level

sandboxing on the x86”, USENIX Annual Technical

Conference, June 2008.

[13] J. Lange, et. al, “Palacios and Kitten: new high

performance operating systems for scalable virtualized

and native supercomputing,” 24th IEEE International

Parallel and Distributed Processing Symposium, 2010.

[14] R. Rosen, Linux Kernel Networking: Implementation

and Theory. Apress, 2013, vol. 1.

[15] P. Neira-Ayuso, R. M. Gasca, and L. Lefevre,

“Communicating between the kernel and user-space in

Linux using Netlink sockets”, Software-Practice &

Experience, vol. 40, issue 9, pp. 797-810, Aug. 2010.

[16] P. Padala and R. Parimi, “Network programming in the

kernel”, Linux Journal, issue 138, pp. 22-32, Oct. 2005.

[17] P. Werstein, M. Pethick, and Z. Huang, “Locabus: A

kernel to kernel communication channel for cluster

computing”, 5th Conference on Parallel and Distributed

Computing: Applications and Technologies (PDCAT),

pp. 497-504, 2004.

[18] Linux Kernel Newbies, “Simple UDP server”,

http://Kernelnewbies.org, accessed: Oct. 2017.

[19] GitHub, “iptables_dev_examples”,

http://github.com/joninvski, accessed: Oct. 2017.

