
Interoperable SQLite for a Bare PC

William Thompson, Ramesh Karne, Alexander Wijesinha, and Hojin Chang

Towson University, Towson MD 21252, USA

Abstract. SQLite, a widely used database engine, has been previously
transformed to run on a bare PC without the support of any OS or kernel.
However, the transformed SQLite database was stored in main memory
i.e., it had no file system. This paper extends the transformation process
to enable bare PC SQLite to work with standard file system interfaces
based on the FAT32 file specification. It further presents mechanisms
and programming interfaces for a bare machine file system integrated
with SQLite that uses a removable USB flash drive. The bare SQLite
database and file system can interoperate with conventional OS-based
database systems. It can be adapted in the future to work with bare
Web browsers, large bare databases, other bare applications, and bare
mobile devices.

1 INTRODUCTION

SQLite is a self-contained, zero-configuration, stand-alone (not client/server)
lean database management system. It is commonly used in Web browsers, mo-
bile devices and embedded systems. A SQLite amalgamation [19] consisting of
about 130K lines of code has been transformed to run on a bare PC with no
operating system (OS) or kernel [12][13]. The bare PC SQLite version uses the
:memory option, where the database is stored in real memory with no standard
file interfaces. Potential advantages of running SQLite or applications such as
Web servers or VoIP clients on a bare PC include the elimination of OS overhead
and OS-related vulnerabilities.

This paper discusses the addition of a standard FAT32 file system [11] to the
bare PC SQLite version so that it can interoperate with a conventional OS-
based SQLite database engine. The lean bare PC FAT32 file system [10], which
is intertwined with the associated application, uses a removable USB flash drive.

2 BARE MACHINE COMPUTING

Approaches to reduce OS overhead and improve application performance include
Exokernel [2], OS-Kit [14] and Palacio/Kitten [9].In a bare machine computing
or bare PC application, all intermediary software in the form of an OS, lean
kernel, or external libraries is eliminated. Bare applications are written in single
programming language such as C/C++ and directly communicate to hardware
without middleware or a centralized kernel [6][7]. Bare PC Web servers [4], Web-
mail servers [1], email servers [3] and split-servers [16][17] have been developed
previously.

m1
Text Box
© Springer International Publishing AG 2017S. Kozielski et al. (Eds.): BDAS 2017, CCIS 716, pp. 177 -188, 2017.DOI: 10.1007/978-3-319-58274-0 15



2

Fig. 1. Software Architecture

3 SQLITE TRANSFORMATION

The SQLite amalgamation package used in the transformation [13] has two
source files (shell.c and sqlite3.c) and two header files. It runs on Windows/Visual
Studio (VS). Detailed documentation on SQLite amalgamation is given in [20].
SQLite provides a command line interface and a file interface for user input. SQL
queries can be run in single command mode or as a transaction. The database
is stored using a standard SQLite file format in Windows or Linux. The trans-
formation process is described in detail in [12][13]. It eliminated 85 system calls
and replaced them with direct bare PC hardware interfaces. These system calls
can be classified as file, timer, data types, process, memory, and standard I/O.
The file system calls were not replaced as the database was intended to run in
main memory. The remaining calls were replaced with equivalent bare PC calls,
which are much simpler and do not require any centralized OS or kernel. These
calls run in single user mode along with its application. Conventional database
management systems use standard file systems that are provided by the host OS,
and it is possible to port a database from one OS platform to another by using
middleware tools [18]. However, these tools are themselves platform dependent
and cannot be used to adapt an OS-based database/file system to run on a bare
PC.



3

4 DESIGN AND INTERFACES

Figure 1 shows respective architectural views of conventional and bare PC envi-
ronments for running SQLite. We assume USB mass storage is used to store the
SQLite database file based on the FAT32 file system. In a conventional environ-
ment such as Visual Studio (VS) on Windows, SQLite runs on top of the OS,
which provides the necessary interfaces for virtual memory, file management and
device drivers. In a bare PC, four objects MemObj, FileObj, UsbFileObj and Us-
bObj provide the complete functionality needed for the operation of SQLite. The
MemObj provides real memory allocation and deallocation needed for SQLite
(called by malloc() and free()). The FileObj provides the above file API. A USB

Fig. 2. SQLite virtural file system object

file object (UsbFileObj) provides initialization, reset and plug-and-play features



4

for all USB ports. Finally, a USB device driver object (UsbObj) provides driver
functionality [8] specific to bare PC applications, which uses USB 2.0 standard
specification [15], enhanced host controller specification [5], and USB mass stor-
age specification [21]. These four objects are an integral part of SQLite and a
database application running on a bare PC.

We enhanced the bare PC file system in [10] to be fully compatible with the

Table 1. Attributes for sqlite3−vfs

Windows Bare PC

iVersion iVersion -l
sizeof(winFile) sizeof(bareFile)
MAX−PATH MAXPATHNAME −512
pNext pNext −0
win32 ”bare”
pAppData pAppData - 0
winOpen bareOpen
winDelete bareDelete
winAccess bareAccess
winFullPathname stub only
winDlOpen stub only
winDlError stub only
winDlSym stub only
winDlClose stub only
winRandomness bareRandomness
winSleep bareSleep
winCurrentTime bareCurrentTime
winGetLastError N/A (optional)
winCurrentTimeInt64 N/A
xSetSystemCall N/A
xGetSystemCall N/A
xNextSystemCall N/A

FAT32 specification so that it can interoperate with any OS platform. The en-
hanced file API has five functions, namely: createFile(), deleteFile(), resizeFile(),
flushFile(), and flushAll(). These are used to interface with the SQLite database.
The createFile() function has a file name, memory address pointer, file size and
file attributes. It returns a file handle. The file handle is the index value of the
file in a file table structure, which has all the control information of a file. This
approach enables a direct index into the file table to be used without the need
for searching. The deleteFile() function uses the file handle to delete a file. The
resizeFile() function is used to increase or decrease a previously allocated file
size. The flushFile() function updates the USB mass storage device from its re-
lated data structures and memory. The flushAll() interface is used to flush all
files and related structures onto the USB drive. A single executable includes all



5

the bare PC code. SQLite runs as a separate task within the application. As
SQLite is written in C, the code is wrapped in C++ to communicate with the
object-oriented code in the bare PC. In a Windows environment, the USB con-
tains the SQLite database; in a bare PC, it contains the SQLite database along
with boot, load, SQLite application, and other applications such as a Web server
if needed.

SQLite provides a separate wrapper for a given OS interface or virtual file system
(VFS) [20]. This wrapper approach in SQLite motivated us to develop a bare
PC API that substitutes for a given OS and enables the development of a bare
PC file system interface to SQLite. The three structures changed in the SQLite
code are sqlite3−vfs, sqlite3−io−methods, and sqlite3−file. A brief overview
of the changes is given below.

4.1 Virtual File System Object

The sqlite3−vfs (virtual file system) structure shown in Figure 2 defines the in-
terface between the SQLite core and the underlying OS [20]. In the Windows OS,
an instance of this structure illustrates the attributes needed for SQLite as shown
in the left column of Table 1. A total of 22 functions are used in this object. The
equivalent bare PC functions are shown in the right column of this table. For the
bare PC implementation, five functions are optional and not applicable, and five
methods are provided with stubs as these are Windows API calls. The remain-
ing functions are implemented for the bare PC. The most important method in
this object is bareOpen, which is used to open/create a SQLite database file. In
order to substitute our function, we created a register−barevfs() function and
inserted it into the sqlite3−os−init() function, which initializes all OS parame-
ters. Figure 3 illustrates a trace of SQLite control flow from the open−db() call
to the bareOpen() function.

4.2 I/O Method Object

SQLite manipulates the contents of the file system using a combination of four
types of file operations: create, delete, truncate and write. The SQLite object
named sqlite3−io−method consists of I/O functions as shown in the left column
of Table 2. There are 17 functions in the Windows API related to the SQLite
VFS. Eight functions are not applicable to a bare PC environment and the other
nine are implemented for bare PC applications as shown in the table.

The bareRead() and bareWrite() functions do read and write respectively using
real memory, and all the USB structures and data are memory mapped into main
memory. When the bareSync() function is called, the bare PC system flushes the
database file to the USB. In addition, it also flushes the root directory, modified
FAT tables and appropriate file data. The bare PC application directly invokes
the device driver to read or write to a USB flash drive. The flush operation is only
used when needed or when a transaction is complete. The frequency of updates
to mass storage is controlled by the application. The bare PC file system is



6

Fig. 3. Trace of SQLite control flow

designed for optimal performance and reduces write operations as they are slow
in a USB.

4.3 File Object

The file object structure represents an open file in the SQLite OS interface layer.
We have extended this object in bareFile. The extended structure consists of the

−iobuf structure which contains parameters that are needed to implement the
bare PC file system. For example, cacheStartAddr is the real memory address
provided by the memory object. The index value points to the entry in the
file table. The openFile method also has an instance of a bareFile which is a
sqlite3−file type. This bare PC file instance is linked with bareio which points
to all the functions needed in a bare PC. These are the sqlite3−io−methods
described in the previous section. The implementation of the above functions
is done in C. The size of the new code is approximately 1,300 lines including
comments. The new SQLite runs on a bare PC FAT32 file system.

5 INTEROPERABILITY AND PERFORMANCE

The SQLite database file that runs on a bare PC is interoperable with one
running on VS/Windows. Thus, a database can be created in Windows or on
a bare PC and used in either environment. The same can be done with data
updates. In conventional systems, interoperability is achieved by porting the
database management system to run on a different platform. For example, an
Oracle DBMS running on Linux can be ported to run on Windows. While
such database systems have OS-specific dependencies (e.g. Oracle Linux, Oracle
Solaris, Oracle Windows), the bare PC SQLite database system is independent of



7

Table 2. I/O methods for sqlite3−file

Windows Bare PC

iVersion iVersion -l
winSync bareSync
winFileSize bareFileSize
winLock bareLock N/A
winUnlock bareUnlock -N/A
winCheckReservedLock bareCheckReservedLock -N/A
winFileControl bareFileControl -N/A
winSectorSize bareSectorSize
winDeviceCharacteristics bareDeviceCharacteristics
winShmMap N/A (optional)
winShmLock N/A
winShmBarrier N/A
winShmUnmap N/A

Fig. 4. SQLite on Windows



8

any OS platform; it can run on any x86 based machine with a USB 2.0 interface
and create a database file (FAT32 format) that can be used by SQLite running
on any platform. Also, one can easily design and implement interfaces that work
with other file system formats for different computer hardware architectures.

5.1 Interoperability

This section describes experiments to demonstrate the interoperability of SQLite.
The measurements were conducted on Dell Optiplex 960 models with a 3.16
GHz dual-core system. However, we only ran this on a single core processor to
compare with a single core bare PC application. The SQLite database was run
on Windows 7 with Visual Studio (VS) 2010 and also on a bare PC with no OS
or hard disk. The USB flash drive contains the bare application suite including
boot and load programs. We also ran SQLite and a Web server application in a
multi-threaded manner on the bare PC.

Initially, a USB is created with the bare application suite and no database file on
it. This is a bootable and executable USB for the bare PC (it contains bare boot
sector, loader, and application). The same USB is then used to save a SQLite
database file created by VS in Windows. Figure 4 shows a screenshot on the
Windows machine, where the database was created and tested. Here, one table
(name: s5k) containing 5,000 inserts was edited in a file (5k.sql) formed as a
single transaction. This file was read by SQLite using the .read command and
executed. The .tables command shows the name of the table (s5k) in VS. One
new record was inserted into the above table (123 VS) and the count(*) SQL
statement shows 5,001 records in the database. At this point, we use .quit from
VS and obtained the created database rkktest.sdb, which was saved in the USB.

This USB with the database file is used to boot the bare PC. The bare PC, after
initialization and loading, reads the database file into memory as a memory
mapped file. It recognizes the existing database which came from VS/Windows
environment. Figure 5 shows a bare PC screenshot showing the newly inserted
record in VS (123 VS). Now, we have inserted a new record 123 Bare in the bare
PC database. The new count(*) shows 5,002 records indicating that it loaded
the database successfully and added a new record. Figure 6 shows the database
activities performed in the bare PC; at the end it flushes the database.

This bare PC database is used in VS/Windows. As shown in Figure 4, the
count(*) shows 5,002 records and the 123 Bare record. The above tests show that
bare SQLite is interoperable with conventional OS-based SQLite in addition to
having the same basic management and storage capabilities for data and files.
While SQLite interoperability is easily provided by conventional systems with
OS support, we have shown that an interoperable database can run on a bare
PC with no OS or kernel overhead.

5.2 Performance

This section shows some basic performance data collected to illustrate the poten-
tial gains due to eliminating OS overhead in bare SQLite. The database queries



9

Fig. 5. Bare PC: read database created in VS

Fig. 6. Bare PC: inserting one record



10

in this study were done by using a single SQL statement (one at a time), or
by collecting a set of SQL statements in a single transaction using BEGIN and
COMMIT. Figure 7 shows the performance when the number of inserts into a

Fig. 7. Inserts with transactions

single table is varied from 1,000 to 20,000 records. These inserts were placed in
a file and run by using the .read meta-command in a single transaction. SQLite
on a bare PC SQLite performs much better than on VS/Windows as expected.
The bare PC performance improvements are attributed to less overhead in the
hardware interfaces compared to system calls in OS. Figure 8 shows run times
for inserting records without transactions when the number of inserts is varied
from 10 to 100. Notice that the run times for Windows are very large as SQLite
creates and updates a journal file for each SQL insert statement. In transaction
mode (Figure 7), the times for Windows were less because SQLite only flushes
the file at the end of a transaction. Without transactions (Figure 8), the bare
PC system performs much faster than Windows for individual SQL statements
as it updates the main database and journal in memory and does a final flush
after running all the queries from a given file.

To make a fair performance comparison between Windows and bare SQLite
without transactions, a future study will need to run the above experiment
when both systems use the journal file approach and when both do not. The
journal file approach provides more reliability as it provides frequent updates,
but requires more time to run. Note that the journal files are accessed multiple
times depending on the number of SQL statements or transactions.



11

6 CONCLUSION

We described a SQLite database with a file system that runs on a bare PC and
is interoperable with OS-based systems. The design and implementation details
were provided to show how the bare PC file system interfaces to the SQLite
virtual file system. We also tested interoperability of the bare SQLite system
with a conventional Windows SQLite system and showed how a VS/Windows
database can be used in a bare PC environment and vice versa. The perfor-
mance results suggest the feasibility of building scalable bare database systems.
A similar approach can be used to transform other OS-based databases such

Fig. 8. Inserts without transactions

as MySQL and PostgreSQL server to run on bare machines. Also, the database
management functions can be split into a user interface and a database execution
engine. This will enable standard and familiar user interfaces to be used with
a secure bare database engine that can be hidden behind a conventional server.
For example, one could use bare PC SQLite to create and manage databases,
and use the Windows OS to provide user interfaces. Database (and other) servers
are naturally suited for bare PC or bare machine applications as they focus on
a single monolithic executable and are easily tailored for the backend. Future
studies could investigate the pros and cons of splitting database management
functions in this manner.

References

[1] P. Appiah-Kubi, R. K. Karne, and A. L. Wijesinha. The Design and Performance of
a Bare PC Webmail Server. The 12th IEEE International Conference on High Perfor-
mance Computing and Communications, AHPCC 2010, Sept 1-3, 2010, Melbourne,
Australia, pp. 521-526



12

[2] D. R. Engler and M.F. Kaashoek. Exterminate all operating system abstractions.
Fifth Workshop on Hot Topics in Operating Systems, USENIX, 1995, p. 78.

[3] G. H. Ford, R. K. Karne, A. L. Wijesinha, and P. Appiah-Kubi. The design and
implementation of a bare PC email server. 33rd Annual IEEE International Computer
Software and Applications Conference (COMPSAC), 2009, pp. 480-485.

[4] L. He, R. K. Karne, and A. L. Wijesinha. The design and performance of a bare
PC Web server. International Journal of Computers and Their Applications, IJCA,
Vol. 15, No. 2, June 2008, pp. 100-112.

[5] Intel Corporation. Enhanced Host Controller Interface spec-
ification for Universal Serial Bus. March 2002, Rev 1,
http://www.intel.com/technology/usb/download/ehci-r10.pdf.

[6] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed. DOSC: Dispersed Op-
erating System Computing. 20th Annual ACM Conference on Object Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), 2005, pp. 55-61.

[7] R. K. Karne, K. V. Jaganathan, and T. Ahmed. How to run C++ applications on a
bare PC. SNPD 2005, Proceedings of SNPD 2005, 6th ACIS International Conference,
IEEE, May 2005, pp. 50-55.

[8] R. K. Karne, S. Liang, A. L. Wijesinha, and P. Appiah-Kubi. A bare PC mass stor-
age USB device driver. International Journal of Computers and Their Applications,
Vol. 20, No. 1, March 2013, pp. 32-45.

[9] J. Lange, et. al. Palacios and Kitten: New High Performance Operating Systems for
Scalable Virtualized and Native Supercomputing. 24th IEEE International Parallel
and Distributed Processing Symposium, Apr. 2010.

[10] S. Liang, R. K. Karne, and A. L. Wijesinha. A Lean USB File System For Bare
Machine Applications. The Proceedings of the 21st International Conference on Soft-
ware Engineering and Data Engineering, ISCA, June 2012, pp.191-196.

[11] Microsoft Corp. FAT32 file system specification.
http://microsoft.com/whdc/system/platform/firmware/fatgn.rnspx, 2000.

[12] U. Okafor, R. Karne, A. Wijesinha, and P. Appiah-Kubi. A Methodology to Trans-
form an OS-Based Application to a Bare Machine Application. The 12th IEEE Inter-
national Conference on Ubiquitous Computing and Communications (IUCC-2013),
July 16 - 18, Melbourne, Australia, 2013.

[13] U. Okafor, R. K. Karne, A. L. Wijesinha and B. Rawal. Transforming SQLITE to
Run on a Bare PC. In Proceedings of the 7th International Conference on Software
Paradigm Trends, pages 311-314, Rome, Italy, July 2012.

[14] The OS Kit Project. School of Computing, University of Utah, Salt Lake, UT,
June 2002, http://www.cs.utah.edu/flux/oskit.

[15] Perisoft Corp. Universal Serial Bus Specification 2.0. http :
//www.perisoft.net/engineer/usb−20.pdf .

[16] B. Rawal, R. Karne, and A. L. Wijesinha. Splitting HTTP requests on two servers.
3rd Conference on Communication Systems and Networks (COMSNETS), 2011.

[17] B. Rawal, R. K. Karne, and A. L. Wijesinha. Mini Web server clusters for HTTP
request splitting. IEEE International Conference on High Performance, Computing
and Communications (HPCC), 2011, pp. 94-100.

[18] F. F. Rezende and K. Hergula. The Heterogeneity Problem and Middleware Tech-
nology: Experiences with and Performance of Database Gateway. International Con-
ference on Very Large Databases (VLDB 98), 1998, pp. 146-157.

[19] SQLite. http : //www.sqlite.org/download.html.
[20] The SQLite OS Interface or VFS. http : //www.sqlite.org/vfs.html.
[21] Universal Serial Bus Mass Storage Class, Bulk Only Transport, Revision 1.0, 1999.

http://www.usb.org.




