
Binary Transformation of Applications to run on Bare PCs

Rasha Almajed
Department of Computer &

Information Sciences
Towson University
Towson, MD 21252

ralmajed@towson.edu

Ramesh Karne
Department of Computer &

Information Sciences
Towson University

Towson, MD 21252x 6221
rkarne@towson.edu

Alexander Wijesinha
Department of Computer &

Information Sciences
Towson University
Towson, MD 21252

awijesinha@towson.edu

ABSTRACT
Operating 1 systems or kernels assist in running conventional
applications. Bare machine computing (BMC) applications run on
bare machines without using an operating system or a kernel.
BMC applications are thus independent of any execution platform
promoting longevity and reducing obsolescence. We investigate
the binary transformation of conventional applications enabling
them to run on bare machines. Three sample applications are used
to demonstrate the binary transformation process and show the
feasibility of our approach. Two Visual Studio applications are
transformed to run on a bare PC and one large bare PC application
binary is linked dynamically and transformed to run with a bare
PC Web server. The transformation process and the dynamic
linking of binary modules help to identify design and research
issues. Our work lays a foundation to achieve the ultimate goal of
making applications independent of computing platforms and
environments.

CCS CONCEPTS
• Software and its engineering~Software reverse
engineering • Social and professional topics~Software reverse
engineering

KEYWORDS
binary transformation, reverse engineering, bare PC, bare machine
computing (BMC), computer applications

ACM Reference format:
R. Almajed, R. Karne, and A. Wijesinha. 2019. In Proceedings of ACM
SAC Conference, Pau, France, April 8-12, 2019 (SAC’19), 8 pages. DOI:
xx.xxxx/xxx_x

1 INTRODUCTION
Many complex bare machine computing (BMC) applications

have been developed previously [1-5]. Instead of developing
applications that can run on bare PCs or bare machines, which
requires considerable effort and time, we consider the binary

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
SAC’19, April 8-12, 2019, Limassol, Cyprus
© 2019 Copyright held by the owner/author(s). 978-1-4503-5933-7/19/04. . . $15.00
DOI: xx.xxxx/xxx_x

transformation of existing conventional applications to run on
bare machines. Without having ownership or affinity, users will
be able to use computers anywhere and own their applications
with total control. When the OS or kernel is eliminated, the
layered approach to computing is replaced with an application-
centric approach wherein applications directly interface with
hardware. Potential advantages of BMC applications include
automatic ubiquity and the homogenization of hardware and
software. Duplication of hardware and software will also be
avoided when the BMC paradigm is used in pervasive devices.

There are two possible approaches to transforming computer
applications to run on bare PCs. The first is a source code
approach such as that used to transform SQLite to run on a bare
PC [6]. This approach requires the source code to be compiled
without using any system libraries. In the BMC application,
header files have to be replaced with direct hardware and software
interfaces, which are included with the program. As the SQLite
package is amalgamated and contains only a few source and
header files, this technique was successful. Unfortunately, the
compilation process becomes tedious and difficult when there are
more source and header files, and also if the header files have a
long chain of include files. A second approach is to perform a
binary transformation using the existing binary executable. In this
case, the transformed binary code for the target application has to
run in the bare PC with the support of another application running
in the machine.

The binary transformation approach is challenging since it
requires running foreign binary code with an existing bare BMC
application, which is a single monolithic executable that is
statically bound to memory. The binary code is a separate
executable designed to run with a given OS or kernel and is
compiled with its separate address space. We assume that the
binary executable is architecturally compatible with the BMC
application running in the machine (both x86 and Microsoft
executables). We identify the relevant design issues and describe a
methodology for binary transformation. We select three
applications to illustrate our approach: printing data (bPrintf),
bubble sort (bSort) and a binary network interface driver (bNIC).
Although bPrintf and bSort are trivial programs in a conventional
sense, they serve to identify critical issues that need to be resolved
during the binary transformation process enabling their
executables to run on a bare PC. The bNIC application is a large
binary executable that represents Intel gigabit NIC device driver
code, which works with an existing bare PC networking
application [7]. We show how to transform this binary driver so

1416

that it can run with a BMC application. The rest of this paper is
organized as follows. Section 2 describes the binary
transformation process for the three applications: print, sort, and a
network interface device driver. Section 3 discusses issues
requiring further research and the significance of the present
work. Section 4 presents related work, and section 5 contains the
conclusion.

2 BINARY TRANSFORMATIONS

2.1 Print Application (bPrintf)
We first consider the binary transformation process for a

simple “printf” program written in Visual Studio (VS). The
executable has 6144 bytes or 12 sectors. The output of this
executable running in DOS window is shown in Fig. 1. Notice
that even this single C statement resulted in a large binary file.
The header section in the file contains the attributes related to the
binary executable as shown in Fig. 2. The PEView tool [8] tool
generates file parameters from the header section as shown in Fig.
3, which include the labeled data items 1-6. The Objdump tool [9]
generates an assembly listing of this binary file, which is over ten
pages. The PEExplorer tool [10] is used to view calls in the
assembly code. A partial list of these calls is shown in Fig. 4.
Using the above tools, we obtain the structure of the binary
executable, which is useful for understanding the binary
transformation technique. The following subsections describe the
steps to transform this application.

Figure 1: Printf.exe Output on DOS Windows.

Figure 2: Printf.exe Header Section.

Figure 3: Printf.exe Parameter’s from PE View.

Figure 4: PEExplorer View of Printf.exe Assembly Code.

2.1.1 Host Application. As the binary executable can only
run in an OS environment, all the OS related interfaces must be
removed and the necessary bare PC interfaces must be plugged
into the code. In order to provide the bare PC interfaces, a bare PC
host application should be running to load and run the program.
Since the host application is compiled and linked separately from
the binary executable, a special task is needed to provide a host
environment for the binary executable. The BMC architecture
includes a main task, a receive task and application or protocol-
related tasks such as an HTTP task [1], a TLS task [4] and a
SQLite task [5]. A running task suspends and returns control to
the main task when it has to wait for an event and it resumes when
the event occurs. The task chosen to provide a host environment
for the binary executable in this case is a SQLite task. The

1417

implementation of this mechanism is shown in Fig. 5. The binary
executable runs (Task1), whenever the state flag is set to 100 and
the original task runs whenever the state flag is set to 101. The
original task SQLite is preserved using this mechanism and the
binary executable runs under the existing task thus avoiding new
task creation. The SwitchEIP() function will switch from the
original task to the binary executable as shown in Fig. 5 by
modifying the EIP (program counter) in the TSS. The binary
executable layout in memory obtained using the PEView tool ry is
shown in Fig. 6.

Figure 5: The SwitchEIP() Function.

Figure 6: Binary Executable Map.

2.1.2 Transformation Process. The binary executable is
disassembled to generate its assembly code. At an assembly level,
all OS related calls must be realized through “call” functions.

There are internal and external (OS related) calls in the assembly
program. Internal calls have no effect on the transformation
process. The PEExplorer tool statically helps to identify these
calls.

In order to run the target binary code on a bare PC, we need to
replace all system calls with essential and equivalent bare PC
interfaces. The major problem is to understand the functionality of
the system calls and replace them in the binary code. Some calls
may be replaced with equivalent interfaces, others may not have a
direct equivalent, and some may not be required. This problem is
not same as that encountered in a virtual machine, where OS calls
can be mapped from one OS to another. The BMC paradigm
assumes no OS concepts and is not a centralized approach. We
use a manual approach for the transformation process to help
identify the relevant design issues. Although the external calls
must be understood, the functionality of the assembly code is not
relevant for the binary transformation process.

The following steps are executed manually to transform the
binary executable.

1. Using PEExplorer, identify “call” locations (system
calls and DLLs) in the binary code

2. Understand call parameters, format of assembly listing
and parameters passing

3. Implement equivalent calls in the BMC as needed or use
existing calls

4. Replace OS calls with the BMC calls in the binary code
The entry point to the code as shown in Fig. 2 (0x12AE) is

used to compute the actual entry point (0x12AE – 0x1000 +
0x400 = 0x6AE), which is used to start the program. 0x1000 is
the executable start point after linking and 0x400 is size of the
header section.

Instead of replacing all system calls at once, a hill-climbing
methodology is adopted by moving from one call to the next in
the code and dealing with one call at a time. We use interrupts to
handle the external calls. When a given interrupt is invoked, the
control is returned to an application program. When a current call
is resolved, the next call is replaced with an INT 90 in the binary
executable. The code is shown in Fig. 7. When the program runs,
the interrupt prints a message and executes while (1). This will
assure that the program control reached this particular call, where
there is an interrupt. If it is not a required call for BMC, this call
will be replaced with another interrupt INT 91 (in Fig. 8), which
will use a dummy call and simply return to the next instruction. If
it is a required call, INT 92 is used to substitute the system call
with the BMC call (Fig. 9). Note that the hex value (0x12345678)
printed was passed through the stack. Its address in the stack is
captured as shown in Fig. 9 and the offset to the BMC call is also
computed. Passing parameters in the stack needs to be mapped to
the BMC call parameters as illustrated here. Parameter capturing
is the most difficult part of this transformation.

A screenshot of the running program is shown in Fig. 10. This
figure shows the same binary executable running in a loop
indicating that a binary executable can run while the host program
is running. In this example, INT 91 was used in 12 places and INT
92 was used in just one call. The “I am here” message is printed

1418

in a dummy function call as shown in the figure. INT 91 and 92
are shown in the figure, but INT 90 is not shown because that run
is in a different screen output. The rest of the information on the
screen is used for debugging purposes.

Figure 7: Int 90.

Figure 8: Int 91.

Figure 9: Int 92.

2.2 Sort Application (bSort)
The binary transformation process described for the simple

print application can also be used to transform applications with a
larger number of system calls. We consider the example of a
standard bubble sort “bSort” program written in Visual Studio
(VS). The executable has 6656 bytes or 13 sectors. The assembly
listing of this program is 13 pages. The output of this executable
running in a DOS window is shown in Fig. 11. As with the bPrintf
binary executable, PEView, PEExplorer and Objdump are used to

help with transforming the program to run on a bare PC. The entry
point for this program is located at 0x14A0. Details of this
example are omitted as it is similar to the bPrinf program. The
bare PC output for bSort is shown in Fig. 12. In this application,
we used many interrupts to replace system calls, where each
system call is handled with one interrupt. The parameter passing
strategy is same as in the bPrintf application. A tool that can
automatically perform the binary transformation steps for simple
applications such as print and sort will be developed in the future.

Figure 10: Bare PC display for Printf.exe.

Figure 11: bSort running in DOS window.

Figure 12: bSort running in bare PC window.

1419

2.3 Network Interface Device Driver (bNIC)
The bPrintf and bSort executables provided useful insights into

the binary transformation process. However, each involves only a
relatively small number of system calls and a small binary
executable. We now consider the transformation of a more
complex application: a bare PC gigabit Ethernet Intel NIC device
driver, which has a large binary executable and a much larger
number of external calls than the sort application.

Fig. 13 shows the system architecture used for this application.
A bare PC Web server has an Ethernet NIC device driver that is
closely integrated with the application program [7]. The Ethernet
NIC device driver (object file EtherObj.obj) and the Web server
code is a single monolithic executable. The Ethernet calls are
made from various functions as indicated in the figure. The
Ethernet calls are intertwined with the Web server code
eliminating all layers in the network protocols. The above system
is a working Web server with its Ethernet device driver.

In order to demonstrate the binary transformation of an
Ethernet NIC device driver, a separate binary executable is
created with EtherObj.obj and Ethernet.obj, where Ethernet.obj is
a test file for this driver. The test file simply instantiates the
EtherObj class and initializes the parameters. Many debug
statements are inserted in this driver file to ensure the invocation
of this driver after transformation. There is no other Web server
code in the test file. A dummy Ethernet.exe is created to
demonstrate the transformation process with an executable.

The challenge in this transformation is to cut off the Web
server connections to original EtherObj.obj file and connect with
the Ethernet.exe file. As shown in Fig. 13, connections to the
Ethernet driver come from several methods including
createOtherTasks() and StartTransfer(). In the Web server code, a
connection can be a function call or a variable reference. In
Fig.14, TDLPointer and SendInPtr are variables in the EO class,
and FormatEthPacket() is a member function. Functions and
variables are located in different segments in the binary
executable and thus computing their addresses in memory is
different.

A total of 27 instances in the test.exe (application program) are
affected during the transformation process. In a conventional
system, a sophisticated dynamic linker tool can resolve these
references. As a similar tool has not been developed yet for BMC
applications, a manual approach is currently used for this purpose.

2.3.1 Function Calls. Given an external function call in
test.exe, it is replaced with the binary executable call as shown in
Fig. 15. When a given function is called, it is necessary to identify
the memory location of the call and the address of the called
function in memory. For a ColdReset() function call in the
program, Fig. 15 illustrates how to compute these addresses.
Other function call addresses can be computed in a similar
manner. In this application, test.exe is the executable to run the
Web server.

The test.map file shows all the function addresses located in
the test.exe file. The ColdReset() function is located within
another function called a parent function. The parent function in
this case is located at 0x3b2bf in the test.map file. The offset of

the ColdReset() function within the parent function is 0x649,
which can be obtained by looking at the parent function list file
(e.g. File.lst). The ColdReset() function is located in the program
at 0x3b908 (0x3b2bf+0x649), and in memory at 0x3ad08
(0x3b908 – 0x1000 – 0x400). Microsoft executables start at
0x1000 and they have 2 sectors of header files (0x400). When the
ColdReset() function is called, the program counter is at (0x3b908
+ 5=0x3b90d) as the current instruction is 5 bytes long. Currently,
the hex code at the location of ColdReset() at address 0x3ad08 is
0xfffc6c61, which is pointing to the old ColdReset() call in the
Ethernet NIC device driver. If we want to invoke the binary
executable in the Ethernet.exe for this function, we need to change
the address at this location.

The Ethernet.exe binary is loaded at a dummy address 0x11e1.
The ColdReset() function in Ethenet.exe is located at 0x1361
(according to Ethernet.map file). So the actual address of
ColdReset() function in the binary executable is 0x1361+0x11e1
= 0x2542. This implies the offset address for calling binary
executable ColdReset() function is 0x2542-0x3b90D =
0xfffc6c35. Thus, the existing address at location 0x3ad08 has to
be replaced with this offset address, shown in the figure in little
endian form consistent with the Intel architecture. This illustrates
the process for replacing a single call in a regular program with a
call to the desired binary executable. The example shows that a
binary executable can be transformed to work with a regular
application. The transformation process is not the same as using
DLLs in an OS environment, since BMC applications do not
support DLLs and there is no centralized kernel or OS running in
the system.

In this case, the binary transformation only involved BMC
calls. The transformation methodology for OS to BMC calls will
in principle be the same. However, the interactions between a
conventional application (such as an OS-based NIC driver) and
the OS will involve several additional layers resulting in a
considerably more complex binary transformation.

2.3.2 Variables. Given a variable address, it is replaced with
the binary executable address as shown in Fig. 16. An example of
SendInPtr variable illustrates this process. The SendInPtr variable
is located in the parent function at 0x4cfa2 address. The SendInPtr
offset in the File.lst file is 0x87. So the SendInPtr is located in
memory at 0x4c439 (0x4cfa2 + 0x87 – 0x1000 – 0x400). The
SendInPtr in the Ethernet.map for the new location is at
0x00031028. Thus, we need to replace the data at 0x4c439 with
the 0x00031028 value. This calculation is simpler than the
function call as there is no need to compute the address offset and
use the current program counter location.

The addresses generated for functions and variables are
dependent on some parameters as shown in Figs. 15 and 16. Some
of these parameters change when an application is modified and
recompiled. In order to deal with this problem, we developed a
spreadsheet to compute these addresses for all 27 functions with
some parameters. It is also possible to put the spreadsheet
equations in the code to dynamically compute these addresses and
plug them into the binary executable at appropriate locations.

1420

Figure 13: Web server connections.

Figure 14: EO variables.

Figure 15: Computing the ColdReset() address.

Figure 16: Computing the SendInPtr address.

2.4 Functional Operation after Transformation
After plugging in the necessary calls to the NIC driver for all

external calls, we tested the Web server for proper operation.
Initially, as shown in the screenshot of Fig. 17, the Web server
acts as a client and transfers files from a Windows server. Once
the file transfer is complete, the Web server is ready to serve
client requests. The “tulogo.gif” page is shown in Fig. 18 as an
example to illustrate successful completion by the server of a
client request.

This approach demonstrates that binary code can be
dynamically linked and transformed to work with an existing
BMC application such as a Web server. The technique used here
serves as a first step towards developing a general methodology to
perform binary transformations of existing OS based executables.

Figure 17: Bare PC display for file transfer.

1421

Figure 18: Browser display for a client request.

3 DISCUSSION
The transformation process in these three examples highlights

several issues that require further research. For example, there is a
need for user driven semi-automatic or fully automated
transformation tools, which can do the transformation process
dynamically at run time. Also, the host BMC application should
provide a running BMC environment for foreign binary
executables. Understanding external system calls and replacing
them with the appropriate BMC calls is a difficult problem.
Finding equivalent BMC functions and sometimes replacing them
with dummy functions is currently done using an ad-hoc
approach. More formal methods for replacing external system
calls will need to be investigated in future. Additional problems
that were discovered during our transformation experiments with
OS-based binary executables relate to module intertwining.
Finally, the transformation process should not require an
understanding of the binary code, as otherwise the problem
becomes unmanageable. It should be noted that since BMC
systems are different from conventional systems, it is not possible
to directly apply standard binary reverse engineering techniques
used to map between different OS environments (for example,
techniques enabling Windows binaries to run in Linux).

The binary transformation process presented here lays a
foundation for future research that will enable current OS based
applications to run on bare machines or bare PCs with no OS
support. This makes the transformed applications independent of
computing platforms such as Windows and Linux. As an OS or
kernel serves as middleware, eliminating it will result in a flat
model where general-purpose applications directly communicate
to the hardware. The transformation concept can also be applied
to pervasive devices in a variety of operating environments. Once
the transformation process is automated, BMC interfaces will
provide common computer interfaces to the hardware reducing the
current heterogeneity among hardware and architectures.

4 RELATED WORK
The BMC paradigm is related to research efforts attempting to

eliminate the OS or reduce its footprint [11-15]. The essential
difference between these approaches and the BMC approach is
that the latter enables general-purpose applications to run directly
on the bare PC hardware without any OS or kernel support.
Unlike porting an application from one OS platform to another,
transforming the source code of OS-based applications to run on a
bare PC has proved to be difficult [6]. This is the first attempt to
transform binary executables from conventional OS-based
applications to run on a bare PC.

Similar work in an OS-based environment is essentially
reverse engineering. For example, due to the difficulty of writing
numerous network device drivers for Linux from scratch, the
NDIS wrapper [16] was developed. This wrapper has been used to
enable legacy Windows drivers to run on Linux by implementing
the necessary parts of the Windows kernel and linking the driver.
RevNIC [17] adopts a different approach to reverse engineering a
binary NIC driver. It consists of a tool that takes the driver binary,
uses reverse engineering techniques to derive the driver logic, and
produces device driver code that matches the original driver
interactions with the hardware. RevNIC has been used to reverse
engineer a few Windows drivers to run on different OSs. While
the approach is innovative, there do not appear to be examples of
using RevNIC to reverse engineer drivers other than those
discussed in the work by the original authors. Finally, an example
showing how to reverse engineer a driver for a USB device is
given in [18]. As discussed in the previous section, since BMC
applications run on a bare PC with no OS or kernel support,
binary transformations of OS executables is different from
conventional reverse engineering.

5 CONCLUSION
We investigated binary transformations that enable an existing

binary executable for a conventional OS-based application to be
run as or within a BMC application on a bare PC. Transformed
binaries include a printing application, a sorting application, and a
binary network interface driver. We described the steps in the
transformation process for each binary and provided the relevant
internal implementation details. We also discussed issues to be
addressed in future research on binary transformations and the
significance of this work. While the current work is preliminary, it
will serve as foundation for future research targeting the binary
transformation of complex OS-based applications. We are
presently investigating the feasibility of applying the
transformation techniques used for the BMC NIC binary to OS-
based binary NIC drivers.

REFERENCES
[1] L. He, R. K. Karne, and A. L. Wijesinha, “The design and performance of a

bare PC Web server,” International Journal of Computers and Their
Applications, IJCA, Vol. 15, No. 2, June 2008, pp. 100-112.

[2] H. Chang, R. K. Karne, and A. Wijesinha, “Migrating a Bare PC Web Server to
a Multi-core Architecture,” 40th Annual IEEE International Computer Software
and Applications Conference (COMPSAC), 2016, pp. 216-221.

[3] B. Rawal, R. K. Karne, and A. L. Wijesinha. “Mini Web server clusters for
HTTP request splitting,” IEEE Conference on High Performance, Computing

1422

8

and Communications (HPCC), 2011, pp. 94-100.
[4] P. Appiah-Kubi, R.K. Karne and A.L. Wijesinha, “A Bare PC TLS webmail

Server,” International Conference on Computing, Networking and
Communications, (ICNC), 2012, pp. 156-160.

[5] W. Thompson, R. Karne, A. Wijesinha, and H. Chang, “Interoperable SQLite
for a bare PC,“ Beyond Databases, Architectures and Structures Conference
(BDAS), 2017, pp. 177-188.

[6] U. Okafor, R. K. Karne, A. L. Wijesinha and B. Rawal, "Transforming SQLite
to Run on a Bare PC," 7th International Conference on Software Paradigm
Trends (ICSOFT), 2012, pp. 311-314.

[7] F. Almansour, R. K. Karne, A. L. Wijesinha, R. Karne, and B. S. Rawal,
“Ethernet bonding on a bare PC web server with dual NICs,” 33rd Annual ACM
Symposium on Applied Computing (SAC), 2018, pp. 1116-1121.

[8] WJRSofware-PEView, http://wjradburn.com/software/, [Accessed 9-24-18].
[9] ObjDump, https://sourceforge.net/projects/objdump/, [Accessed 9-24-18].
[10] PE Explorer, http://www.pe-explorer.com, [Accessed 9-24-18].
[11] D. R. Engler and M.F. Kaashoek, “Exterminate all operating system

abstractions,” Fifth Workshop on Hot Topics in Operating Systems, USENIX,
1995, p. 78.

[12] J. Lange, et. al, “Palacios and Kitten: new high performance operating systems
for scalable virtualized and native supercomputing,” 24th IEEE International
Parallel and Distributed Processing Symposium, 2010.

[13] GitHub – ReturnInfinity/BareMetal-OS,
https://github.com/ReturnInfinity/BareMetal-OS, [Accessed 9-24-18].

[14] Linux Kernel Tinification, https://tiny.wiki.kernel.org/, [Accessed 9-24-18].
[15] A Minimal Rust Kernel, https://os.phil-opp.com/minimal-rust-kernel/,

[Accessed 9-24-18].
[16] NDISWrapper, http://ndiswrapper.sourceforge.net, [Accessed 9-24-18].
[17] V. Chipounov and G. Candea “Reverse engineering of binary device drivers

with RevNIC,” 5th ACM European Conference on Computer Systems
(EUROSYS), 2010.

[18] B. Everard, “Drive it yourself: USB Car,” LINUXVOICE, March 2015.
https://www.linuxvoice.com/drive-it-yourself-usb-car-6/, [Accessed 9-24-18].

1423

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'IEEE_Xplorer'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryList_V1
 qi2base

