
A Methodology to Transform an OS-based Application to a Bare Machine Application

Uzo Okafor, Ramesh K. Karne, Alexander L. Wijesinha, and Patrick Appiah-Kubi
Department of Computer and Information Sciences

Towson University

Towson, MD 21252, USA
uokafo1@students.towson.edu, {rkarne,awijesinha,appiahkubi}@towson.edu

Abstract—This paper describes a novel approach to transform

application programs that run with the support of an operating

system or kernel to bare machine applications that run with no

intermediary software of any kind in the machine. The general

transformation methodology is based on a simple model that views

application software as code with system header files and calls.

These files and underlying system calls are removed in order to

transform the application without understanding details of the

application or its internal behavior. A Windows SQLite database

engine application is chosen to illustrate the transformation

process, and the transformed application is run on a bare PC to

demonstrate the feasibility of this approach. The Microsoft

Windows Visual Studio environment (IDE) is used to facilitate the

transformation process. Sample database queries are run on a

bare PC, and also in Visual Studio, and the results are validated

by comparison. Currently, the application code is transformed

manually; however, the experiences and skills acquired could be

leveraged to develop an automated tool in the future. This

methodology and transformation model serves as a basis for

converting a variety of applications and other software to run on

bare machines by achieving automatic ubiquity without a need for

a virtual machine. When the general transformation methodology

is fully tested, made robust, and automated, existing computer

software can be transformed with little effort to make them

independent of any operating environment.

Index Terms—SQLite, bare PC, operating system, transformation

models, bare machine computing.

I. INTRODUCTION

Application programs written in a programming language

are translated to a machine code by a compiler based on the

underlying machine architecture and operating system (OS)

environment. Each program also needs I/O or system

calls/libraries to access hardware resources. An operating

system acts as a form of intermediary software to provide

hardware abstractions to application programs. Thus,

application programs are not truly independent of their

execution environment, and are susceptible to rapid changes in

operating systems, distributions, kernel versions, and

computing platforms. If an application program can be made

bare (i.e., totally independent of its execution and operating

environment), essentially the same code can be run on a variety

of devices, including pervasive devices thus making it

ubiquitous without the need for a virtual machine. It will also

then be possible to write programs that are more easily adapted

to advances in hardware technology. The result is a Bare

Machine Computing (BMC) paradigm that is application-

centric rather than OS and platform-centric. While Java and

other virtual machines provide portability and ubiquity, the

applications running in these environments are not bare.

Alternatively, an application program may be viewed as

being intertwined with the OS and the underlying machine’s

CPU architecture. The system calls inserted by the compiler are

provided by the OS (in addition to other hardware abstractions),

and the high-level language translation to machine code is

dependent on the underlying machine architecture. A

preliminary effort to transform a SQLite application is outlined

in [15]. It provides a high-level transformation methodology

and classified system calls. However, it does not give complete

details of the transformation process, and it does not provide a

methodology that could be applied to transform other

applications to run on bare machines. This paper describes a

general transformation methodology for eliminating hardware

abstractions (OS/kernel, system libraries, or other forms of

intermediary system software) via hardware interfaces directly

accessible from application programs [9]. The transformation

process is illustrated in detail for the case of SQLite, and test

results after transformation are presented.

For the purposes of transformation, application software is

modeled simply as code that undergoes resolution of system

calls/libraries during the compilation/link process so that

appropriate bare machine interfaces to the hardware can be

included with the application itself. Currently, this process is

done manually as illustrated in this paper. Eventually, an

automated tool can be developed that can transform a variety of

applications to run on bare machines. Several bare PC or BMC

applications have been built and shown to outperform their OS-

based counterparts. These include a Web server [7], VoIP

softphone [12], split protocol server [17], SIP server [1], and

Webmail server [3]. A generic BMC concept and methodology

for developing bare applications is described in [13]. In

addition, the design and implementation of a bare PC USB

driver and file system are described in [10]. However, each of

these was built directly, and not by transforming existing OS-

based software.

Compilers, interpreters, programming language parsers, and

other tools used for porting applications (to run on different

platforms) use well-known translation methodologies.

Examples of software and tools that perform code

transformation and translation, or enable applications to run

directly on the hardware (with the support of some form of an

OS such as a kernel, or as an embedded system) include [2] [4]

[8] [18]. In contrast, the BMC paradigm uses an application

mailto:uokafo1@students.towson.edu
mailto:rkarne,
mailto:rkarne,
mailto:appiahkubi%7d@towson.edu

object (AO) [11], which bundles a related suite of applications

coded as a single monolithic executable so that they can work

together without any supporting OS or kernel. The BMC

paradigm is in essence similar to approaches such as Exokernel

[5], IO-Lite [16], and Palacios and Kitten [14], whose primary

goal is to eliminate overhead and complexity due to OS

abstractions. However, the BMC approach is at the extreme end

of eliminating OS or kernels. Also, the main difference in a

bare application is that the necessary code to interface with the

hardware is included within the application itself. This gives

full control over the hardware to the application software

developer, whose code is now responsible for allocating and

managing resources (CPU/memory), and scheduling

(processes/tasks). A cost/benefit analysis of using lean or

―barebones‖ versus feature-rich systems is given in [19].

II. SQLITE APPLICATION

SQLITE is a popular standalone single user database engine

that runs on Windows or Linux. It was selected to demonstrate

the transformation methodology since it is a large C

programming application and consists of complex structures

and a combination of styles. The Windows version is in the

form of an amalgamated package that consists of two files;

shell.c and sqlite3.c. The sizes of shell.c and sqlite3.c are

86, 016; 4,323,826 bytes respectively. The total number of lines

of code in both source files is 129,003 with 55,691 lines of

commented code and 40,297 executable statements. The code is

complex: there are over 5000 cases in a particular switch

statement, hundreds of macros, and numerous user-defined OS-

related functions; also, dozens of pre-processor statements are

part of the code. The application supports standard database

functions such as create tables, insert data and query a database.

The output is displayed in a Microsoft Window (there is no

graphics interface).

III. TRANSFORMATION PROCESS

The SQLITE code needs to be transformed so that it can be

run on a bare PC. There are many challenges when

transforming large OS-based applications with complex code to

run on a bare PC (testing, validation and debugging can pose

problems especially since there is no environment such as an

IDE to support bare application development, and only a few

primitive tools that can run on a bare system). Some issues are

partially resolved by using the Visual Studio (VS) environment

for testing, validating and debugging the code during the

transformation process. The VS environment does not allow the

complete bare machine code to run, as it requires resources

from its Windows environment through system calls. It is

difficult to eliminate all system calls when using the

VS/Windows platform. For example, memory allocation

(malloc()) uses virtual memory and it is obtained from heap

space. In a bare PC, this is physical memory; it is allocated and

controlled via the AO code by the bare software developer (the

file system is also managed by the application if it is required).

There are hundreds of header files included in a Windows

program, even if the application program does not require all of

them. The header file ―Windows.h‖ is an example for this.

The general transformation process model is shown in Fig.1.

VS 10 (C/C++ compiler) is used as the development platform

for the bare PC application, with batch files to compile bare PC

programs. The bare PC hardware API to support the application

is also built during the transformation process (some interfaces

may be reused from other bare applications). The main

objective behind the transformation approach is to eliminate OS

dependencies without understanding code details relevant to

application logic, and to minimize changes to the original code.

Fig. 1. Transformation Methodology

Two development environments were set up: one for the VS

application and the other for the bare PC application. In the VS

application, as many header files as possible are eliminated;

this code is then used to transform to a bare PC. Then the

remaining system header files are removed by adding the bare

PC interfaces and fixing any bare PC-related issues until the

application runs successfully on a bare PC. This means the bare

PC application now runs and has the same results as the OS

application. More details regarding the transformation process

are given below.

A. Scaling Down Features

By scaling down some functionality in SQLITE, the

transformation process is simplified. For example, an ―in-

memory‖ database was used to eliminate file-related code in

the transformation. Floating point and shared cache options

were also turned off. Complex concurrency and locking

mechanisms were not used since these are avoided in the BMC

paradigm (it is possible for multiple tasks to run concurrently in

Start

Stop

Scale down
application

features

Choose Bare PC
Compiler and

Linker (version)

Identify and build
Bare PC direct

hardware
interfaces (API)

Do not try to understand
and interpret the SQLITE
code for transformation

Setup two
development
platforms for

transformation

Eliminate as
many header files

as possible

Eliminate all system
header files, add bare PC

header files as needed

(2) Bare PC
Platform

Development

(1) Visual Studio
Platform

Development

bare PC applications such as [3] [7] [17]). The scaled-down

options apply to both the VS and the bare PC SQLite

applications during transformation.

B. Visual Studio Application

For the VS application, baseline code was downloaded from

the SQLITE Web site and scaled down as noted above. A test

case suite was developed to test query results that includes

standard commands such as create table, insert (multiple) rows,

and select table. This suite was used to test correctness of

database operations after each step of the transformation in VS.

Fig. 2 shows the steps in this transformation process, whose

goal is to remove as many OS dependencies as possible.

VS offer numerous compile and link options that help to

transform an application so that it runs on a bare PC. For

example, the NODEFAULTLIB option is used to identify

system calls that are in the application. All these system calls

must be resolved in the bare PC application to make it run

without OS support. There were 85 such system calls in

SQLITE. There were additional dependencies due to Link

options, which were handled by including a bare PC user

library to be used during compilation i.e., bare PC direct

hardware interfaces were put in a library (rkkvs.lib) to replace

the original system libraries. The Assemble Machine Code and

Source Listing option, /FAcs, is used to generate the assembly

listing and asm files (this is very useful to understand the role

of system calls in the code).

The process to transform the VS application is similar to

that of developing an ordinary C/C++ application (except that

the main focus of transformation is to eliminate all system

calls/libraries). One header file at a time in the VS application

is removed by commenting it in the source code. When the

program is compiled and linked, it shows the missing system

calls in the application. These calls are replaced with bare PC

direct hardware interfaces and recompiled. Only one system

call at a time is resolved since the bare PC interfaces are not yet

fully tested. When the bare hardware API becomes more

robust, it will be possible to resolve multiple (or all) system

calls together to speed up the transformation process. The VS

application uses a large number of libraries and DLLs. It is

necessary to guarantee that the system calls handled by the bare

hardware API are used by the linker.

These system calls or interfaces used come in three forms:

(1) the name of the call has single underscore and it is explicit

in the code (e.g strcmp(), _strcmp()): in this case, all strcmp()

methods in the source code must be replaced by AOAstrcmp()

to guarantee the usage of the bare API; (2) the name of the

system call has a double underscore and it is not explicit in the

code (e.g. __allmul): in this case, this call must be added to the

bare PC library and it must be removed from the system

libraries; (3) the name of the call sometimes is simply a

constant such as __fltused: in this case, that constant and its

value are provided if needed. During the transformation, system

header files are removed and bare PC hardware API are added

until no more header files can be removed. Some header files

invoke other header files and invocations may be indirectly

recursive. For example, it is not possible to remove the

―windows.h‖ file during VS compilation.

In general, every system call needs a header file, but every

header file may not have a system call. There can be different

types of header files: e.g., user header files, constant header

files, and structure header files. The 85 system calls in the

SQLITE application, as shown in Fig. 3, were classified into

the following types: 8 Arithmetic Assembly, 2 Disk

Management, 2 Standard I/O, 1 Error, 27 File Function, 2

Floating Point, 1 Object Handle, 3 Library, 10 Memory, 3

Process, 1 Stack, 4 String, 2 System, 10 Timer, 7 Type, and 2

Unicode and Character Set calls. According to [6] and [20]

respectively, Linux and Windows systems have three to four

hundred system calls.

Fig. 2. Visual Studio (VS) application

The header files that were not removable were: windows.h,

stdarg.h, stdio.h, stdlib.h, and assert.h. Since we scaled down

the application, we were able to provide all bare PC hardware

interfaces except for malloc(). In VS, malloc() call gets

memory from memory management and it is a virtual memory

with paging. In a bare PC, all memory is real and the AO

programmer manages it at program time. There were a large

number of malloc() calls used in the code. We used the bare PC

memory object to replace all the calls except for a single system

malloc() to obtain memory as required by the application. The

total memory obtained by this call was used by the bare PC

malloc object to allocate, reallocate, and free memory. The

pseudo bare PC code for SQLITE was then tested to verify that

its results were the same as for the original VS code. Next, the

Start

Any more
header files to be

removed ?

Compile, link
and run in VS

Error

Add one or
more Bare PC

interfaces

Stop

No

Remove one
header File

No Error

Yes

Identify header file
that can’t be

removed and find
it’s equivalent bare

PC interface

Fix bare PC
interfaces

transformed VS code was transferred to the bare PC to

determine other modifications that were needed.

C. Bare PC Application

The transformation process on a bare PC is shown in Fig. 4.

During the pseudo transformation in VS, system calls such as

malloc() transferred from the VS system were eliminated and

replaced with calls in the bare PC API. There were also other

header files that could not be removed in the VS application.

Again, one header file at a time was removed from the list

(windows.h, stdarg.h, stdio.h, stdlib.h, and assert.h) and

replaced with appropriate bare PC interfaces until all header

files were removed. The transformed SQlite application was

compiled, run and tested after each modification of the code to

remove the remaining header files. In some cases, header file

removal required a new header file in the bare PC application

that defines some constants, variables, structures, and data. In

the SQLite transformation, we defined header files such as

sqlite.h, sqlite21.h, and stdarg.h to cover some required

definitions. In this case, once header files were removed and

the VS system malloc() (just one call) was handled, the

application successfully ran in a bare PC. To verify success, we

tested the bare PC application with a variety of create, insert

and select statements and validated their functionality. We also

checked that the results matched with the original VS

application model for every instance of testing.

Fig. 3. System calls

In general, once all header files are removed and replaced

with appropriate interfaces, it should be possible to successfully

run the application in a bare PC. If not, then there must be some

issues with the bare PC interfaces or the transformation itself.

Usually, these arise from system problems related to the bare

PC executable module and its memory layout. They may also

be related to the bare PC loader and the BIOS, or the processing

of system interrupts. While it cannot be proven that this

transformation methodology will work in a general case, its

success in transforming the SQLite application indicates that

this is a correct approach to modeling application software to

be transformed i.e., it is not necessary to understand any code

details in the original application during the transformation

process.

Fig. 4. Bare PC application

The /bin files from Visual Studio 10 Express Version are

used for compilation and linking of the transformed bare PC

application. The actual make file used to compile, link and

generate a bootable USB for running the bare PC SQLite

application is shown in Fig. 5. Most of the statements in the

figure are self-explanatory, except for the last statement. The

rwhd.exe module installs a bare PC boot record after all other

files are copied onto the USB. The USB is also formatted

before copying the files. The prcycle.exe file is the startup

menu for bare PC applications, and the shell.exe file is the

actual bare PC application (main component of the AO) for

SQLite. The data.txt file is a data file that can be used in the

application for receiving additional parameters from the user.

One can also store the persistent database files on the USB after

they are used. The persistent database files are not shown here

as we only demonstrated the SQLite application with an ―in-

memory‖ database. A full-scale version of the SQLite

_beginTimer _endTimer _hasTimer
_QueryPerformanceCounter, _Sleep
_GetSystemTime, _gmtime _strftime
_GetSystemTimeAsFileTime
_GetTickCount

Timer

_printf, _putc
Standard I/O _chkstk

Stack

_GetLastError

Error

__fltused, __ftol2

Floating

_SetEndOfFile _SetFilePointer _DeleteFileA _fclose _fgets

_FlushFileBuffers _fopen _fprintf _fputc _access _isatty _DeleteFileW ,
_WriteFile _GetFileAttributesA, _fflush _GetFileAttributesExW, _ReadFile,
_GetFileAttributesW _GetFileSize _GetFullPathNameA
_GetFullPathNameW _GetTempPathA , _UnlockFileEx, _GetTempPathW

_LockFile _LockFileEx _UnlockFile

File

_GetVersionEx

_assert

System

_malloc, _memcm , _memcpy
_memset _LocalFree_free
_CreateFileMapping, _realloc,
_MapViewOfFile, _UnmapViewOfFile

Memory

_CloseHandle
Object Handles

_atoi, _isalnum , _isalpha
_isdigit, _isprint, _tolower
_isspace

Types

__alldiv , __allmul
__allrem, __aullrem ,
__allshl, __aulldiv
__allrshr, __aullshr

Arithmetic Assembly

_MultiByteToWideChar
_WideCharToMultiByte

Unicode & Char Set

_FreeLibrary
_LoadLibraryA
_LoadLibraryW

Library

_GetDiskFreeSpaceA

_GetDiskFreeSpaceW

Disk Management

_GetProcAddress , _Exit
_GetCurrentProcessId

Process
_strcmp, _strcpy
_strncmp, _strncpy

String

Start with
running code

from VS

All VS header files
removed ?

Compile, link
and run in a

bare PC

Error

Add one or
more Bare PC

interfaces

Stop

Yes

Remove any calls used
in VS to simulate bare

PC interfaces

No Error

No

Run in bare PC

Fix bare PC interfaces; add
or modify bare PC headers if

needed

Remove one
header file

Run successful?Bare PC issues, fix
them

Yes

No

transformation would include persistent storage containing the

database schema and data.

Fig. 5. Batch files

Fig 6. Bare PC output display (simple queries)

IV. RESULTS AND DISCUSSION

Fig. 6 shows simple queries consisting of Create, Insert and

Select statements. It demonstrates the creation of a table (t100)

with 5 columns and different data types in line 02. Line 03

shows an insert statement, with an error as it does not have the

“values” keyword in the statement. This demonstrates the

ability of the parser to detect a syntax error. Lines 04-07 show

inserting more values into the table successfully. Line 08 shows

the creation of a different table (t200). Line 09 shows an

attempt to insert data into this table that has a syntax error, and

Line 10 shows a correct insert. Line 11 shows more inserts into

the t100 table. Line 12 shows the select statement for the t100

table. Lines 15-20 correctly print the query results for the t100

table. Lines 23-24 show some output for debugging and testing

the bare code. It can be seen that the bare PC screen is divided

into 8 columns and 24 rows to display the SQLite output. This

is currently a text-based window similar to “stdout”.

Fig 7. Bare PC output display (complex queries)

Fig. 7 shows a complex query consisting of the creation of

two tables and insertion of some data. The complex query on

Line 10 shows a join and the printing of some attributes. The

results of this query are correctly shown on Lines 15–18. The

.tables meta-command in SQLITE is also tested and its results

are shown on Line 22 (two table names: dept and employee).

The sample screen output shown in Figs. 6 and 7 demonstrate

the correct functionality of the transformed code that runs on a

bare PC. We also tested more queries and meta-commands to

validate the correct functionality of the transformed code.

These results serve to verify that this transformation

approach using the VS IDE to test, validate and debug bare PC

code is a viable approach. Since the model and methodology

are very general, it is expected that they can be used to

transform other complex applications. The scaled-down

approach used in this paper needs to be extended to transform

the full SQLite application with a file system and other

features. The bare PC hardware API also needs to be enhanced

to deal with other components of the standalone database

engine and multi-threaded applications. The transformation

process and its feasibility demonstrates that it is possible to

make existing applications to run on bare machines thus

achieving a different form of ubiquity without using virtual

machines. This observation infers a great potential for existing

applications to make them independent of OS or environments

when an automated tool is made available in the future.

V. CONCLUSION

This paper presented a novel approach to transforming a

conventional application so that it runs on a bare PC with no

OS or kernel. The proposed transformation methodology is

based on a simple software model. The key idea is to remove

header files and replace them with equivalent bare PC

interfaces and add only required header files for bare PC. The

methodology was used to transform a Windows SQLite

application to a bare PC application with an ―in-memory‖

database.

First, the VS platform and IDE was used to pseudo

transform code from Windows to a bare PC application.

Thereafter, minimal modifications to handle non-removable

system files produced the complete bare PC application code. It

was not necessary to modify the SQLite application code, or

understand the underlying application logic or the internal

details of database structures. The transformed bare PC

application was tested and validated for correct operation by

running sample queries in a VS (Windows) environment, and

on a bare PC, and comparing the results. The methodology may

be used to transform other complex applications to bare PC

applications, making the code independent of any OS or

environments. The currently manual transformation process

could be modified in the future to build a tool for automatically

transforming C/C++ or other programming applications. The

methodology will also serve as a basis to transform applications

that can run on a variety of systems and devices. The initial

successful transformation of a complex application such as

SQLITE indicates that future research into developing

applications that run without OS or kernel support for

performance, security, or other reasons may benefit from the

new transformation methodology.

ACKNOWLEDGMENT

The authors are grateful to the late Dr. Frank Anger of NSF

for his encouragement and support of early bare machine

computing research, supported by NSF SGER grant CCR-

0120155.

REFERENCES

[1] A. Alexander, R. Yasinovskyy, A. L. Wijesinha, and R. K. Karne, "SIP

Server Implementation and Performance on a Bare PC," International
Journal in Advances on Telecommunications, vol. 4, no. 1 and 2, 2011.

[2] W. Ahn, S. Qi, M. Nicolaides, and J. Torrellas, "BulkCompiler: High-
Performance Sequential Consistency through Cooperative Compiler and

Hardware Support," IEEE/ACM International Symposium on Micro

Architecture, 2009.

[3] P. Appiah-Kubi, R. K. Karne, and A.L. Wijesinha,"The Design and
Performance of a Bare PC Webmail Server," The 12th IEEE International

Conference on High Performance Computing and Communications
(HPCC) AHPCN, 521-526, 2010.

[4] R. Cáceres, C. Carter, C. Narayanaswami, and M. Raghunath,
"Reincarnating PCs with Portable SoulPads", IBM T.J. Watson Research

Center, New York.

[5] D. Engler, "The Exokernel Operating System Architecture," Department

of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Ph.D. Dissertation, 1998.

[6] FreeBSD/Linux Kernel Cross Reference,
http://fxr.watson.org/fxr/source/kern/syscalls.c, retrieved Feb 16, 2012.

[7] L. He, R. K. Karne, and A. L. Wijesinha, "Design and Performance of a
bare PC Web Server," International Journal of Computer and

Applications, vol. 15, 100-112, Acta Press, 2008.

[8] Y. Hwang, T Lin., R. Chang, "DisIRer: Converting a Retargetable

Compiler into a Multiplatform Binary Translator. In ACM Transactions
on Architecture and Code Optimization," vol. 7, issue 4.

[9] R. Karne, R., K. Jaganathan and T. Ahmed, "How to run C++
Applications on a bare PC," 6th ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking, and Parallel
Distributed Computing (SNPD), 50-55, 2005.

[10] R.K. Karne, S. Liang, A.L. Wijesinha and P. Appiah-Kubi, "Bare PC

Mass Storage USB Driver," International Journal of Computer and

Applications, March 2013.

[11] R. K. Karne. "Application-oriented Object Architecture: A Revolutionary
Approach," 6th International Conference, HPC Asia, 2002.

[12] G. H. Khaksari, A. L., Wijesinha, R. K., Karne, L., He and S. Girumala,
"A Peer-to-Peer Bare PC VoIP Application," IEEE Consumer and
Communications and Networking Conference (CCNC), 803-807, 2007.

[13] G. H. Khaksari, A. L. Wijesinha, and R. K. Karne. "A Bare Machine
Development Methodology," International Journal of Computer

Applications (IJCA), vol. 19, no.1, 10-25, 2012.

[14] J. Lange et al., "Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native Supercomputing,"

Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium, 2010.

[15] U. Okafor, R. K. Karne, A. L. Wijesinha, and B. S. Rawal,
"Transforming SQLITE to run on a bare PC," ICSoft, 2012.

[16] V. S. Pai, P. Druschel and Zwaenepoel, "IO-Lite: A Unified I/O Buffering
and Caching System," ACM Transactions on Computer Systems, vol.18

(1), 37-66, 2000.

[17] B. Rawal, R. K.Karne, A. L. Wijesinha, "Mini Web Server Clusters for
HTTP Request Splitting," IEEE International Conference on High

Performance Computing and Communications, 94-100, 2011.

[18] M. Schoeberl, S. Korsholm, T. Kalibera, and A. P. Ravn, "A Hardware
Abstraction Layer in Java," ACM Transactions on Embedded Computing

Systems, vol.10, no. 4, Article 42, 2011.

[19] S. Soumya, R. Guerin, and K. Hosanagar, "Functionality-rich vs

Minimalist Platforms: A Two-sided Market Analysis," ACM Computer
Communication Review, vol. 41, no. 5, 36-43, 2011.

[20] Windows System Call Table, Googlecode.com, retrieved Feb 16, 2012.
http://miscellaneuoz.google.com/svn/winsyscall.

