
Transforming SQLITE to Run on a Bare PC

Uzo Okafor, Ramesh K. Karne, Alexander L. Wijesinha and Bharat S. Rawal
Department of Computer and Information Sciences, Towson University, Towson, Maryland 21252 U.S.A.

Keywords: Code Transformation, Bare PC Systems, Bare Machine Computing, SQLITE, Database Systems.

Abstract: SQLITE is a popular small open-source database management system with many versions that run on
popular platforms. However, there is currently no version of the SQLITE application that runs on a bare PC.
Since a bare PC does not provide any form of operating system (or kernel) support, bare PC applications
need to be completely self-contained with their own interfaces to the hardware. Such applications are
characterized by small code size, and have inherent security and performance advantages due to the absence
of a conventional operating system. We describe a general transformation approach that can be used to
transform the SQLITE application to a lean SQLITE application that runs on a bare PC. We present the
current state of this work and identify several important issues that need further research.

1 MOTIVATION

We have developed a variety of bare PC applications
(Appiah-Kubi, 2009 and He, 2008) that run on a
machine without using any operating system (OS),
or kernel. Bare PC systems are also different from
embedded systems. The bare PC architecture is
simple, application-centric, extensible, and lean and
independent of any operating environment. At
present, it is based on a single programming
language C++ with some low-level interface code
written in C or assembly language. The SQLITE
application is a system-level program with
reasonable complexity. It is written in C. The
developers of this application created an
amalgamation package, delivered as two source files
with all environment parameters included in them.
This application is suitable for transformation to a
bare PC, as it is complex, and provides insight for
developing an automated tool for transforming other
applications.

2 INTRODUCTION

The SQLITE application in amalgamation form for
Windows OS (Operating System) has two source
files (shell.c, sqlite3.c) and two header files
(sqlite3.h, sqlite3ext.h). The sizes of shell.c and
sqlite3.c are 86, 016 and 4,323,826 bytes

respectively. The total number of lines of code in
both source files is 129,003, of which 55,691 are
commented lines of code and 40,297 are executable
statements. The code runs in the Microsoft Visual
Studio 2010 Express environment. When the
application runs, a user can perform standard
database functions including those to create tables,
insert data and query a database. The output will be
displayed in a Microsoft Window (there is no
graphics interface). Our task is to transform this
application code so that it will run on a bare PC
without using any operating system/kernel or
embedded software.

This transformation process is different from the
translation done by compilers, interpreters,
programming language parsers and other tools used
for porting. The primary issue involved in
transforming conventional applications to bare
applications is that a bare application needs to run as
a completely self-supporting entity. Transforming
the code involves eliminating operating system
dependencies and system calls from the code, and
using a direct hardware API that is based on the
Bare Machine Computing (BMC) paradigm (Karne
2005 and Khaksari 2012). This paradigm supports
the development of lean, minimal and low cost
applications as proposed in (Soumya, Guerin and
Hosanagar 2011).

There is a considerable amount of work relating
to code transformation and translation e.g., Intel x86
programs can be translated from binary code to

311
Okafor U., K. Karne R., L. Wijesinha A. and S. Rawal B. (2012).
Transforming SQLITE to Run on a Bare PC.
In Proceedings of the 7th International Conference on Software Paradigm Trends, pages 311-314
DOI: 10.5220/0004015403110314
Copyright c SciTePress

ARM and Alfa binaries with reasonable code
densities and quality (Hwoang, Lin and Chang,
2010). In (Schoeberl, Korsholm, Kalibera and Ravn,
2011) the Java virtual machine is implemented
directly on hardware in an embedded system (as
extensions of standard interpreters and hardware
objects, which interface directly with the JVM).
SoulPad presents a new approach based on carrying
an auto-configuring operating system along with a
suspended virtual machine on a small portable
device. With this approach, the computer boots from
the device and creates a virtual machine, thus giving
users access to their personal environment, including
previously running computations. BulkCompiler is a
simple compiler layer that works with group-
committing hardware to provide a whole-system
high-performance sequential consistency platform.
They introduce ISA primitives and software
algorithms to drive instruction-group formation, and
to transform code to exploit the groups. None of
these approaches provide a technique to transform
OS-based code to run on a bare PC or a bare
machine.

The rest of the paper is as follows. Section 3
describes the BMC paradigm and its characteristics.
The transformation process is described in Section 4.
Some transformation process issues are identified in
Section 5. Section 6 contains the conclusion.

3 BMC AND RELATED WORK

A conventional OS/kernel or embedded software
acts as middleware between the hardware and an
application. An application programmer is therefore
isolated from an application’s execution

environment and plays a very limited role in
resource control and management. Thus, the
programmer has no direct control of program
execution, which is managed by the OS. In contrast,
Bare Machine Computing (BMC), also called
dispersed operating system computing (DOSC), uses
the BMC paradigm, which eliminates the OS by
introducing an application object (AO). An AO
allows the programmer to assume sole control of the
application and its execution. Therefore, execution
and control knowledge of a given BMC application
now resides with the AO programmer. The BMC
paradigm differs from conventional computing in
two major ways. First, the machine itself is bare with
no existing software i.e., no resources such as the
OS or applications reside on the machine and need
to be protected. Second, an AO programmer is
totally responsible for program execution, control

and management. When a device is bare and has no
valuable resources such as a hard disk, OS or a
kernel to protect, it only becomes necessary to
secure the AO and its hardware interfaces. In the
BMC approach, mass storage can also be on a
network. An AO is built for a given set of
applications to run on a bare machine as a single
monolithic executable that is lean and has minimal
(only essential) functionality. The necessary network
protocols are intertwined with the application and
are not part of the OS-controlled stack or kernel i.e.,
there is no notion of user space and kernel space as
in a conventional system. The code for boot, load,
executable, data and files are stored on an external
storage device such as a USB. When this device is
plugged-in, the machine boots and runs its own
program without using any external programs or
software. No dynamic link libraries or virtual
machine code are present or allowed in BMC. When
an AO is running in the machine, only the software
loaded by the user will run. BMC systems are
currently being investigated for their security
benefits.

In the bare machine computing (BMC)
paradigm, a software program is designed as an AO,
which is self-supporting, self-managed and self-
executable. Once an AO is booted and loaded into a
bare PC, it runs without using any other software
i.e., there is no centralized support of any kind. The
BMC paradigm has been used to develop complex
applications such as Web servers, Webmail servers,
and VoIP soft-phones. These applications use lean
versions of standard network protocols, and security
protocols such as TLS, if needed. The BMC
approach completely eliminates the underlying OS
and centralized middleware. While the BMC
paradigm is similar to approaches that reduce OS
overhead and/or use lean kernels such as Exokernel
(Engler,1998), IO-Lite (Pai, Druschel and
Zwaenepoel, 2000) and Palacios and Kitten (Lang,
et al ,2010) there are significant differences. In
particular, there is no centralized code that manages
system resources i.e., the application is completely
self-supporting, and the AO programmer controls
and manages the execution environment and the
hardware. The bare PC application development
process and BMC characteristics are described in
greater detail in (Khaksari, Karne and Wijesinha,
2012).

4 TRANSFORMATION PROCESS

We now describe the transformation process in

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

312

Figure 1: Transformation Process.

detail. Although our focus here is on transforming
SQLITE to run on a bare PC, the techniques and
underlying principles for transforming other
applications will be similar. The overall
methodology for transformation is illustrated in Fig.
1. The SQLITE application can be compiled using a
batch execution file like cpp.bat in a DOS
environment, or it can be compiled using the Visual
Studio environment. When the latter environment is
chosen, it is necessary to set the options to create a
bare executable. When a batch file option is used,
the application is compiled in a DOS window
environment. In both cases, the ultimate objective is
to eliminate any OS dependencies that may be due to
system header files. Removal of a pure system
header file will not cause any compile-time errors.
However, removal of a non-system header file will
generate compiler errors since the source code may
be using some standard definition of variables or
structures. To resolve errors, it may be necessary to
use some new declarations for variables and
functions, and/or to insert some generic header files.
The compilation process is iterative until all
compiler errors are resolved.

The next step is linking. When the above

piled objects are linked, link errors show up mostly
as system calls or OS-dependent interfaces. Each OS
environment has its own system calls. System calls
can be classified based on their type. As with
compiling, the linking process is also iterative until
all link errors are resolved. Link errors can be
resolved by implementing a system call in a bare PC
environment. If the bare PC implementation was not
yet done, we simply put in a prototype and
postponed the implementation. Once all link errors
are resolved, we can create an executable that is
ready to be loaded in a bare PC.

Compiling and linking as described above are
currently done manually. In future, it will be
possible to develop an automated tool for these steps
(ideally, by modifying a Visual Studio tool).

The SQLITE linking process resulted in 88 link
errors. In general, we expect a large number of link
errors. The transformation process has to resolve
these errors in order to generate an executable that
can run on a bare PC.

Figure 2: Classification of System Calls.

The 88 link errors are due to different types of
system calls: we categorize them as shown in Fig. 2.
Some of these calls are duplicates as they are
referenced in two different source files. Some
functions such as string type functions are not
related to the underlying OS. However, many such
functions and the most commonly used application-
level functions are typically bundled with OS
libraries. This makes these applications OS
dependent and makes it harder to port them to other
platforms. The nature of system calls varies
according to the particular OS environment in use.
For example, 542 system calls are cross-referenced
for Linux systems in (FreeBSD/Linux). In our

Transforming SQQLITE to Run on a Bare PC

313

application, we do not need to handle all system
calls that are available in a commercial OS. The
above system calls are implemented in BMC as
direct hardware interfaces (Karne, Jaganathan and
Ahmed, 2005) which are controlled by an AO
programmer

5 TRANSFORMATION ISSUES

In theory, the transformation process is complete
once all system header files are removed and the
necessary bare PC interfaces are provided.
However, this proved to be not the case in practice.
The major obstacles encountered and other problems
include: executable formats, memory map and
layout, base address for relocation, and memory
allocation. The major items in transforming the
SQLITE application to a bare PC application can be
summarized as follows:

 It is a large and complex application that
also interacts with a database

 It uses its own mini-OS structures
 It is very much intertwined with OS header

files and system calls
 It uses internal cache, paging, and memory

management
 It built its own I/O calls on top of standard

I/O.
The issues identified above are unique to the

SQLITE program. Similar issues will arise and need
to be addressed when transforming complex
applications that are closely integrated with the
underlying OS and environments.

6 CONCLUSIONS

Transforming complex applications to run on a bare
PC with no operating system or kernel support is not
trivial. We discussed a methodology for
transforming SQLITE and detailed the steps for
compiling, linking and running the application on a
bare PC. We also identified several design issues
related to the transformation process. In particular,
we identified system calls related to the SQLITE
application and classified them into groups. The
direct bare hardware interfaces (hardware APIs) are
general and can be used to build any bare PC
application (not just SQLITE). This work serves as a
foundation for transforming conventional OS-based
applications to run on a bare PC and will help in
building an automated transformation tool in the
future.

REFERENCES

Ahn, W., Qi, S., Nicolaides, M., and Torrellas, J., 2009.
BulkCompiler: High-Performance Sequential
Consistency through Cooperative Compiler and
Hardware Support. In IEEE/ACM International
Symposium on Micro Architecture.

Appiah-Kubi, P., Karne, R., and Wijesinha, A., 2010. The
Design and Performance of a Bare PC Webmail
Server. In the 12th IEEE International Conference on
High Performance Computing and Communications,
AHPCC.

Engler, D., 1998. The Exokernel Operating System
Architecture. Department of Electrical Engineering
and Computer Science, Massachusetts Institute of
Technology, Ph.D. Dissertation.

FreeBSD/Linux Kernel Cross Reference, http://
fxr.watson.org/ fxr/source/kern/syscalls.c.

He, L., Karne, R., and Wijesinha, A., 2008. Design and
Performance of a bare PC Web Server. In
International Journal of Computer and Applications,
Acta Press.

Hwang,Y., Lin,T., Chang, R., 2010. DisIRer: Converting
a Retargetable Compiler into a Multiplatform Binary
Translator. In ACM Transactions on Architecture and
Code Optimization , Vol. 7, Issue 4.

 Karne, R., Jaganathan,K., Ahmed, T., and Rosa, N., 2005.
DOSC: Dispersed Operating System Computing. In
20th Annual ACM Conference on Object Oriented
Programming (OOPSLA).

Karne, R., Jaganathan,K., and Ahmed, T., 2005. How to
run C++ Applications on a bare PC. In 6th ACIS
International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel
Distributed Computing (SNPD), p. 50-55.

Khaksari, G., Karne, R., and Wijesinha, A., 2012. A Bare
Machine Application Development Methodology. In
International Journal of Computer Applications
(IJCA), Vol. 19, No.1.

Lange, J., Pedretti, K., Hudson,T., Dinda, P., Cui, Z.,
Xia, L., Bridges, P., Gocke, A., Jaconette, S.,
Levenhagen, M., and Brightwell, R., 2010. Palacios
and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing. In Proceedings of the 24th IEEE
International Parallel and Distributed Processing
Symposium.

Pai, V., Druschel, P., and Zwaenepoel, W., 2000. IO-Lite:
A Unified I/O Buffering and Caching System. In
ACM Transactions on Computer Systems, Vol.18 (1),
p. 37-66, ACM.

Schoeberl, M., Korsholm, K., Kalibera, T., and Ravn,
A., 2011. A Hardware Abstraction Layer in Java. In
ACM Transactions on Embedded Computing Systems,
Vol.10, No.04, Article 42.

Soumya,S., Guerin, R., and Hosanagar, K ., 2011.
Functionality-rich Vs Minimalist Platforms: A Two-
sided Market Analysis. In ACM Computer
Communication Review, Volume 41, Number 5, p36-
43.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

314

