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Abstract—Bare machine applications currently run on x86-based 

CPUs without any operating system or kernel support. Their low 

overhead makes them especially suited for mobile devices and 

pervasive computing. As an initial step towards running bare 

applications on mobile devices, we transform an x86-based bare 

PC graphics application to run on an ARM device. We first 

identify key differences between the x86 and ARM architectures 

relevant to the transformation. We then describe a methodology 

to transform the x86-based bare graphics application to run on 

the ARM architecture. We also present timing measurements 

when drawing graphics functions using the same bare application 

on an x86 bare PC, ARM development board, DOSBox emulator, 

and QEMU-VM simulator. This work provides insight into 

designing future bare machine applications that can run on a 

variety of mobile and pervasive devices with minimal code 

changes.  

     Keywords-Bare Machine Computing (BMC); transforming 

applications; mobile devices; pervasive computing; ARM 

architecture.  

I. INTRODUCTION 

The ARM architecture is widely used in mobile devices 

including mobile phones and smartphones. We consider the 

problem of transforming a bare PC application that does not 

use any form of operating system (OS) or kernel to run on an 

ARM processor. Bare PC applications have low overhead 

since they run directly on the underlying hardware, which 

makes them a good match for low-power mobile devices. 

They are also suited for pervasive computing in view of their 

ability to run without any additional support or software. 

While a variety of bare PC applications have been developed 

previously, they run on devices with x86 CPUs. Transforming 

a bare PC application to run on the ARM architecture is a first 

step towards investigating their potential for mobile and 

pervasive computing. 

Bare applications are self-contained and independent of 

any OS, kernel, or execution environment. They are written to 

self-manage the hardware assuming a CPU architecture based 

on x86 (the hardware API, tasking mechanisms, and drivers 

are therefore x86-specific). Transforming an x86-based bare 

PC application to run on the ARM architecture is non-trivial 

since there is no OS or kernel support of any kind to act as an 

intermediary on behalf of the application. By understanding 

how to write bare applications in a general manner, the 

transformation process can be simplified. It will then be 

possible to run the same bare application code (for example, a 

bare VoIP client, a bare lightweight Web browser, or a bare 

sensor application) on a variety of devices with minimal code 

changes. 

In this paper, we solve the transformation problem from 

x86 to the ARM architecture for a particular application. 

Specifically, we transform a graphics application that runs on 

an x86-based bare PC so that it will run on a device with an 

ARM processor. The transformation is achieved by making 

minimal changes to the existing x86-based bare PC graphics 

application. We also measure the time to run the same bare 

graphics application on an x86-based PC, an ARM 

development board, DOSBox emulator, and the QEMU-VM 

simulator.  

The rest of the paper is organized as follows. Section II 

provides an overview of bare machine computing and related 

work. Section III compares the principal differences between 

the x86 and ARM architectures from a bare application 

transformation viewpoint. Section IV discusses the 

transformation process in detail. Section V gives the timing 

measurements, and Section VI contains the conclusion. 

II. BACKGROUND AND RELATED WORK 

     Computer applications are typically written in high level 

programming languages, which at compile and link time 

require OS calls in some form.  These calls enable applications 

to access hardware resources at run time. In contrast, bare 

machine applications eliminate the OS and run directly on the 

hardware. Previously developed bare machine applications 

include Web servers [1]; email servers and clients [2], [3]; SIP 

servers [4]; applications secured via IPsec [5]; VoIP softphone 

clients [6]; and split protocol servers [7]. These applications 

are based on the bare machine computing (BMC) paradigm, 

previously called the dispersed operating system computing 

(DOSC) paradigm [8], which does not use any OS, kernel, or 

embedded system calls. Bare applications directly 

communicate with the hardware using their own bare 

interfaces to the hardware [9]. The BMC paradigm was used 

in [10] to develop a graphics application that runs on an x86 

bare PC. This paper transforms the code of that bare PC 

graphics application so that it runs on an ARM device.  

Subsequent to the proposal in [11] to eliminate OS 

abstractions, many studies have addressed the problem of 

reducing OS overhead for applications. Exokernel [12], OS-

Kit [13] and Tiny OS [14] provide examples of lean kernels, 

OS components, or a small OS for sensors respectively. In 

contrast, the BMC paradigm allows an application 

programmer to have sole control of the application and its 

execution environment. In this paradigm, application 

programs communicate directly to the hardware via the above-

mentioned hardware interfaces. These interfaces can, for 

example, enable program load, screen display, mouse and 

keyboard access, process management, and network and audio 

card control if needed by an application. Each application can 

thus carry only those specific interfaces that are needed for its 

execution. When the OS, kernel, or any form of intermediary 

system software is eliminated, resource management for an 

application is simplified. This results in much less overhead 

than for a conventional application as shown in [1], [2], [6]. 

In the areas of code transformation and translation, many 

innovative techniques have been proposed. For example, Intel 

x86 programs can be translated from binary code to ARM and 



 

Alfa binaries with reasonable code densities and quality [15], 

[16]. The hardware abstraction layer concept is used to 

implement the Java virtual machine directly on hardware in an 

embedded system (as extensions of standard interpreters and 

hardware objects that interface directly with the JVM) [17].  In 

SoulPad [18], an auto-configuring OS with a suspended virtual 

machine is created on a small portable device at boot-time, 

giving users access to their personal environment and 

previously running computations. In BulkCompiler [19], a 

simple compiler layer is provided that works with ISA 

primitives and software algorithms to drive instruction-group 

formation, and to transform code to exploit groups. Our work 

differs from previous code transformation/translation 

approaches in that we are transforming the same bare code so 

that it can run on different CPU architectures.   

III. ARCHITECTURE COMPARISON 

We now examine the main differences between the x86 

and ARM architectures that impact the transformation process. 

In an x86 bare application (such as a graphics application 

[10]), a bootable USB and PC BIOS are used to boot the PC. 

The boot process starts in real mode (address space 1MB) in 

an x86 system. In protected mode for x86, the address space is 

4GB. There is no notion of real or protected mode in an ARM 

system. Instead, it has several mode types in system mode, and 

it also has a user mode. These modes are used by an OS to 

provide protection to applications and the system [20].  

The user display in x86 is controlled by video memory (0x 

B8000 for text mode): a user places the data in memory and it 

is immediately displayed on the screen. In the ARM 

architecture, a low-level driver is needed to display 

information on the screen. In x86, mass storage can be 

provided by hard disk (HD), solid state disk (SDD), optical 

disk (CD/DVD) or USB. In ARM, mass storage is provided by 

SD (Secure Digital non-volatile memory card), NAND Flash, 

NOR Flash, and USB; however they are not similar to a PCI 

(peripheral component interconnect) bus in x86. In x86, Intel’s 

Host Controller Hub (ICH) provides interfaces to many I/O 

devices. In ARM, each I/O device has a controller that is 

directly connected to the CPU and provides GPIO (general 

purpose I/O with 187 pins) to the programmer [21].  

Table I summarizes the comparison. It should be noted that 

there are many other differences (and similarities) in the x86 

and ARM architectures that are not considered here.    

     

TABLE I.  ARCHITECTURE COMPARISON 

Characteristics x86 ARM 

Architecture CISC RISC 

Development  

Environment 

Visual Studio, 

 C/C++ 

Eclipse CDT,  

GNU C/C++ 

Boot BIOS X-Loader, U-boot 

Address Space 
Real(20), 

Protected(32) 
User(32), 

System(32) 

Display Video Memory Driver 

User Input Keyboard/Mouse Touch Screen 

Mass Storage HD, SDD, USB SD, USB 

 

C/C++ compilers and linkers are available for both x86 and 

ARM devices. As expected, the assembly language and CPU 

instructions are different in these devices.  Thus, any assembly 

level code/instructions used in x86 must be re-written for 

ARM processor with respect to its differences in attributes as 

shown in Table 1.  

IV. TRANSFORMATION PROCESS 

A high-level methodology for transforming a small 

graphics application from x86 to ARM is shown in Fig. 1. 

This approach can be adapted to develop a general 

transformation methodology in the future for other types of 

bare machine applications.  

 

 
 

Figure 1.  Transformation process. 

 

Except for the boot and load process, the graphics 

application code transformed from x86 is bare code that does 

not depend on any OS or kernel. The following subsections 

provide details of the application transformation process.  

A.  Graphics Application on x86 

The bare PC graphics application [10] is designed to 

perform graphics functions, such as drawing geometric figures 

with fractal primitives, displaying text characters, pixels, lines, 

circles, and bitmap images, and handling attributes such as 

color. The basic graphics functions implemented using 

standard C and Intel assembly language include screen access, 

screen framework, font/symbols, image/video, shapes, 

attributes, image transformation and bit operations for 

performance as described in [10]. 

The number of lines of C code for the application is 615 

(executable lines) and the number of lines of assembly code is 

766 (including comments). The number of lines of assembly 

code for all hardware interfaces in a bare PC is 1969 

(including comments). We only use about 10% of the 
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hardware interfaces for the graphics application. The boot and 

load code are not counted in this measurement.    

B.  Transformation to ARM  

The overall flow for transforming the bare x86-based 

application to an ARM application was shown in Fig. 1. The 

key requirement is that the application should have the same 

functionality when running on an x86 bare PC and an ARM 

device.  

 

B.1 Development Environment 

     Eclipse IDE was used as the development environment for 

writing the ARM code on a laptop or desktop system. The 

code for x86 was generated using batch files and Visual 

Studio.   

 

B.2 Development Board 

     In order to have full control over the development process 

and to also make the system bare, an ARM development board 

(OK6410 from Samsung) was used. This board comes with 

built-in (conventional) systems including Android, Win-CE 

and Embedded Linux. It has 256 MB main memory, 2 GB 

mass storage, and 667 MHz clock speed. A SanDisk 2GB SD 

card was used for secondary storage [21].  

 

B.3 Boot and Load 

    We used the U-boot tool, which is a universal boot loader 

[22] that is easy to use; it also provides free source code. The 

interactive commands provided by the tool can be used to 

boot, load, and execute programs. We only use minimal U-

boot functionality including CPU Register/Stack setup (before 

call to an application), setup UART console, setup clock/PLL 

setting, and memory initialization. Although the boot/load 

process could also be made bare (similar to what is done in 

x86 bare application development), this has not been done for 

the bare graphics application. After the executable is created 

using the Eclipse IDE, it is loaded using U-boot’s “loadb” 

command. Usually, an application is loaded at a specified 

address (e.g.  0x800). 

 

B.4 Execution  

After the executable is loaded into memory, it is executed 

by invoking U-boot’s “go” command. The “go” command will 

load this specific start address in the PC register and start 

executing from this address [9]. In an x86 bare PC application, 

boot, load, and execute are all part of the application object 

(AO), which is controlled by the programmer [23].  

 

B.5 x86 Code Dependencies 

The dependencies specific to x86 that were found in the 

bare PC graphics application code are due to data types, 

memory addresses, type casting, pointers, device addresses 

and device interfaces. For example, video memory is used to 

display graphics, whereas a bare driver is used to write to the 

screen in ARM. It would be possible to reduce such 

dependencies if the original code is written with the intention 

of transforming it to run on a different architecture.  

Fig. 2 shows code analysis that illustrates the 

transformation process. In this example, 38% of the code is 

reused from x86, 34% is newly written, and 28% is modified. 

The modifications are due to the dependencies identified 

above. 

 

 
 

Figure 2.  Code transformation x86 to ARM 

 

The application in x86 uses its own boot, load, and execute 

written in assembly, which consists of about 1969 lines 

(including comments); the equivalent in ARM is U-boot. The 

assembly code used in bare (video memory access and 

controls) is about 766 lines (including comments), which is 

similar to the new code written for ARM. This code is 288 

lines written in C. The total number of lines of C code in x86 

is 615 compared to 580 lines for the ARM bare application. 

As expected, ARM code is smaller in size and appears to be 

more robust than the code in x86. In general, ARM is more 

suited for this type of bare machine application than x86.      

 

B.6 Implement x86 Dependencies  

As noted above, there are many x86-specific dependencies 

in the bare graphics application code. However, since most of 

these are trivial, except device interfaces in x86 versus ARM, 

we only discuss the latter. In effect, we will illustrate the 

implementation differences when drawing a pixel on the 

screen, which serves as a building block for accomplishing 

most of the graphics API. 

The bare PC graphics implementation in x86 is shown in 

Fig. 3. The graphics application requires setup modes for 

controlling the graphics card. This is done by simply using 

BIOS interrupts.  Once the graphics mode and parameters are 

initialized, subsequent graphics operations use direct hardware 

interfaces to store graphics data in video memory. The bare 

PC does not have privileged and user modes, so all operations 

are done in user mode only. Since BIOS interrupts only work 

in real mode, all graphics control operations use an interrupt 

gate mechanism to go from protected mode to real mode. This 

switch is transparent to the AO programmer since it is 

encapsulated in the direct hardware interfaces used by bare PC 

applications.    

An AO can also use software interrupts to reach certain 

hardware facilities in the bare PC system as shown in Fig. 3. 

As bare PC applications do not use any graphics drivers, they 

rely on the direct hardware interfaces thus avoiding the need 

for any intermediary software in the system. We also use some 

shared memory in a bare PC application to facilitate direct 

communication between an AO and the underlying hardware. 

For example, a timer interrupt will update shared memory in 



 

real mode and the timer value can be accessed by an AO using 

a direct shared memory interface.  

    

 
 

 

Figure 3.  x86 bare graphics implementation. 

 

 

B.7 Implement ARM Dependencies  

 

 The bare graphics implementation on ARM is shown in 

Fig. 4. Fig. 3 and Fig. 4 taken together illustrate the 

similarities of the AO and AGO (Application Graphics 

Object) implementations in the BMC paradigm. At startup, the 

whole screen is blank and the LCD backlight is off. Since the 

display driver is written in C and it is not using any external or 

third party code or libraries, all necessary registers are defined 

and the macros are setup for controlling the lines through 

GPIO (General Purpose Input/Output). First, the application 

executes the bare display driver. Via registers and macros, it 

initializes the vertical and horizontal cycles with precise 

timing requirements as specified on the LCD Controller data 

sheet and turns on the LCD backlight [24]. Second, the 

application initializes the Frame Buffer (FB), which is a 

location in memory to store the display data. Third, the bare 

application calls the draw_pixel() function with three 

parameters: the y, x coordinates and color of a given pixel. 

Fourth, the bare graphics interface modifies the first four bytes 

in the FB with data according to the given color. Fifth, the 

application draws whole FB frame on the screen. It goes in a 

loop, reading all data from FB and generating the necessary 

signals through GPIO for CLK (Clock), VSYNC (Vertical 

Synchorization), HSYNC (Horizontial Synchronization) and 

DATA read from FB [21], [24]. 

 

 
Figure 4.  ARM bare graphics implementation. 

V. TESTING AND MEASUREMENTS 

The testing environment consists of an x86 bare PC, bare 

ARM development board, DOSBox and QEMU-VM 

simulator. For x86, the testing was conducted on a Dell 

Latitude D620 laptop with a standard VGA graphics card and 

VESA enabled BIOS on VGA Mode 13, with 320-by-200 pixel 

resolution in 256-Colors, and 1.83 GHz clock speed.  For 

ARM, the testing was conducted on an ARM development 

board: Samsung S3C6410/OK6410 micro controller with 677 

MHz, and 4.3’’ WXCAT43-TG3 TFT-LCD panel [21], [24]. 

For the DOSBox emulator on Windows XP, the x86 graphics 

application code was written in Turbo C. This code uses BIOS 

calls for graphics. The bare PC graphics application was also 

run using the QEMU-VM simulator. Here, the same 

application code as for x86 is run on the simulator, which runs 

on Microsoft Windows XP. 

Fig. 5 shows the testing/execution environment for the 

timing measurements given in this paper. The left laptop shows 

the display of images for a bare PC application. The right 

laptop shows the same images on a QEMU-VM simulator 

running on Windows. The ARM development board is shown 

with wires illustrating the connections. The bottom three 

screens show lines, circles, and images captured from the ARM 

display. It can be seen that these images look the same in all 

testing/execution environments.  
For timing measurements, four graphics functions were 

used: draw_pixel(), draw_line(), draw_circle(), and 
draw_bitmap(). In an x86 bare PC, each pixel requires three 
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bytes: the first two bytes indicate the location/screen size, and 
the third byte has the color information. These three bytes are 
formed in video memory directly for the desired number of 
pixels. Since video memory is linear, the location is calculated 
by multiplying the y coordinate by the total screen width, and 
adding the x coordinate. The draw_pixel() function forms the 3 
bytes data in video memory. When drawing a large number of 
pixels, we used random coordinates and colors. In the ARM 
implementation, we used the same draw_pixel() interface. 
However, since video memory is not accessible in the ARM 
development board, we put the pixel data in main memory and 
pushed it into the LCD. This process is done completely in 
software instead of using a hardware display controller. The 
code written for the bare ARM device to control the LCD 
includes GPIO initialization, clocking, vertical sync, horizontal 
sync, and data enable. It is independent of any OS or 
environment. 

 
 

Figure 5.  Executing and testing environments. 
 

The timing results below only demonstrate the basic 

performance of the same x86 bare graphics application when it 

is transformed with a minimum of changes to run on ARM. A 

more detailed study is needed to account for differences in 

clock speed, instruction set and graphics controller 

implementation. 

Fig. 6 shows the time to draw 500,000 to 75,000,000 pixels 

on x86, ARM, DOSBox, and QEMU-VM.  It can be seen that 

the x86 bare PC has better timings than for the other systems as 

expected since it eliminates all OS overhead. Since the bare 

ARM development board uses a software display driver and its 

clock rate is 2.74 times slower than the x86 PC, it runs the 

slowest. The DOSBox is efficient since it uses BIOS calls and 

the hardware display controller. When drawing pixels, 

DOSBox takes less time than QEMU-VM.  

Figs. 7-9 show the time to draw 50,000 to 3,000,000 lines, 

50,000 to 400,000 circles, and 1000 to 26,000 images 

respectively. The timing difference between the bare PC and 

DOSBox are very small when drawing lines and circles, with a 

very small advantage for DOSBox over the bare PC in the 

latter case. Also, QEMU-VM performs worse than ARM for 

circles, but better than DOSBox and ARM for images 

(DOSBox shows a drop in performance for images). More 

studies are needed to determine the reasons for these variations 

in performance. 

The individual performance gains for the ARM 

development board and the x86 bare PC are shown in Fig. 10. 

The performance gains for drawing pixels, lines circles, and 

images range from 1–11, 3.5–60, 8–11 and 0.2–27.8 

respectively. These results indicate that the average gain for the 

x86 bare PC ranges from 6.5–35. Notice that the gain for 

drawing lines is much higher than for the other graphics. The 

likely reason is that drawing lines requires more calculations 

for computing the slope, which is faster in the x86 bare PC due 

to its clock speed and complex instructions for long operations.   

 
Figure 6.  Time to display pixels. 

 

 
Figure 7.  Time to display lines. 

 

 
Figure 8.  Time to display circles. 
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Figure 9.  Time to display images. 

 
Figure 10.  x86 bare PC gain over a bare ARM device. 

VI. CONCLUSION 

Bare machine applications that run on the hardware 

without any operating system or kernel support have many 

characteristics that are suited for mobile computing. As a first 

step towards investigating this potential, we transformed an 

x86-based bare PC graphics application to run on the popular 

ARM architecture. We identified differences in the x86 and 

ARM architecture relevant to the transformation, and outlined 

a transformation methodology. The graphics application code 

can be classified into three categories: code that can be used as 

is, code that is modified, and new code that is written for 

ARM. The transformed x86 application code running on ARM 

has no external dependencies other than on U-boot for boot 

and load. The transformed bare application was tested using 

an ARM development board. We also did basic timing studies 

to measure performance of the bare application when running 

on the x86 and ARM architectures. We also determined 

timings when running the application on a DOSBox emulator 

and QEMU-VM simulator. Although performance on the x86 

bare PC is in general better than on ARM, DOSBox, and 

QEMU-VM, more detailed studies are needed to evaluate the 

transformed bare application code on ARM. The methodology 

presented in this paper can serve as a basis to develop a 

general approach to transform other x86 bare applications for 

use in mobile devices, and for pervasive computing.  
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