
Transforming a Bare PC Application to Run on an ARM Device

Alexander Peter, Ramesh K. Karne, Alexander L. Wijesinha, Patrick Appiah-Kubi

Department of Computer & Information Sciences

Towson, MD 21252

apeter9@students.towson.edu, (rkarne, awijesinha, appiahkubi)@towson.edu

Abstract—Bare machine applications currently run on x86-based

CPUs without any operating system or kernel support. Their low

overhead makes them especially suited for mobile devices and

pervasive computing. As an initial step towards running bare

applications on mobile devices, we transform an x86-based bare

PC graphics application to run on an ARM device. We first

identify key differences between the x86 and ARM architectures

relevant to the transformation. We then describe a methodology

to transform the x86-based bare graphics application to run on

the ARM architecture. We also present timing measurements

when drawing graphics functions using the same bare application

on an x86 bare PC, ARM development board, DOSBox emulator,

and QEMU-VM simulator. This work provides insight into

designing future bare machine applications that can run on a

variety of mobile and pervasive devices with minimal code

changes.

 Keywords-Bare Machine Computing (BMC); transforming

applications; mobile devices; pervasive computing; ARM

architecture.

I. INTRODUCTION

The ARM architecture is widely used in mobile devices

including mobile phones and smartphones. We consider the

problem of transforming a bare PC application that does not

use any form of operating system (OS) or kernel to run on an

ARM processor. Bare PC applications have low overhead

since they run directly on the underlying hardware, which

makes them a good match for low-power mobile devices.

They are also suited for pervasive computing in view of their

ability to run without any additional support or software.

While a variety of bare PC applications have been developed

previously, they run on devices with x86 CPUs. Transforming

a bare PC application to run on the ARM architecture is a first

step towards investigating their potential for mobile and

pervasive computing.

Bare applications are self-contained and independent of

any OS, kernel, or execution environment. They are written to

self-manage the hardware assuming a CPU architecture based

on x86 (the hardware API, tasking mechanisms, and drivers

are therefore x86-specific). Transforming an x86-based bare

PC application to run on the ARM architecture is non-trivial

since there is no OS or kernel support of any kind to act as an

intermediary on behalf of the application. By understanding

how to write bare applications in a general manner, the

transformation process can be simplified. It will then be

possible to run the same bare application code (for example, a

bare VoIP client, a bare lightweight Web browser, or a bare

sensor application) on a variety of devices with minimal code

changes.

In this paper, we solve the transformation problem from

x86 to the ARM architecture for a particular application.

Specifically, we transform a graphics application that runs on

an x86-based bare PC so that it will run on a device with an

ARM processor. The transformation is achieved by making

minimal changes to the existing x86-based bare PC graphics

application. We also measure the time to run the same bare

graphics application on an x86-based PC, an ARM

development board, DOSBox emulator, and the QEMU-VM

simulator.

The rest of the paper is organized as follows. Section II

provides an overview of bare machine computing and related

work. Section III compares the principal differences between

the x86 and ARM architectures from a bare application

transformation viewpoint. Section IV discusses the

transformation process in detail. Section V gives the timing

measurements, and Section VI contains the conclusion.

II. BACKGROUND AND RELATED WORK

 Computer applications are typically written in high level

programming languages, which at compile and link time

require OS calls in some form. These calls enable applications

to access hardware resources at run time. In contrast, bare

machine applications eliminate the OS and run directly on the

hardware. Previously developed bare machine applications

include Web servers [1]; email servers and clients [2], [3]; SIP

servers [4]; applications secured via IPsec [5]; VoIP softphone

clients [6]; and split protocol servers [7]. These applications

are based on the bare machine computing (BMC) paradigm,

previously called the dispersed operating system computing

(DOSC) paradigm [8], which does not use any OS, kernel, or

embedded system calls. Bare applications directly

communicate with the hardware using their own bare

interfaces to the hardware [9]. The BMC paradigm was used

in [10] to develop a graphics application that runs on an x86

bare PC. This paper transforms the code of that bare PC

graphics application so that it runs on an ARM device.

Subsequent to the proposal in [11] to eliminate OS

abstractions, many studies have addressed the problem of

reducing OS overhead for applications. Exokernel [12], OS-

Kit [13] and Tiny OS [14] provide examples of lean kernels,

OS components, or a small OS for sensors respectively. In

contrast, the BMC paradigm allows an application

programmer to have sole control of the application and its

execution environment. In this paradigm, application

programs communicate directly to the hardware via the above-

mentioned hardware interfaces. These interfaces can, for

example, enable program load, screen display, mouse and

keyboard access, process management, and network and audio

card control if needed by an application. Each application can

thus carry only those specific interfaces that are needed for its

execution. When the OS, kernel, or any form of intermediary

system software is eliminated, resource management for an

application is simplified. This results in much less overhead

than for a conventional application as shown in [1], [2], [6].

In the areas of code transformation and translation, many

innovative techniques have been proposed. For example, Intel

x86 programs can be translated from binary code to ARM and

Alfa binaries with reasonable code densities and quality [15],

[16]. The hardware abstraction layer concept is used to

implement the Java virtual machine directly on hardware in an

embedded system (as extensions of standard interpreters and

hardware objects that interface directly with the JVM) [17]. In

SoulPad [18], an auto-configuring OS with a suspended virtual

machine is created on a small portable device at boot-time,

giving users access to their personal environment and

previously running computations. In BulkCompiler [19], a

simple compiler layer is provided that works with ISA

primitives and software algorithms to drive instruction-group

formation, and to transform code to exploit groups. Our work

differs from previous code transformation/translation

approaches in that we are transforming the same bare code so

that it can run on different CPU architectures.

III. ARCHITECTURE COMPARISON

We now examine the main differences between the x86

and ARM architectures that impact the transformation process.

In an x86 bare application (such as a graphics application

[10]), a bootable USB and PC BIOS are used to boot the PC.

The boot process starts in real mode (address space 1MB) in

an x86 system. In protected mode for x86, the address space is

4GB. There is no notion of real or protected mode in an ARM

system. Instead, it has several mode types in system mode, and

it also has a user mode. These modes are used by an OS to

provide protection to applications and the system [20].

The user display in x86 is controlled by video memory (0x

B8000 for text mode): a user places the data in memory and it

is immediately displayed on the screen. In the ARM

architecture, a low-level driver is needed to display

information on the screen. In x86, mass storage can be

provided by hard disk (HD), solid state disk (SDD), optical

disk (CD/DVD) or USB. In ARM, mass storage is provided by

SD (Secure Digital non-volatile memory card), NAND Flash,

NOR Flash, and USB; however they are not similar to a PCI

(peripheral component interconnect) bus in x86. In x86, Intel’s

Host Controller Hub (ICH) provides interfaces to many I/O

devices. In ARM, each I/O device has a controller that is

directly connected to the CPU and provides GPIO (general

purpose I/O with 187 pins) to the programmer [21].

Table I summarizes the comparison. It should be noted that

there are many other differences (and similarities) in the x86

and ARM architectures that are not considered here.

TABLE I. ARCHITECTURE COMPARISON

Characteristics x86 ARM

Architecture CISC RISC

Development

Environment

Visual Studio,

 C/C++

Eclipse CDT,

GNU C/C++

Boot BIOS X-Loader, U-boot

Address Space
Real(20),

Protected(32)
User(32),

System(32)

Display Video Memory Driver

User Input Keyboard/Mouse Touch Screen

Mass Storage HD, SDD, USB SD, USB

C/C++ compilers and linkers are available for both x86 and

ARM devices. As expected, the assembly language and CPU

instructions are different in these devices. Thus, any assembly

level code/instructions used in x86 must be re-written for

ARM processor with respect to its differences in attributes as

shown in Table 1.

IV. TRANSFORMATION PROCESS

A high-level methodology for transforming a small

graphics application from x86 to ARM is shown in Fig. 1.

This approach can be adapted to develop a general

transformation methodology in the future for other types of

bare machine applications.

Figure 1. Transformation process.

Except for the boot and load process, the graphics

application code transformed from x86 is bare code that does

not depend on any OS or kernel. The following subsections

provide details of the application transformation process.

A. Graphics Application on x86

The bare PC graphics application [10] is designed to

perform graphics functions, such as drawing geometric figures

with fractal primitives, displaying text characters, pixels, lines,

circles, and bitmap images, and handling attributes such as

color. The basic graphics functions implemented using

standard C and Intel assembly language include screen access,

screen framework, font/symbols, image/video, shapes,

attributes, image transformation and bit operations for

performance as described in [10].

The number of lines of C code for the application is 615

(executable lines) and the number of lines of assembly code is

766 (including comments). The number of lines of assembly

code for all hardware interfaces in a bare PC is 1969

(including comments). We only use about 10% of the

Identify architecture
differences in x86 and ARM

Find equivalent development
tools for ARM (Eclipse/GNU)

Find ARM Development Board
(ADB) for Prototype

Find boot mechanism to boot
ADB (X-Loader/U-boot)

Find load mechanism to load
application in ADB (U-boot

Load)

Identify x86 code
dependencies and common
code that can be used as is

Resolve x86 code
dependencies in ARM for

display, user input, timers,
GPIO etc.. .

START

Use common code as is;
Write new code in ARM “C “

language

Test and verify application
functionality

Conduct
measurements

STOP

hardware interfaces for the graphics application. The boot and

load code are not counted in this measurement.

B. Transformation to ARM

The overall flow for transforming the bare x86-based

application to an ARM application was shown in Fig. 1. The

key requirement is that the application should have the same

functionality when running on an x86 bare PC and an ARM

device.

B.1 Development Environment

 Eclipse IDE was used as the development environment for

writing the ARM code on a laptop or desktop system. The

code for x86 was generated using batch files and Visual

Studio.

B.2 Development Board

 In order to have full control over the development process

and to also make the system bare, an ARM development board

(OK6410 from Samsung) was used. This board comes with

built-in (conventional) systems including Android, Win-CE

and Embedded Linux. It has 256 MB main memory, 2 GB

mass storage, and 667 MHz clock speed. A SanDisk 2GB SD

card was used for secondary storage [21].

B.3 Boot and Load

 We used the U-boot tool, which is a universal boot loader

[22] that is easy to use; it also provides free source code. The

interactive commands provided by the tool can be used to

boot, load, and execute programs. We only use minimal U-

boot functionality including CPU Register/Stack setup (before

call to an application), setup UART console, setup clock/PLL

setting, and memory initialization. Although the boot/load

process could also be made bare (similar to what is done in

x86 bare application development), this has not been done for

the bare graphics application. After the executable is created

using the Eclipse IDE, it is loaded using U-boot’s “loadb”

command. Usually, an application is loaded at a specified

address (e.g. 0x800).

B.4 Execution

After the executable is loaded into memory, it is executed

by invoking U-boot’s “go” command. The “go” command will

load this specific start address in the PC register and start

executing from this address [9]. In an x86 bare PC application,

boot, load, and execute are all part of the application object

(AO), which is controlled by the programmer [23].

B.5 x86 Code Dependencies

The dependencies specific to x86 that were found in the

bare PC graphics application code are due to data types,

memory addresses, type casting, pointers, device addresses

and device interfaces. For example, video memory is used to

display graphics, whereas a bare driver is used to write to the

screen in ARM. It would be possible to reduce such

dependencies if the original code is written with the intention

of transforming it to run on a different architecture.

Fig. 2 shows code analysis that illustrates the

transformation process. In this example, 38% of the code is

reused from x86, 34% is newly written, and 28% is modified.

The modifications are due to the dependencies identified

above.

Figure 2. Code transformation x86 to ARM

The application in x86 uses its own boot, load, and execute

written in assembly, which consists of about 1969 lines

(including comments); the equivalent in ARM is U-boot. The

assembly code used in bare (video memory access and

controls) is about 766 lines (including comments), which is

similar to the new code written for ARM. This code is 288

lines written in C. The total number of lines of C code in x86

is 615 compared to 580 lines for the ARM bare application.

As expected, ARM code is smaller in size and appears to be

more robust than the code in x86. In general, ARM is more

suited for this type of bare machine application than x86.

B.6 Implement x86 Dependencies

As noted above, there are many x86-specific dependencies

in the bare graphics application code. However, since most of

these are trivial, except device interfaces in x86 versus ARM,

we only discuss the latter. In effect, we will illustrate the

implementation differences when drawing a pixel on the

screen, which serves as a building block for accomplishing

most of the graphics API.

The bare PC graphics implementation in x86 is shown in

Fig. 3. The graphics application requires setup modes for

controlling the graphics card. This is done by simply using

BIOS interrupts. Once the graphics mode and parameters are

initialized, subsequent graphics operations use direct hardware

interfaces to store graphics data in video memory. The bare

PC does not have privileged and user modes, so all operations

are done in user mode only. Since BIOS interrupts only work

in real mode, all graphics control operations use an interrupt

gate mechanism to go from protected mode to real mode. This

switch is transparent to the AO programmer since it is

encapsulated in the direct hardware interfaces used by bare PC

applications.

An AO can also use software interrupts to reach certain

hardware facilities in the bare PC system as shown in Fig. 3.

As bare PC applications do not use any graphics drivers, they

rely on the direct hardware interfaces thus avoiding the need

for any intermediary software in the system. We also use some

shared memory in a bare PC application to facilitate direct

communication between an AO and the underlying hardware.

For example, a timer interrupt will update shared memory in

real mode and the timer value can be accessed by an AO using

a direct shared memory interface.

Figure 3. x86 bare graphics implementation.

B.7 Implement ARM Dependencies

 The bare graphics implementation on ARM is shown in

Fig. 4. Fig. 3 and Fig. 4 taken together illustrate the

similarities of the AO and AGO (Application Graphics

Object) implementations in the BMC paradigm. At startup, the

whole screen is blank and the LCD backlight is off. Since the

display driver is written in C and it is not using any external or

third party code or libraries, all necessary registers are defined

and the macros are setup for controlling the lines through

GPIO (General Purpose Input/Output). First, the application

executes the bare display driver. Via registers and macros, it

initializes the vertical and horizontal cycles with precise

timing requirements as specified on the LCD Controller data

sheet and turns on the LCD backlight [24]. Second, the

application initializes the Frame Buffer (FB), which is a

location in memory to store the display data. Third, the bare

application calls the draw_pixel() function with three

parameters: the y, x coordinates and color of a given pixel.

Fourth, the bare graphics interface modifies the first four bytes

in the FB with data according to the given color. Fifth, the

application draws whole FB frame on the screen. It goes in a

loop, reading all data from FB and generating the necessary

signals through GPIO for CLK (Clock), VSYNC (Vertical

Synchorization), HSYNC (Horizontial Synchronization) and

DATA read from FB [21], [24].

Figure 4. ARM bare graphics implementation.

V. TESTING AND MEASUREMENTS

The testing environment consists of an x86 bare PC, bare

ARM development board, DOSBox and QEMU-VM

simulator. For x86, the testing was conducted on a Dell

Latitude D620 laptop with a standard VGA graphics card and

VESA enabled BIOS on VGA Mode 13, with 320-by-200 pixel

resolution in 256-Colors, and 1.83 GHz clock speed. For

ARM, the testing was conducted on an ARM development

board: Samsung S3C6410/OK6410 micro controller with 677

MHz, and 4.3’’ WXCAT43-TG3 TFT-LCD panel [21], [24].

For the DOSBox emulator on Windows XP, the x86 graphics

application code was written in Turbo C. This code uses BIOS

calls for graphics. The bare PC graphics application was also

run using the QEMU-VM simulator. Here, the same

application code as for x86 is run on the simulator, which runs

on Microsoft Windows XP.

Fig. 5 shows the testing/execution environment for the

timing measurements given in this paper. The left laptop shows

the display of images for a bare PC application. The right

laptop shows the same images on a QEMU-VM simulator

running on Windows. The ARM development board is shown

with wires illustrating the connections. The bottom three

screens show lines, circles, and images captured from the ARM

display. It can be seen that these images look the same in all

testing/execution environments.
For timing measurements, four graphics functions were

used: draw_pixel(), draw_line(), draw_circle(), and
draw_bitmap(). In an x86 bare PC, each pixel requires three

0 0 1 0 0 1

Video Memory

Display

Graphics operations in
real mode

Interrupt gate to real mode

Software interrupt

Application Object (AO)

Application Graphics
Object (AGO)

C-programming interface

PC assembly interface

Protected Mode
Memory

Real Mode
Shared Memory

0 0 1 0 0 1

Memory

Display

Application Object (AO)
Invoke commands

(draw_pixel, draw_line etc.)

Application Graphics
Object (AGO)

Graphics Library
Modify FB Contents

(WRITE)

C – Bare Device Driver
Access FB Data (READ), generate clocking,

and push FB data through GPIO

APP (AO)
APP LIB (AGO)
Frame Buffer

bytes: the first two bytes indicate the location/screen size, and
the third byte has the color information. These three bytes are
formed in video memory directly for the desired number of
pixels. Since video memory is linear, the location is calculated
by multiplying the y coordinate by the total screen width, and
adding the x coordinate. The draw_pixel() function forms the 3
bytes data in video memory. When drawing a large number of
pixels, we used random coordinates and colors. In the ARM
implementation, we used the same draw_pixel() interface.
However, since video memory is not accessible in the ARM
development board, we put the pixel data in main memory and
pushed it into the LCD. This process is done completely in
software instead of using a hardware display controller. The
code written for the bare ARM device to control the LCD
includes GPIO initialization, clocking, vertical sync, horizontal
sync, and data enable. It is independent of any OS or
environment.

Figure 5. Executing and testing environments.

The timing results below only demonstrate the basic

performance of the same x86 bare graphics application when it

is transformed with a minimum of changes to run on ARM. A

more detailed study is needed to account for differences in

clock speed, instruction set and graphics controller

implementation.

Fig. 6 shows the time to draw 500,000 to 75,000,000 pixels

on x86, ARM, DOSBox, and QEMU-VM. It can be seen that

the x86 bare PC has better timings than for the other systems as

expected since it eliminates all OS overhead. Since the bare

ARM development board uses a software display driver and its

clock rate is 2.74 times slower than the x86 PC, it runs the

slowest. The DOSBox is efficient since it uses BIOS calls and

the hardware display controller. When drawing pixels,

DOSBox takes less time than QEMU-VM.

Figs. 7-9 show the time to draw 50,000 to 3,000,000 lines,

50,000 to 400,000 circles, and 1000 to 26,000 images

respectively. The timing difference between the bare PC and

DOSBox are very small when drawing lines and circles, with a

very small advantage for DOSBox over the bare PC in the

latter case. Also, QEMU-VM performs worse than ARM for

circles, but better than DOSBox and ARM for images

(DOSBox shows a drop in performance for images). More

studies are needed to determine the reasons for these variations

in performance.

The individual performance gains for the ARM

development board and the x86 bare PC are shown in Fig. 10.

The performance gains for drawing pixels, lines circles, and

images range from 1–11, 3.5–60, 8–11 and 0.2–27.8

respectively. These results indicate that the average gain for the

x86 bare PC ranges from 6.5–35. Notice that the gain for

drawing lines is much higher than for the other graphics. The

likely reason is that drawing lines requires more calculations

for computing the slope, which is faster in the x86 bare PC due

to its clock speed and complex instructions for long operations.

Figure 6. Time to display pixels.

Figure 7. Time to display lines.

Figure 8. Time to display circles.

0

8

16

24

32

40

48

500 15400 30300 45200 60100 75000
Ti

m
e

In
 S

ec
s

Pixels In 1000s

Bare PC ARM Device DOSBox QEMU-VM

0

20

40

60

80

100

120

140

50 640 1230 1820 2410 3000

Ti
m

e
In

 S
ec

s

Lines In 1000s

Bare PC ARM Device DOSBox QEMU-VM

0

50

100

150

200

250

300

350

50 100 150 200 250 300 350 400

Ti
m

e
 In

 S
e

cs

Circles In 1000s

Bare PC ARM Device DOSBox QEMU-VM

Figure 9. Time to display images.

Figure 10. x86 bare PC gain over a bare ARM device.

VI. CONCLUSION

Bare machine applications that run on the hardware

without any operating system or kernel support have many

characteristics that are suited for mobile computing. As a first

step towards investigating this potential, we transformed an

x86-based bare PC graphics application to run on the popular

ARM architecture. We identified differences in the x86 and

ARM architecture relevant to the transformation, and outlined

a transformation methodology. The graphics application code

can be classified into three categories: code that can be used as

is, code that is modified, and new code that is written for

ARM. The transformed x86 application code running on ARM

has no external dependencies other than on U-boot for boot

and load. The transformed bare application was tested using

an ARM development board. We also did basic timing studies

to measure performance of the bare application when running

on the x86 and ARM architectures. We also determined

timings when running the application on a DOSBox emulator

and QEMU-VM simulator. Although performance on the x86

bare PC is in general better than on ARM, DOSBox, and

QEMU-VM, more detailed studies are needed to evaluate the

transformed bare application code on ARM. The methodology

presented in this paper can serve as a basis to develop a

general approach to transform other x86 bare applications for

use in mobile devices, and for pervasive computing.

REFERENCES

[1] L. He, R. K. Karne, and A. L. Wijesinha, “Design and Performance of a
bare PC Web Server,” International Journal of Computer and
Applications, vol. 15, pp. 100-112, June 2008.

[2] P. Appiah-Kubi, R. K. Karne, and A. L. Wijesinha. “The Design and
Performance of a Bare PC Webmail Server,” 12th IEEE International
Conference on High Performance Computing and Communications
(AHPCN), pp. 521-526, 2010.

[3] G. Ford, R. Karne, A. L. Wijesinha, and P. Appiah-Kubi, “The
Performance of a Bare Machine Email Server,” 21st International
Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2009.

[4] A. Alexander, A. L. Wijesinha, and R. Karne, “A Study of Bare PC SIP
Server Performance,” The Fifth International Conference on Systems
and Networks Communications (ICSNC), pp. 392-397, 2010.

[5] N. Kazemi, A. L. Wijesinha, and R. Karne, “Evaluation of IPsec
Overhead for VoIP using a Bare PC,” 2nd International Conference on
Computer Engineering and Technology (ICCET), pp. 586-589, 2010.

[6] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S. Girumala,
“A Peer-to-Peer Bare PC VoIP Application,” IEEE Consumer and
Communications and Networking Conference (CCNC), pp. 803-807,
2007.

[7] B. Rawal, R. Karne, and A. L. Wijesinha. “Mini Web Server Clusters for
HTTP Request Splitting,” 13th International Confrence on High
Performance Computing and Comunication (HPCC), 2011.

[8] R. K. Karne, K.V. Jaganathan, T. Ahmed, and N. Rosa, “DOSC:
Dispersed Operating System Computing,” 20th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Onward Track, pp. 55-61, 2005.

[9] R. K. Karne, K. Venkatasamy and T. Ahmed, “How to run C++
applications on a bare PC,” 6th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and Parallel /
Distributed Computing (SNPD), pp. 50-55, 2005.

[10] A. Peter, R. K. Karne, A. L. Wijesinha and P. Appiah-Kubi, “The
Design and Implementation of Bare PC Graphics,” 7th International
Multi-Conference on Computing in the Global Information Technology
(ICCGI) pp. 315-320, 2012.

[11] R. Engler and M.F. Kaashoek, “Exterminate all Operating System
Abstractions,” Fifth Workshop on Hot Topics in Operating Systems, p.
78, 1995.

[12] D. Engler, “The Exokernel Operating System Architecture,” Department
of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Ph.D. Thesis, 1998.

[13] The OS Kit Project, School of Computing, University of Utah,
http://www.cs.utah.edu/flux/oskit. Last Accessed Aug. 2012.

[14] Tiny OS, Tiny OS Open Technology Alliance, University of California,
Berkeley, CA, 2004, http://www.tinyos.net/. Last Accessed Aug. 2012.

[15] J. Lange et al., “Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native Supercomputing,” 24th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2010.

[16] Y-S Hwang, T-Y Lin, and R-G Chang, “DisIRer: Converting a
Retargetable Compiler into a Multiplatform Binary Translator,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 7
(no. 4), pp. 18-33, 2010.

[17] M. Schoeberl, S. Korsholm, T. Kalibera, and A.P. Ravn, “A Hardware
Abstraction Layer in Java,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 10 (no. 4), pp.1-40, 2011.

[18] R. Cáceres, C. Carter, C. Narayanaswami and M. Raghunath,
“Reincarnating PCs with Portable SoulPads,” IBM T.J. Watson
Research Center, New York.

[19] W. Ahn, S. Qi, M. Nicolaides and J. Torrellas, “BulkCompiler: High-
Performance Sequential Consistency through Cooperative Compiler and
Hardware Support,” MICRO’09, pp. 133-144, 2009.

[20] W. Hohl. “ARM Assembly Language. Fundamentals and Techniques,”
Florida: CRC Press, 2009.

[21] Samsung Electronics Inc. South Korea. User’s Manual
S3C6410X/OK6410 RISC Microprocessor Rev 1.20.

[22] L. Edwards. “Embedded System Design on a Shoestring,” Boston:
Newnes, 2003.

[23] R. K. Karne, “Application-oriented Object Architecture: A
Revolutionary Approach,” 6th International Conference HPC Asia,
2002.

[24] WANXIN IMAGE Inc. Taiwan. 4.3’’ TFT-LCD with Touch Panel
Module Model #: WXCAT43-TG3#001 Product Specification
Document.

0

10

20

30

40

50

60

1 6 11 16 21 26

Ti
m

e
 In

 S
e

cs

Images In 1000s

Bare PC ARM Device DOSBox QEMU-VM

0

5

10

15

20

25

30

35

40

Pixels Lines Circles Images

G
ai

n
 (

%
)

