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Abstract—Reliability, availability and survivability are important 

characteristics of Web servers that enable them to provide 

continual service to clients. Server migration is one of the many 

approaches used to improve the reliability of Web servers. We 

propose a novel technique for migrating Web servers that is 

based on protocol splitting, wherein two servers, a connection 

server and a data server, function as a single logical server. The 

technique extends splitting by having the connection server 

dynamically transfer a TCP connection to another connection 

server with no client involvement. We describe an 

implementation of the migration technique and present 

preliminary performance results using bare PC Web servers in a 

LAN environment with Linux routers. The connection transfer is 

achieved by means of an additional inter-server packet and a 

script to modify a routing table. The results indicate the 

feasibility of adapting this approach in the future to work with 

conventional (non-bare) servers on the Internet.  

Keywords—protocol; performance; Web server migration; 

checkpoint/restart; bare machine computing 

I.  INTRODUCTION 

Protocol splitting enables TCP to be split into its connection 
and data phases so that these phases are executed on different 
machines during a single HTTP request [1]. In the basic form 
of splitting, the state of the TCP connection on the original 
server is transferred to a data server after receiving the HTTP 
Get request with no client involvement. The data server then 
transfers the data to the client, and connection closing can be 
handled by either the original server or the data server. Many 
variations on basic TCP/HTTP splitting are possible and have 
been used to improve Web server performance with delegation 
[1], split mini-clusters [2], and split architectures [3]. 

In this paper, we adapt TCP/HTTP splitting to devise a 
novel technique for Web server migration. It enables an 
alternate connection server to dynamically take over active 

TCP connections and pending HTTP requests from the 
original connection server. Migration is achieved by 
transferring the complete state of a TCP connection to 
the alternate server. Migration based on splitting can be 
used to improve Web server reliability with only a small 
penalty in performance. Additional benefits of splitting such as 
data server anonymity and load sharing can also be achieved   
with   this   approach   to   migration. 

We implement Web server migration using split bare PC 
Web servers [1] that run the server applications with no 
operating system or kernel support. We also conduct 
preliminary tests to evaluate performance with migration in a 
test LAN where the split bare PC servers are located on 
different subnets. Protocol splitting is especially convenient to 
implement on bare machine computing systems [4] due to their 
intertwining of protocols and tasks. However, the migration 
technique based on splitting is general, and can be implemented 
using conventional servers that require an operating system or 
kernel to run. 

The security and addressing issues that arise due to protocol 
splitting and migration can be solved in a variety of ways. The 
simplest solution is to deploy the servers in the same subnet or 
in the same LAN if host-specific routes are supported. The 
latter is used for testing migration performance with splitting 
in this paper. Some alternatives to host-specific routes are also 
indicated this paper. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 describes Web server 
migration, and its design and implementation. Section 4 
presents performance measurements. Section 5 discusses the 
limitations of this work and possible ways to address them. 
Section 6 contains the conclusion. 
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II. RELATED WORK 

Checkpoint/restart (C/R) techniques [5, 6] are widely 
employed in practice to achieve fault tolerance. A snapshot of 
all current processes in an application is captured and used to 
recover after a failure by reverting to the previous checkpoint. 
In this case, the entire application needs to be aborted and 
resubmitted to the job scheduler. The main disadvantages of the 
approach are the overhead and large queuing delay. Techniques 
such as job/process migration [7, 8] are used to reduce full 
checkpoint [9]. Several popular MPI (Message Passing 
Interface) implementations support process migration and 
tradeoff its benefits versus the loss in performance. Process 
migration schemes such as local file system-based migration, 
PPMR, shared file system-based migration and RDMA-local 
file system-based migration are well-known. Sample 
completion times for one migration with PPMR, local approach 
and RDMA-local are reported to be 3.1 seconds, 33.3 seconds, 
and 13.5 seconds respectively [10]. In contrast, migration using 
bare PC servers with splitting in a LAN environment takes less 
than 20 milliseconds. 

In conventional Web server migration, the TCP connection 
is not split, and client involvement is necessary. For example in 
Migratory TCP (M-TCP) [11], a client connection is migrated 
to a new server by adapting TCP on the client and servers. 
Protocol splitting does not require a load balancer or dispatcher 
since servers handle the splitting themselves. Splitting also 
allows a server to handle some of its HTTP requests 
completely, while delegating the other requests to a data server 
[1]. Splitting is different from TCP splicing since there is only 
a single TCP connection that is split between the connection 
and data servers. Migration based on splitting is not the same as 
process migration [12] or migrating mobile Web applications 
[13] since there is no process context involved when the state 
of a TCP connection is migrated. 

The proposed migration technique is implemented using 
split bare PC Web servers [1]. In a bare PC (or bare machine 
computing) system, the operating system (OS) or kernel is 
completely eliminated and application objects (AO) [4] 
incorporate their own lean network protocol stack and the 
necessary drivers. Bare PC applications and systems are similar 
in principle to the many approaches that attempt to reduce 
operating system overhead in applications such as [14], [15]. 
However, while these approaches require some form of an 
operating system or kernel, bare PC applications include the 
necessary functionality to manage and control system resources 
and the hardware. Numerous bare PC client and server 
applications have been developed previously. For example, the 
design and implementation of bare PC Web and email servers 
are discussed in [16] and [17] respectively. 

III. MIGRATION WITH PROTOCOL SPLITTING 

A. Overview 

Split protocols require a minimum of two servers: a 
connection server (CS) and a data server (DS). The CS 
establishes the connection via SYNs and ACKs. When the 
HTTP Get r e q u e s t  is received by the CS, it sends an 
ACK to the client, and uses an inter-server packet (called a 

delegate message) DM1 to transfer the TCP state to the DS, 
which sends the data to the client. In bare PC servers, the 
TCP state and other attributes of a request are contained in an 
entry in the TCP table (known as a TCB entry). The CS also 
handles the TCP ACKs for the data and the connection closing 
via FINs and ACKs. Typically, the CS has information about 
the requested file (i.e., its name, size, and other attributes), and 
the DS has the actual file (the CS may or may not have a 
copy). When the DS gets DM1, it creates its own TCB entry 
and starts processing the request. When a DS sends data to the 
client, it uses the CS’s IP. After the CS receives the FIN-
ACK, it sends another inter-server packet DM2 to DS. The 
receipt of DM2 closes the state of the request in the DS. 
More details of protocol splitting are given in [1]. Each 
TCB entry is about 168 bytes in size. The essence of splitting 
is in the transfer of the TCB entry from CS to DS. In this 
case, communication between the DS and the client is only 
one-way (from the DS to the client) i.e., the DS does not 
receive any packets from the client. The DS uses the IP of 
CS as the source address when sending data to the client. It 
is assumed that DS is permitted to send packets with the prefix 
of CS if CS and DS are on different subnets. 

For Web server migration, the TCB entry is moved from 
one CS to another CS (called CS* for convenience), enabling 
the latter to take over the connection. Migrating server content 
in this manner and requiring that CS and CS* use the same IP 
address for two-way communication poses a new challenge: 
now CS* must be able to send and receive packets with the IP 
of CS, which may have a different prefix. Furthermore, the 
client must remain unaware that migration or protocol splitting 
has occurred. The migration process can be initiated when the 
current connection server detects that it is going down or has to 
be taken down. The means by which a server might detect its 
imminent failure is beyond the scope of this paper. 

For Web server migration, the TCB entry is moved 
from one CS to another CS (called CS* for convenience), 
enabling the latter to take over the connection. Migrating 
server content in this manner and requiring that CS and CS* 
use the same IP address for two-way communication poses a 
new challenge: now CS* must be able to send and receive 
packets with the IP of CS, which may have a different prefix. 
Furthermore, the client must remain unaware that migration or 
protocol splitting has occurred. The migration process can be 
initiated when the current connection server detects that it is 
going down or has  to  be  taken down. The means by which 
a server might detect its imminent failure is beyond the scope 
of this paper. 

B. Design and Implementation 

Before the connection server CS shuts down, it must send 
all of its pending requests to the alternate server CS*. We 
assume that CS* is connected to the network, but that it will 
not process any requests (i.e., it is in stand-by mode). Also, CS 
and CS* are able to communicate with each other. Prior to the 
connection transfer, inter-server packets are being sent from CS 
to the data server DS according to the usual protocol splitting 
[1] when GET requests arrive. Under large load conditions, it is 
possible that CS could have many unprocessed requests in its 
TCP table. In addition to these pending requests, new requests 
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may still continue to be sent by the client during the time 
between when CS shuts down and CS* takes over. These 
requests will be lost unless they are processed later by CS* 
when the client retransmits them. Before CS shuts down, it also 
sends a final inter-server packet to CS* to confirm it is shutting 
down. Only minimal modifications had to be made to the 
current split server and inter-server packet format to implement 
migration. 

Alternatively, the data server DS can also assume the role 
of CS* (instead of using a separate CS*) if CS sends its 
pending requests to DS. If DS has some of its previous data 
transfer requests still to be processed, it will complete them 
before it begins to act as CS*. Protocol splitting is designed so 
that the same server can provide service as a CS and/or a DS, 
so it is capable of assuming the role of CS* to implement 
migration. 

In our implementation, DS and CS* were on different 
subnets as seen in Fig.  1, which also shows the IP addresses   
used.   After   migration,   CS*   at   IP   address 10.55.10.240 
is allowed to send and receive packets with the IP address 
10.55.12.241 of CS. An ARP broadcast by CS* with this 
address is used to ensure that Routers 1-3 update their 
forwarding tables to bind CS’s IP address with CS*’s MAC 
address. 

Re-routing of CS’s packets to CS* was accomplished by 
activating a host-specific route to CS’s IP after CS shuts down.  
The Linux script program shown in Fig. 2 was written to effect 
the route change when it detects that CS is unreachable. It 
works as follows. The eth0 interface (10.55.10.3) of Router3 
constantly monitors the connectivity with CS (10.55.12.241) by 
sending an ICMP (ping) message till 100% packet loss is seen. 
Then Router3 deletes the old route to CS via next hop 
10.55.10.10 and adds the new route to CS* via its own 
interface 10.55.10.3 (for the destination IP address 
10.55.12.241 of CS now assumed by CS*). During this 
process, the client is not connected to either server and so its 
requests are lost until the new route is activated. In our 
experimental setup and implementation, CS* is on the same 
subnet 10.55.10/24 as Router3 (but CS, CS* and DS are on 
different subnets); however, in general, CS* can be located on 
a different subnet than Router3 provided all routers on the path 
to CS* run scripts that activate a host-specific route to CS* that 
will forward packets along this path to CS* (assuming this path 
is stable). Router3 could send a message to these routers when 
it detects that CS is unreachable.  

Implementation of migration with splitting was done in 
C/C++. The code sizes are similar to those for splitting since 
only minimal changes were needed as noted above. A state 
transition diagram was used to implement lean intertwined 
versions of HTTP, TCP and other network protocols on the 
bare PC Web server. The split servers currently run on any 
Intel-based CPUs that are IA32 compatible. Since they do not 
use the hard disk, BIOS is used to boot the system. Also, we 
use a USB to boot, load, and store a bare PC file system (with 
raw files). No hardware interface code needed to be changed 
during to handle splitting or migration. The software is placed 
on the USB and includes the boot program, startup menu, AO 
executable, and the persistent raw file system (used for 

resource files). The bootable USB containing this information 
is generated by a tool (designed and run on MS-Windows), 
which creates the bootable bare PC application for deployment. 

 

 

Figure 1.  Test network. 

IV. PERFORMANCE MEASUREMENTS 

A. Experimental Setup 

The experiments to evaluate server migration with protocol 
splitting were conducted using the test network shown in Fig. 
1 with Linksys 16-port 1 Gbps switches and Linux (Fedora) 
routers. All machines were Dell Optiplex GX260 PCs each 
equipped with an Intel Pentium 4, 2.8 GHz Processor, 1GB 
RAM, and an Intel 1Gbps NIC card on the motherboard. 
HTTP traffic was generated using the Linux-based http_load 
stress tool [18] to send up to 1000 requests/sec, and a Web 
client running on a bare PC to send up to 5700 requests/sec. 
Although, the split-protocol servers were only implemented on 
bare PC systems due to the ease of adapting these systems for 
splitting, OS-based servers could have also been used for this 
purpose. To verify that the split servers functioned correctly, 
we also sent requests to these servers using the popular 
Internet Explorer and Firefox browsers on Windows and Linux 
respectively. 

B. Results 

To evaluate the performance of Web server migration, we 
measured the number of Get requests pending when CS is 
about to shut down, the time it takes for the CS to migrate 
those requests to its alternate CS*, the time it takes for these 
requests to be processed at CS*, the relation between the 
number of pending requests and the current CS load, and the 
time needed to complete the migration process. The results are 
discussed below. 

Fig. 3 shows how the number of pending requests 
increases with the server load when using a 4 KB resource file. 
There are few pending requests before the server reaches 
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capacity since the delay in delegating a Get request to the DS 
is minimal (it only involves a single inter-server packet 
containing the state of the request stored in the TCB table). 
For example, it can be seen that at most 20 requests/sec are 
pending when the request rate is 5000 requests/sec. 
However, 138 requests/sec are pending when the load 
increases to 7000 requests/sec. The reason for the large 
increase is due to the high utilization of the server when the 
rate exceeds 5000 requests/sec. 

Fig. 4 shows that the time spent in migrating the pending 
requests from one CS to another (in this case CS*) for 4 KB 
files is between   1-13   milliseconds   when   the   request   
rate   is increased from 1000-7000 requests/sec. This suggests 
that migration can be achieved within a very small window 
of time provided the server is not close to saturation. 

Figs.  5  and  6  show  how the  number  of pending 
requests and the time for migration from CS to CS* increase 
when the requested file size varies from 4K to 128K using a 
constant request rate of 500 requests/sec. The 128K file size 
results in a large increase in the number of pending requests. 
This is because the larger file size requires more processing 
time resulting in a larger backlog as would be expected. 
Likewise, although the   time   for   small   files   sizes   is 
negligible, it increases abruptly to 37 milliseconds for the 128K 
file size. This is to be expected, since there are now more 
unprocessed requests and more time is needed to transfer all of 
them. Since network delays in the testing environment are 
minimal, the main factors affecting migration time within a 
LAN are the request rate and the average file size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Linux script for the IP route change. 

For the remaining experiments, 4 KB files were used. 
Fig. 7 shows that the time to process migrated requests at 
CS* increases approximately linearly as the number of 
pending requests is increased. For this experiment, the 
processing of requests was intentionally delayed in order to 
determine the effect of increasing the number of pending 
requests. More studies are needed to verify if such a linear 
relationship also holds with conventional (non-bare) split 
servers. Fig. 8 shows the connection time (CT), response time 
(RT), connection time for migration (CT-M), and response 
time for migration (RT-M) using split protocol servers (CS and 
DS) with varying request rates. 

Here, CT and RT are the times for normal operation and 
CT-M and RT-M show the times when migration is performed 
(the connection time is the total time to process a request, 
which includes the response time). The results show that 
connection and response time degradation due to migration is 
very small for loads of up to 3000 requests/sec. However, the 
overhead due to migration is larger for higher request rates 
primarily due to the larger time to migrate requests when more 
requests are pending and the CPU utilization is higher. 

 

Figure 3.  Pending requests (4 KB files). 

Fig. 9 shows the number of requests that were lost due to 
server (CS) migration (because the CS was not able to process 
all incoming requests from the client during the migration 
period). It can be seen that between 14-56 requests are lost 
when the request rate is varied from 500-5000 requests/sec. It 
is possible to reduce the number of lost requests by splitting 
requests prior to receiving the Get. Then, once the migration 
process is complete, such requests can also be handled by CS*. 
This has not been done in the present implementation. 

V. DISCUSSION 

Web server migration using HTTP protocol splitting 
increases server reliability without any client involvement. 
Furthermore, it provides server anonymity since the data 
servers and alternate connection servers use only the IP 
address of the original connection server (not their actual 
addresses). We only conducted tests to illustrate the basic 
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migration technique with Web servers, but this approach could 
also be used for improving the reliability of database servers 
and file servers. The connection server could also periodically 
send the state of its connections to an alternate server 
enabling it to serve as a backup if needed. 

The experimental results show that migration using split 
protocols has only a small delay to transfer requests, a low loss 
request rate, and low latency to complete requests. More 
comprehensive tests using conventional (non-bare) servers 
(with kernel modifications) in a real LAN environment are 
needed to fully evaluate the performance of migration with 
splitting. We have tested migration with splitting when the 
servers are within the same LAN. We used a host-specific route 
to divert packets to the new connection server. An alternative 
method is to have Router3 translate the address of packets sent 
to the IP of CS to the actual IP address of CS* in a manner 
similar to NAT. While this approach avoids security issues due 
to incorrect network prefixes, it would have additional 
overhead due to the need to translate the address of each packet 
(and to distinguish between translated packets for CS* and 
packets that are actually CS*’s own packets). Finally, it is 
possible to assign a second temporary IP address to CS* (that is 
a valid address in CS*’s network) for it to receive CS’s 
packets, and make router R3 aware of this address. 

 

Figure 4.  Time to migrate pending requests at CS with 4KB resource file. 

VI. CONCLUSION 

In this paper, we devised a technique for migrating Web 
servers based on protocol splitting that does not require client 
involvement. The technique was implemented using bare PC 
Web servers in a test LAN environment. The preliminary 
performance studies demonstrate the feasibility of using this 
approach for Web server migration, and show that it has only a 
small performance penalty compared to values reported 
elsewhere for conventional migration techniques. The   
migration   technique   based   on protocol splitting was 
demonstrated using bare PC Web servers, and in a LAN 
environment. Further studies are needed to explore the 
alternatives to host-specific routes that could be used with this 

approach to server migration, and to investigate the security 
issues associated with migration and splitting protocols. 

 

Figure 5.  Pending requests at CS with 500 requests/sec load. 

 

Figure 6.  Time to migrate requests (rate: 500 requests/sec). 

 

Figure 7.  Time taken to process requests at new CS. 
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Figure 8.  Connection/response times (w/wout migration). 

 

Figure 9.  Timeouts relative to total requests. 
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