
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

A Split Protocol Technique for Web Server Migration

B. S. Rawal

Department of Computer & Information Sciences

Shaw University

Raleigh, NC

R. K. Karne and A. L. Wijesinha

Department of Computer & Information Sciences

Towson University

Towson, MD

H. Ramcharan
Department of Computer & Information Sciences

Shaw University

Raleigh, NC

S. Liang
Department of Computer & Information Sciences

Towson University

Towson, MD

Abstract—Reliability, availability and survivability are important

characteristics of Web servers that enable them to provide

continual service to clients. Server migration is one of the many

approaches used to improve the reliability of Web servers. We

propose a novel technique for migrating Web servers that is

based on protocol splitting, wherein two servers, a connection

server and a data server, function as a single logical server. The

technique extends splitting by having the connection server

dynamically transfer a TCP connection to another connection

server with no client involvement. We describe an

implementation of the migration technique and present

preliminary performance results using bare PC Web servers in a

LAN environment with Linux routers. The connection transfer is

achieved by means of an additional inter-server packet and a

script to modify a routing table. The results indicate the

feasibility of adapting this approach in the future to work with

conventional (non-bare) servers on the Internet.

Keywords—protocol; performance; Web server migration;

checkpoint/restart; bare machine computing

I. INTRODUCTION

Protocol splitting enables TCP to be split into its connection
and data phases so that these phases are executed on different
machines during a single HTTP request [1]. In the basic form
of splitting, the state of the TCP connection on the original
server is transferred to a data server after receiving the HTTP
Get request with no client involvement. The data server then
transfers the data to the client, and connection closing can be
handled by either the original server or the data server. Many
variations on basic TCP/HTTP splitting are possible and have
been used to improve Web server performance with delegation
[1], split mini-clusters [2], and split architectures [3].

In this paper, we adapt TCP/HTTP splitting to devise a
novel technique for Web server migration. It enables an
alternate connection server to dynamically take over active

TCP connections and pending HTTP requests from the
original connection server. Migration is achieved by
transferring the complete state of a TCP connection to
the alternate server. Migration based on splitting can be
used to improve Web server reliability with only a small
penalty in performance. Additional benefits of splitting such as
data server anonymity and load sharing can also be achieved
with this approach to migration.

We implement Web server migration using split bare PC
Web servers [1] that run the server applications with no
operating system or kernel support. We also conduct
preliminary tests to evaluate performance with migration in a
test LAN where the split bare PC servers are located on
different subnets. Protocol splitting is especially convenient to
implement on bare machine computing systems [4] due to their
intertwining of protocols and tasks. However, the migration
technique based on splitting is general, and can be implemented
using conventional servers that require an operating system or
kernel to run.

The security and addressing issues that arise due to protocol
splitting and migration can be solved in a variety of ways. The
simplest solution is to deploy the servers in the same subnet or
in the same LAN if host-specific routes are supported. The
latter is used for testing migration performance with splitting
in this paper. Some alternatives to host-specific routes are also
indicated this paper.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes Web server
migration, and its design and implementation. Section 4
presents performance measurements. Section 5 discusses the
limitations of this work and possible ways to address them.
Section 6 contains the conclusion.

ICNA 2012 1569661225

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

II. RELATED WORK

Checkpoint/restart (C/R) techniques [5, 6] are widely
employed in practice to achieve fault tolerance. A snapshot of
all current processes in an application is captured and used to
recover after a failure by reverting to the previous checkpoint.
In this case, the entire application needs to be aborted and
resubmitted to the job scheduler. The main disadvantages of the
approach are the overhead and large queuing delay. Techniques
such as job/process migration [7, 8] are used to reduce full
checkpoint [9]. Several popular MPI (Message Passing
Interface) implementations support process migration and
tradeoff its benefits versus the loss in performance. Process
migration schemes such as local file system-based migration,
PPMR, shared file system-based migration and RDMA-local
file system-based migration are well-known. Sample
completion times for one migration with PPMR, local approach
and RDMA-local are reported to be 3.1 seconds, 33.3 seconds,
and 13.5 seconds respectively [10]. In contrast, migration using
bare PC servers with splitting in a LAN environment takes less
than 20 milliseconds.

In conventional Web server migration, the TCP connection
is not split, and client involvement is necessary. For example in
Migratory TCP (M-TCP) [11], a client connection is migrated
to a new server by adapting TCP on the client and servers.
Protocol splitting does not require a load balancer or dispatcher
since servers handle the splitting themselves. Splitting also
allows a server to handle some of its HTTP requests
completely, while delegating the other requests to a data server
[1]. Splitting is different from TCP splicing since there is only
a single TCP connection that is split between the connection
and data servers. Migration based on splitting is not the same as
process migration [12] or migrating mobile Web applications
[13] since there is no process context involved when the state
of a TCP connection is migrated.

The proposed migration technique is implemented using
split bare PC Web servers [1]. In a bare PC (or bare machine
computing) system, the operating system (OS) or kernel is
completely eliminated and application objects (AO) [4]
incorporate their own lean network protocol stack and the
necessary drivers. Bare PC applications and systems are similar
in principle to the many approaches that attempt to reduce
operating system overhead in applications such as [14], [15].
However, while these approaches require some form of an
operating system or kernel, bare PC applications include the
necessary functionality to manage and control system resources
and the hardware. Numerous bare PC client and server
applications have been developed previously. For example, the
design and implementation of bare PC Web and email servers
are discussed in [16] and [17] respectively.

III. MIGRATION WITH PROTOCOL SPLITTING

A. Overview

Split protocols require a minimum of two servers: a
connection server (CS) and a data server (DS). The CS
establishes the connection via SYNs and ACKs. When the
HTTP Get r e q u e s t is received by the CS, it sends an
ACK to the client, and uses an inter-server packet (called a

delegate message) DM1 to transfer the TCP state to the DS,
which sends the data to the client. In bare PC servers, the
TCP state and other attributes of a request are contained in an
entry in the TCP table (known as a TCB entry). The CS also
handles the TCP ACKs for the data and the connection closing
via FINs and ACKs. Typically, the CS has information about
the requested file (i.e., its name, size, and other attributes), and
the DS has the actual file (the CS may or may not have a
copy). When the DS gets DM1, it creates its own TCB entry
and starts processing the request. When a DS sends data to the
client, it uses the CS’s IP. After the CS receives the FIN-
ACK, it sends another inter-server packet DM2 to DS. The
receipt of DM2 closes the state of the request in the DS.
More details of protocol splitting are given in [1]. Each
TCB entry is about 168 bytes in size. The essence of splitting
is in the transfer of the TCB entry from CS to DS. In this
case, communication between the DS and the client is only
one-way (from the DS to the client) i.e., the DS does not
receive any packets from the client. The DS uses the IP of
CS as the source address when sending data to the client. It
is assumed that DS is permitted to send packets with the prefix
of CS if CS and DS are on different subnets.

For Web server migration, the TCB entry is moved from
one CS to another CS (called CS* for convenience), enabling
the latter to take over the connection. Migrating server content
in this manner and requiring that CS and CS* use the same IP
address for two-way communication poses a new challenge:
now CS* must be able to send and receive packets with the IP
of CS, which may have a different prefix. Furthermore, the
client must remain unaware that migration or protocol splitting
has occurred. The migration process can be initiated when the
current connection server detects that it is going down or has to
be taken down. The means by which a server might detect its
imminent failure is beyond the scope of this paper.

For Web server migration, the TCB entry is moved
from one CS to another CS (called CS* for convenience),
enabling the latter to take over the connection. Migrating
server content in this manner and requiring that CS and CS*
use the same IP address for two-way communication poses a
new challenge: now CS* must be able to send and receive
packets with the IP of CS, which may have a different prefix.
Furthermore, the client must remain unaware that migration or
protocol splitting has occurred. The migration process can be
initiated when the current connection server detects that it is
going down or has to be taken down. The means by which
a server might detect its imminent failure is beyond the scope
of this paper.

B. Design and Implementation

Before the connection server CS shuts down, it must send
all of its pending requests to the alternate server CS*. We
assume that CS* is connected to the network, but that it will
not process any requests (i.e., it is in stand-by mode). Also, CS
and CS* are able to communicate with each other. Prior to the
connection transfer, inter-server packets are being sent from CS
to the data server DS according to the usual protocol splitting
[1] when GET requests arrive. Under large load conditions, it is
possible that CS could have many unprocessed requests in its
TCP table. In addition to these pending requests, new requests

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

may still continue to be sent by the client during the time
between when CS shuts down and CS* takes over. These
requests will be lost unless they are processed later by CS*
when the client retransmits them. Before CS shuts down, it also
sends a final inter-server packet to CS* to confirm it is shutting
down. Only minimal modifications had to be made to the
current split server and inter-server packet format to implement
migration.

Alternatively, the data server DS can also assume the role
of CS* (instead of using a separate CS*) if CS sends its
pending requests to DS. If DS has some of its previous data
transfer requests still to be processed, it will complete them
before it begins to act as CS*. Protocol splitting is designed so
that the same server can provide service as a CS and/or a DS,
so it is capable of assuming the role of CS* to implement
migration.

In our implementation, DS and CS* were on different
subnets as seen in Fig. 1, which also shows the IP addresses
used. After migration, CS* at IP address 10.55.10.240
is allowed to send and receive packets with the IP address
10.55.12.241 of CS. An ARP broadcast by CS* with this
address is used to ensure that Routers 1-3 update their
forwarding tables to bind CS’s IP address with CS*’s MAC
address.

Re-routing of CS’s packets to CS* was accomplished by
activating a host-specific route to CS’s IP after CS shuts down.
The Linux script program shown in Fig. 2 was written to effect
the route change when it detects that CS is unreachable. It
works as follows. The eth0 interface (10.55.10.3) of Router3
constantly monitors the connectivity with CS (10.55.12.241) by
sending an ICMP (ping) message till 100% packet loss is seen.
Then Router3 deletes the old route to CS via next hop
10.55.10.10 and adds the new route to CS* via its own
interface 10.55.10.3 (for the destination IP address
10.55.12.241 of CS now assumed by CS*). During this
process, the client is not connected to either server and so its
requests are lost until the new route is activated. In our
experimental setup and implementation, CS* is on the same
subnet 10.55.10/24 as Router3 (but CS, CS* and DS are on
different subnets); however, in general, CS* can be located on
a different subnet than Router3 provided all routers on the path
to CS* run scripts that activate a host-specific route to CS* that
will forward packets along this path to CS* (assuming this path
is stable). Router3 could send a message to these routers when
it detects that CS is unreachable.

Implementation of migration with splitting was done in
C/C++. The code sizes are similar to those for splitting since
only minimal changes were needed as noted above. A state
transition diagram was used to implement lean intertwined
versions of HTTP, TCP and other network protocols on the
bare PC Web server. The split servers currently run on any
Intel-based CPUs that are IA32 compatible. Since they do not
use the hard disk, BIOS is used to boot the system. Also, we
use a USB to boot, load, and store a bare PC file system (with
raw files). No hardware interface code needed to be changed
during to handle splitting or migration. The software is placed
on the USB and includes the boot program, startup menu, AO
executable, and the persistent raw file system (used for

resource files). The bootable USB containing this information
is generated by a tool (designed and run on MS-Windows),
which creates the bootable bare PC application for deployment.

Figure 1. Test network.

IV. PERFORMANCE MEASUREMENTS

A. Experimental Setup

The experiments to evaluate server migration with protocol
splitting were conducted using the test network shown in Fig.
1 with Linksys 16-port 1 Gbps switches and Linux (Fedora)
routers. All machines were Dell Optiplex GX260 PCs each
equipped with an Intel Pentium 4, 2.8 GHz Processor, 1GB
RAM, and an Intel 1Gbps NIC card on the motherboard.
HTTP traffic was generated using the Linux-based http_load
stress tool [18] to send up to 1000 requests/sec, and a Web
client running on a bare PC to send up to 5700 requests/sec.
Although, the split-protocol servers were only implemented on
bare PC systems due to the ease of adapting these systems for
splitting, OS-based servers could have also been used for this
purpose. To verify that the split servers functioned correctly,
we also sent requests to these servers using the popular
Internet Explorer and Firefox browsers on Windows and Linux
respectively.

B. Results

To evaluate the performance of Web server migration, we
measured the number of Get requests pending when CS is
about to shut down, the time it takes for the CS to migrate
those requests to its alternate CS*, the time it takes for these
requests to be processed at CS*, the relation between the
number of pending requests and the current CS load, and the
time needed to complete the migration process. The results are
discussed below.

Fig. 3 shows how the number of pending requests
increases with the server load when using a 4 KB resource file.
There are few pending requests before the server reaches

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

capacity since the delay in delegating a Get request to the DS
is minimal (it only involves a single inter-server packet
containing the state of the request stored in the TCB table).
For example, it can be seen that at most 20 requests/sec are
pending when the request rate is 5000 requests/sec.
However, 138 requests/sec are pending when the load
increases to 7000 requests/sec. The reason for the large
increase is due to the high utilization of the server when the
rate exceeds 5000 requests/sec.

Fig. 4 shows that the time spent in migrating the pending
requests from one CS to another (in this case CS*) for 4 KB
files is between 1-13 milliseconds when the request
rate is increased from 1000-7000 requests/sec. This suggests
that migration can be achieved within a very small window
of time provided the server is not close to saturation.

Figs. 5 and 6 show how the number of pending
requests and the time for migration from CS to CS* increase
when the requested file size varies from 4K to 128K using a
constant request rate of 500 requests/sec. The 128K file size
results in a large increase in the number of pending requests.
This is because the larger file size requires more processing
time resulting in a larger backlog as would be expected.
Likewise, although the time for small files sizes is
negligible, it increases abruptly to 37 milliseconds for the 128K
file size. This is to be expected, since there are now more
unprocessed requests and more time is needed to transfer all of
them. Since network delays in the testing environment are
minimal, the main factors affecting migration time within a
LAN are the request rate and the average file size.

Figure 2. Linux script for the IP route change.

For the remaining experiments, 4 KB files were used.
Fig. 7 shows that the time to process migrated requests at
CS* increases approximately linearly as the number of
pending requests is increased. For this experiment, the
processing of requests was intentionally delayed in order to
determine the effect of increasing the number of pending
requests. More studies are needed to verify if such a linear
relationship also holds with conventional (non-bare) split
servers. Fig. 8 shows the connection time (CT), response time
(RT), connection time for migration (CT-M), and response
time for migration (RT-M) using split protocol servers (CS and
DS) with varying request rates.

Here, CT and RT are the times for normal operation and
CT-M and RT-M show the times when migration is performed
(the connection time is the total time to process a request,
which includes the response time). The results show that
connection and response time degradation due to migration is
very small for loads of up to 3000 requests/sec. However, the
overhead due to migration is larger for higher request rates
primarily due to the larger time to migrate requests when more
requests are pending and the CPU utilization is higher.

Figure 3. Pending requests (4 KB files).

Fig. 9 shows the number of requests that were lost due to
server (CS) migration (because the CS was not able to process
all incoming requests from the client during the migration
period). It can be seen that between 14-56 requests are lost
when the request rate is varied from 500-5000 requests/sec. It
is possible to reduce the number of lost requests by splitting
requests prior to receiving the Get. Then, once the migration
process is complete, such requests can also be handled by CS*.
This has not been done in the present implementation.

V. DISCUSSION

Web server migration using HTTP protocol splitting
increases server reliability without any client involvement.
Furthermore, it provides server anonymity since the data
servers and alternate connection servers use only the IP
address of the original connection server (not their actual
addresses). We only conducted tests to illustrate the basic

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

migration technique with Web servers, but this approach could
also be used for improving the reliability of database servers
and file servers. The connection server could also periodically
send the state of its connections to an alternate server
enabling it to serve as a backup if needed.

The experimental results show that migration using split
protocols has only a small delay to transfer requests, a low loss
request rate, and low latency to complete requests. More
comprehensive tests using conventional (non-bare) servers
(with kernel modifications) in a real LAN environment are
needed to fully evaluate the performance of migration with
splitting. We have tested migration with splitting when the
servers are within the same LAN. We used a host-specific route
to divert packets to the new connection server. An alternative
method is to have Router3 translate the address of packets sent
to the IP of CS to the actual IP address of CS* in a manner
similar to NAT. While this approach avoids security issues due
to incorrect network prefixes, it would have additional
overhead due to the need to translate the address of each packet
(and to distinguish between translated packets for CS* and
packets that are actually CS*’s own packets). Finally, it is
possible to assign a second temporary IP address to CS* (that is
a valid address in CS*’s network) for it to receive CS’s
packets, and make router R3 aware of this address.

Figure 4. Time to migrate pending requests at CS with 4KB resource file.

VI. CONCLUSION

In this paper, we devised a technique for migrating Web
servers based on protocol splitting that does not require client
involvement. The technique was implemented using bare PC
Web servers in a test LAN environment. The preliminary
performance studies demonstrate the feasibility of using this
approach for Web server migration, and show that it has only a
small performance penalty compared to values reported
elsewhere for conventional migration techniques. The
migration technique based on protocol splitting was
demonstrated using bare PC Web servers, and in a LAN
environment. Further studies are needed to explore the
alternatives to host-specific routes that could be used with this

approach to server migration, and to investigate the security
issues associated with migration and splitting protocols.

Figure 5. Pending requests at CS with 500 requests/sec load.

Figure 6. Time to migrate requests (rate: 500 requests/sec).

Figure 7. Time taken to process requests at new CS.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Figure 8. Connection/response times (w/wout migration).

Figure 9. Timeouts relative to total requests.

REFERENCES

[1] B. Rawal, R. Karne, and A. L. Wijesinha, “Splitting HTTP Requests on
Two Servers”, 3rd International Conference on Communication
Systems and Networks (COMSNETS), 2011.

[2] B. Rawal, R. Karne, and A. L. Wijesinha, “Mini Web Server Clusters for
HTTP Request Splitting”, 13th International Conference on High
Performance Computing and Communication (HPCC), 2011.

[3] B. Rawal, R. Karne, and A. L. Wijesinha, “Split Protocol
Client/Server Architecture”, 17th IEEE Symposium on Computers
and Communications (ISCC), 2012.

[4] R. K. Karne, K. V. Jaganathan, T. Ahmed, and N. Rosa, “DOSC:
Dispersed Operating System Computing”, 20th Annual ACM
Conference on Object Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Onward Track, pp. 55-61, 2005.

[5] E. N. Elnozahy and J. S. Plank, “Checkpointing for peta-scale
systems: A look into the future of practical rollback-recovery”, IEEE
Transactions on Dependable and Secure Computing, 2004.

[6] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
checkpointing under Unix”, Usenix Winter Technical Conference, 1995.

[7] S. Chakravorty, C. Mendes, and L. Kale, “Proactive fault tolerance in
MPI applications via task migration”, International Conference on High
Performance Computing, 2006.

[8] J. Hursey, “A Transparent Process Migration Framework for Open
MPI”, http://www.open-mpi.org/papers/sc-2009/jjhursey-ciscobooth.pdf,
Accessed: January 20, 2012.

[9] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
process-level live migration in HPC environments”, ACM/IEEE
Conference on Supercomputing, 2008.

[10] X. Ouyang, R. Rajachandrasekar, X. Besseron, D. K. Panda, “High
Performance Pipelined Process Migration with RDMA”, 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 2011.

[11] K. Sultan, D. Srnivasan, D. Iyer and L. lftod. “Migratory TCP: Highly
Available Internet Services using Connection Migration”, 22nd
International Conference on Distributed Computing Systems, 2002.

[12] D.S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler and S. Zhou.
“Process Migration”, ACM Computation Surveys, vol. 32 (3), pp. 241-
299, 2000.

[13] G. Canfora, G. Di Santo, G. Venturi, E. Zimeo and M.V.Zito,
“Migrating web application sessions in mobile computing”, 14th
International Conference on the World Wide Web, pp. 1166-1167, 2005.

[14] J. Lange et al., “Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native Supercomputing”, 24th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2010.

[15] V. S. Pai, P. Druschel, and Zwaenepoel. “IO-Lite: A Unified I/O
Buffering and Caching System”, ACM Transactions on Computer
Systems, Vol.18 (1), pp. 37-66, 2000.

[16] L. He, R. K. Karne, and A. L. Wijesinha, “Design and Performance of a
bare PC Web Server”, International Journal of Computer and
Applications, vol. 15, pp. 100-112, 2008.

[17] G.H. Ford, R.K. Karne, A.L. Wijesinha, and P. Appiah-Kubi, “The
Performance of a Bare Machine Email Server”, 21st International
Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), pp. 143-150, 2009.

[18] http_load, http://www.acme.com/software/http_load. Accessed: January
20, 2012.

6

