

Insight Into the x86-64 Bare PC Application Boot/Load/Run Methodology

Hojin Chang Ramesh K. Karne Alexander L. Wijesinha

Computer and Information Sciences Computer and Information Sciences Computer and Information Sciences

 Towson University Towson University Towson University

 Towson, MD 21252 Towson, MD 21252 Towson, MD 21252

 hchang3@students.towson.edu rkarne@towson.edu awijesinha@towson.edu

Abstract

 Boot/load/run methodologies differ in various ways for

a given operating system or kernel interfaces. They also

vary for 32 bit versus 64 bit processors. Developing a

boot/load/run application process for a bare PC is unique

and poses daunting challenges as there is a need to

understand various aspects of the CPU architecture and its

internals. This paper provides intricate details of this

methodology. The concepts and implementations

described here can be used to construct other

boot/load/run programs for pervasive devices. This paper

identifies some standard API that will be useful to

construct a boot/load/run process that directly runs on the

hardware without a need for any middleware such as an

operating system, kernel, or embedded system. It also

identifies some novel ideas where this boot/load/run

methodology can be made transparent to the user by

moving these interfaces to on-chip. The work presented

here is intended for use in development of x86-64 bare PC

applications.

1 MOTIVATION

 The motivation stems primarily from a need for a 64 bit

boot/load/run methodology required for bare PC

applications that is part of our mission in the bare

machine computing research. Secondly, the current 32 bit

bare PC applications developed for x86 architecture, can

be ported to run on x86-64 architecture in the future. The

insight into boot/load/run methodology and its

implementation consequently provides a foundation for

the development of 64 bit bare PC applications. The

methodology presented here also has a broader impact to

other pervasive devices and ultimately to the future of

bare machine computing paradigm.

2 INTRODUCTION

 Development of bare PC boot/load/run program

methodology is not a trivial task. Most of the tools and

code available on the Web assume some sort of operating

system, kernel, or embedded system to use these

programs. Consequently, in particular the boot process is

simpler as the kernel handles complex load and run

processes as needed during the execution. The traditional

OS and kernel programs are mature, complex and huge

that are designed to work with x86 and x86-64

architectures. They hide the architectural intricacies and

complexity inside the kernel and thus often overlooked by

the application programmer. For a system programmer to

work with a complex kernel is a frustrating and a daunting

job. In a bare PC application, the application itself

manages boot, load and execution of its own program.

This poses different challenges and requires handling of

internals of CPU and direct communication with

hardware at run time.

 A bare PC application is based on an application object

(AO) [4] notion and bare machine computing (BMC) [5,

7] paradigm. An AO is self-contained, self-controlled and

self-executable object. An AO may consist of one or more

sets of applications that are needed by user at a given

time. It is a suit of end user applications that do not

depend upon any execution or operating environment and

run on a bare PC or a bare machine.

 Numerous bare PC applications such as Web server [1],

Webmail server [2], VoIP softphone [8], Split servers [3]

and Transforming OS based application to bare PC [10]

used x86 boot and load programs. A bare PC device

driver construction for a USB is referred in [6]. A bare PC

software development methodology described in [9]

provides some high level concepts of developing bare PC

software applications. This paper will provide insight

into the boot/load/run program process that can be used

for x86-64 architectures. Section 3 describes a generic

methodology for building boot/load/run methodology.

Section 4 describes x86-64 boot/load/run process. Section

5 shows boot/load/run implementation and API that is

written in C and assembly. Section 6 shows functional

operation and testing of this development process.

Section 7 identifies novel features of this approach for

BMC applications. Section 9 summarizes this paper.

3 METHODOLOGY
 There are ample amount of resources and knowledge

scattered throughout the Web to construct boot and load

programs [12] for conventional platforms that are based

on some sort of OS, kernel or embedded systems. As per

our knowledge, there is no relevant useful links,

resources, or tools available for bare PC development

978-1-880843-92-5 / copyright ISCA, SEDE 2013
September 25-27, 2013, Los Angeles, California, USA

other than our own research in bare machine computing in

the past decade. This section outlines a general overview

of this process and the subsequent sections deal with more

specific information.

Figure 1. Methodology

 Fig.1 shows a generic methodology to illustrate a

boot/load/run program process. For a bare PC application,

one needs to select a bootable device, which is a

detachable mass storage device such as a USB flash drive.

A boot sector code and mini-loader is needed that work

with a bare PC. A given choice of an assembler can be

chosen to write this code and compile it to generate a

binary file. This bin file is transferred to a bootable USB

using a boot install tool. Initial test of boot code can be

done by simply printing a “Hello” message after the boot.

Once such simple boot test is done, one can write a start

program in assembly that can be loaded by the mini-

loader (which is part of the boot code). The start program

is the beginning of a first program after the boot process.

Figure 2. 64 bit Specifics

 Fig.2 shows some more details needed to run a 64 bit

application. When a PC is booted, it starts in a real mode,

which is limited to 1MB address and has access to all

BIOS (Basic Input Output System) interrupts. These

interrupts can be used to accomplish simple I/O tasks that

are needed during the boot and load process. The start

program is used to move from real to protected (32 bit)

mode where you have a full access to 4GB address space.

In order to transition to 32 bit protected mode, some

control registers, GDT and IDT needs to be appropriately

initialized. Once the 32 bit protected mode is established,

you can transition to 64 bit mode which requires different

type of settings. The 64 bit mode requires setup for

paging, TLB (Translation Look Aside Buffer), GDT

(Global Descriptor Table) and IDT (Interrupt Descriptor

Table) entries. Paging is mandatory in 64 bit mode, but

optional in 32 bit mode. One can also directly go to 64 bit

mode from real mode, using the same start program with

appropriate setup. A 64 bit application can be loaded, run

and tested for its operation once it is in 64 bit mode.

 Notice that, as the 64 bit mode supports its previous real

and protected modes, the boot/load/run program process

for this is more complicated than its predecessor modes.

The transition from one mode to another can be made

using interrupt gates or long jump instruction. If we need

to use any BIOS calls, we need to go back to real mode

from 64 bit mode. Thus, one can design a cycle going

from real-protected-64, 64-real, or 64-protected-real

modes. In some cases, in a 64 bit mode, if you need to run

a 32 bit mode application, you may also choose to go

back to 32 bit mode or run it in a compatibility mode.

The compatibility mode also requires manipulation of

control registers and other structures. The implementation

details of this process will be described in later sections.

The 64 bit mode and its usage depend upon the need of a

user to run strictly 64 bit applications or a mixed set of

applications.

4 BOOT/LOAD/RUN PROGRAM

PROCESS

 This section describes boot, load and run program

process in detail. It also shows the intricacies involved for

creating such programs for a bare PC application.

4.1 Boot Program

 A boot program [12] usually consists of a 512 byte

(could be more) block of a binary file. It is written in an

assembly language and it has a single “text” segment. No

data or stack segment is needed to create a working boot

program. A boot code needs to be compiled as a binary

executable. A variety of compilers such as NASM,

MASM, TASM or GAS can be used to create this binary.

Note that these assemblers are not compatible in their

syntax and structures. A bootable mass storage device

such as a hard disk, USB or a CD is used to contain the

boot binary in sector 0. For an IBM compatible PC, the

boot code on the bootable device is at sector 0, which is

loaded into memory at 0x7c00 by its BIOS interrupt upon

a power on state. The CPU starts executing this boot code

starting at this address. The boot code must contain a 2

byte signature at the end of its 512 byte block (0x55AA).

A simple “hello” boot does not have any loader. The

“hello” text can be printed using video memory indicating

the success of a boot process.

 In IBM compatible PCs, initially video memory can be

used to display text on the screen. The video memory start

location is at 0xB8000, which can be loaded in the ES

segment register to address this memory. To display each

character, it requires two bytes to be stored in the video

memory, one byte for data and the other byte for the

properties. Sophisticated graphics and color patterns

require a graphics driver to handle the display and

visualization. Simple text and graphics can be done using

video memory.

4.2.1 Load Program

 Detachable mass storage device (USB flash drive) is

used to store boot/load, application programs and data.

There is a mini-loader in the boot program that is simple

and limited in its usage due to its size constraints in the

boot code. When a boot code is running, the system is in

real mode and it has access to BIOS interrupts. The BIOS

interrupt 0x13 is used to read all needed sectors from the

USB into maim memory. The load program requires the

starting sector number and the total number of sectors to

read from the device. Initially, it reads all sectors needed

into memory during initialization and in real mode. If

more data is needed to read or write to the USB in

protected or 64 bit mode, a device driver is needed for

USB and a sophisticated loader as well. It is also possible

to fall back to real mode to read more data using interrupt

0x13 again.

4.2.2 Mass Storage and Memory Layouts

 Insight into boot/load/run program process is illustrated

using USB map and memory map figures as shown in

Fig. 3 and Fig. 4 respectively. The USB map shows

layout of files in chronological order that are installed on

it using a “USB Image Maker” tool, which creates a

bootable USB image for bare PC applications. The boot

loader (BootLoader.bin) is always installed at sector 0.

Sector 1 consists of an entry point code written in

assembly (EntryPoint32.bin), which provides a transition

from real to protected mode (16 to 32 bit). Entry point

code is always loaded in sector 1.

 There are three other types of binary files in the USB

map as shown in Fig. 3, Mode32.bin, Mode64.bin and

Hello.elf. The Mode32.bin file consists of Main.o and

ModeSwitch.o objects including the 32 bit main. The

Main.o (first main) object is a 32 bit C program, which

demonstrates the transition to 32 bit mode. In addition, it

checks available memory, obtains information using get

CPUID and so on. The ModeSwitch.o written in assembly

provides transition from 32 bit mode to 64 bit mode. The

Mode64.bin consists of EntryPoint64.o and Main.o

(second main) objects including the 64 bit main. The

EntryPoint64.o is an assembly program, which provides

entry point to 64 bit mode. The Main.o (second main)

object is a 64 bit C program, which demonstrates the

transition to 64 bit mode. The Hello.elf is the user

application program for 64 bit mode, which is installed at

the end of all other files. The total number of sectors

illustrated in this example include: 106 sectors (1 boot

sector, 1 entrypoint sector, 5 Mode32.bin sectors, 65

Mode64.bin sectors and 34 Hello.elf sectors).

Figure 3. USB Layout

 During boot code execution, in this given example 105

sectors are loaded into memory excluding the boot sector

(i.e. 0xD200 bytes). The USB map shows the individual

file sizes and their locations. The mini-loader loads all

these sectors initially using interrupt 0x13 in real mode.

 In this example, the 105 sectors are loaded into

memory as shown in Fig. 4. We load these sectors

starting above 1MB address as they can be accessed in

protected and 64 bit modes. The starting address for

EntryPoint32.bin is at 0x00010000. Thus, the boot loader

jumps to the START label in this entry point code using a

long JMP instruction (jmp 0x1000:0x0000). The ES

register is loaded with 0x1000, which translate to

0x00010000, that is 1MB starting address. At this point,

all segment registers have zero values. The entry point

code setup transition from real to protected mode and then

jumps to a C program main() using another long JMP

instruction (jmp dword 0x18:0x10200). The GDT entry

setup for this Main.o code is 0x18 (0x18/8 = 3), which is

a 3
rd

 entry in the table. The Main.o object invokes

ModeSwitch.o object, which setup 64 bit mode using

zSwitchTo64bitMode() function. After 64 bit mode setup

it jumps to EntryPoint64.o START label using a long

JMP instruction (jmp 0x08:0x10c00). The GDT entry

setup for Mod64.bin code is 0x08 (0x08/8 = 1), which is a

1
st
 entry in the table. The 0

th
 entry in the GDT table is

defined as a null GDT. This entry point code will call a 64

program Main.o (second main) which provides a user

menu to load and run a 64 bit application. This is part of

Mode64.bin as shown in the memory map.

Figure 4. Memory Layout

 The user menu helps to load and run the “Hello.elf”

application. Initially, the “Hello.elf” application was

loaded in memory at location 0x00018e00 during the boot

time. When this application is actually loaded by user in a

64 bit mode, it may be relocated to other part of the

memory such as 0x500000 as illustrated in the memory

layout. In a bare PC setup, usually memory map is

designed and controlled by the AO programmer and

usually it is a fixed location to load a given AO. However,

a given AO can have a set of applications constituted as a

single user AO.

4.2.3 USB Image Maker

 We built a “USB Image Maker” [11] tool using a C

program that runs on Linux. This tool uses a “makefile”

to compile its code using some input options. The tool

uses all the binary and boot images as shown in Fig. 3. To

install them on the USB, we use Win32DiskImager which

is a free development software [13]. The

USBImageMaker makes the USB bootable image, but the

Win32DiskImager create a bootable USB. The

USBImageMaker tool is modified so that the boot record

bytes 5, 7, 9 to pass information to the bare PC programs.

The byte 5 shows the total number of sectors including

the boot sector (106 sectors), byte 7 indicates the size of

Mod32.bin (5 sectors) and byte 9 shows the size of

Module64.bin (65 sectors). The size of Hell.elf can be

derived with the above parameters. This tool can also be

used to pass many other parameters to the bare PC

application. Notice that the bare PC boot image is not

same as other OS boot images and the unused bytes in the

boot image can be used as parameter space. The bare PC

boot image is also not compatible with other OS boot

images. Most of the code used for this tool is off-the-shelf

[11] and some modifications are made to suit our bare PC

development environment. More details of this tool are

not covered in this paper due to space constraints.

5 BOOT/LOAD/RUN

IMPLEMENTATION AND API

 This section shows some internal details of

implementation and some generic API that can be used to

build your own 64 bit bare PC applications. Fig. 5 shows

the entry point code (EntryPoint32.s), which is invoked

from the boot loader as shown in Fig. 4. The snippets of

assembly code are shown in Fig. 5 to illustrate the steps

implemented in this program. It uses BIOS interrupt to set

A20 bit, which is needed to transition to higher memory

above 1MB. It initializes GDT register and loads control

register 0 to go to protected mode. Finally, it uses a long

jump to go to Main.o (first main) located at 0x10200 and

GDT entry 0x18 (3
rd

 entry).

Figure 5. EntryPoint32.s

 The Main.c (first main) in Fig. 6 lists the main steps

taken in this program written in C. It creates a page table

for 64 bit mode and uses CPUID instruction to obtain the

vendor-id and 64 bit mode supportability feature. Finally,

it calls zSwitchTo64bitMode() assembly call that is

located in EntryPoint64.s.

Figure 6. Main.c (first main())

 The EntryPoint64.s program written in assembly is

shown in Fig. 7. It initializes data segments with GDT

selector 2 (0x10 = 16/2 = 2). It initializes the stack and

calls Main program (this is the second main).

 The Main.c (second main) has many functions to run as

shown in Fig. 8. This functions or API shown in this

figure is not in chronological order. At the end of this

program, it invokes a “Menu” that provides a lean user

interface for loading and running 64 bit applications.

Figure 9. Selected Interfaces Details

 Most of the API shown in this figure is self-explanatory.

Some important interfaces are shown in Fig. 9 with some

key details. The zInitializeGDTTableAndTSS() function

updates 64 bit GDT with new parameters required in 64

bit mode. It initializes TSS for 64 bit, which is different

from 32 bit mode. The zLoadGDTR() function loads the

GDT register with new GDT table. The zLoadTR()

function loads the task register. The zInitializeIDTTable()

initializes the IDT table. A sample IDT entry for keyboard

is shown to illustrate this API. Notice that the keyboard

IDT entry is pointing to 0x08 which is a 64 bit mode code

segment descriptor. The zLoadIDTR() function initializes

IDT table and loads IDT register. Only one IST (interrupt

stack table) is used in our demonstration, which is used to

create and run one 64 bit mode application. In 64 bit

mode, task switching is done in software, whereas in 32

bit mode, it is done in hardware. The details of task

management are not shown in this paper due to space

limitations. All the functions described in this section

illustrate a common API that can be used to construct

boot/load/run programs for any x86-64 based bare PC

applications.

6 FUNCTIONAL OPERATION AND

TESTING

 The application program, boot and loader is installed in

a USB (mass storage device). This USB can be used to

boot/load/run on any x86-64 compatible PC without any

hard disk or OS. We used a 2GB Verbatim USB and a 64

bit Laptop (ASUS N43S Intel Core i5, 3
rd

 generation

CPU) to test this boot/load/run program process. When a

power is turned on, it boots, loads its 64 bit application

and runs the application. When it is booted, it starts in real

mode and moves into protected and subsequently to 64 bit

mode to run the application. When the system transitions

to 64 bit mode, it provides a user interface (menu) to load

a 64 bit application and runs. It also provides a menu

option to dump memory contents for debugging purposes.

We have tested a small 64 bit application program using

this boot/load/run program process. This system can be

expanded to run any set of applications and other features.

The snap shots of the running process for the 64 bit

“Hello” program are shown in Fig. 10 thru Fig. 13. The

Fig. 10 shows the menu interface, Fig. 11 shows the hello

program display, and Fig. 12 shows the trace produced by

the USB Image Maker tool.

Figure 10. Menu Interface

Figure 11. Application Output

7 NOVEL FEATURES

 This paper presents a complete methodology of creating

a boot program, load application into memory and run a

program without any need for operating system, kernel, or

embedded system. There is no middleware required other

than the application itself. The CPU structures GDT, IDT,

TSS, Video Memory, Keyboard and Display are directly

controlled by the application object programmer. This

programmer has a complete knowledge of application at

static and run time. There is no commercial or vendor

software involved in this software engineering paradigm.

An end user application suite can be carried on a mass

storage device and run it anywhere on a bare PC. The

direct hardware control and interfaces (API) shown in this

paper provide a complete overview to construct a

standalone 64 bit application. Eventually, this API

implementation can be moved into the processor chip thus

making it intelligent and providing direct access to the

programmer. We can eventually make this API standard

across many pervasive devices to create portable

applications that run on many pervasive devices. When

hardware devices are made bare, they can be placed

anywhere without a concern for its computer protection

other than a physical damage or vandalism.

Figure 12. Image Maker Trace

8 CONCLUSION

 This paper presents a novel methodology to write bare

PC applications that are independent of any operating

system, kernel, or embedded system. It described internal

details of implementation for boot, load and run process

for a 64 bit application. These detailed code snippets and

prototypes can be used to implement your own system to

create bare PC applications. It also showed its functional

operation and testing of a boot/load/run program process.

Some significant contributions of this paper are identified

which has a broader impact in developing future bare PC

or machine applications.

9 REFERENCES

[1] L. He, R. K. Karne, and A. L. Wijesinha, “Design and

Performance of a Bare PC Web Server,” International

Journal of Computer and Applications, vol. 15, pp. 100-

112, June 2008.

[2] P. Appiah-Kubi, A. L. Wijesinha, and R. K. Karne.

“The Design and Performance of a Bare PC Webmail

Server,” 12th IEEE International Conference on High

Performance Computing and Communications (AHPCN),

pp. 521-526, 2010.

[3] B. Rawal, R. Karne, and A. L. Wijesinha. “Mini Web

Server Clusters for HTTP Request Splitting,” 13th

International Confrence on High Performance Computing

and Comunication (HPCC), 2011.

[4] R. K. Karne, “Application-oriented Object

Architecture: A Revolutionary Approach,” 6th

International HPC (Asia) Conference, 2002.

[5] R. K. Karne, K.V. Jaganathan, T. Ahmed, and N.

Rosa, “DOSC: Dispersed Operating System Computing,”

20th Annual ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications

(OOPSLA), Onward Track, pp. 55-61, 2005.

[6] R.K. Karne, S. Liang, A.L. Wijesinha and P. Appiah-

Kubi, "Bare PC Mass Storage USB Driver,"

International Journal of Computer and Applications,

IJCA, March 2013.

[7] U. Okafor, R. K. Karne, A. L. Wijesinha, and P.

Appiah-Kubi, “Eliminating the Operating System via the

Bare Machine Computing Paradigm”, The Fifth

International Conference on Future Computational

Technologies and Applications, Future Computing 2013,

Valencia, Spain.

[8] G. H. Khaksari, A. L., Wijesinha, R. K., Karne, L., He

and S. Girumala, “A Peer-to-Peer Bare PC VoIP

Application,” IEEE Consumer and Communications and

Networking Conference (CCNC), pp. 803-807, Jan. 2007.

[9] G. H. Khaksari, A. L. Wijesinha, and R. K. Karne, “A

Bare Machine Development Methodology,” International

Journal of Computer Applications, vol. 19, no.1, pp. 10-

25, Mar. 2012.

[10] U. Okafor, R. K. Karne, A. L. Wijesinha, and P.

Appiah-Kubi, “ A Methodology to Transform an OS-

based Application to a Bare Machine Application, The

12
th

 IEEE International Conference on Ubiquitous

Computing and Communications (ICC-2013), Melbourne,

Australia, 16-18 July, 2013.

[11] Snghun Han, Principles and Architecture of 64 bit

Mutli Core OS, Published by HANBIT Media, Inc., Seoul,

Korea, 2011.

[12] Booting, http://en.wikipedia.org/wiki/Booting

[13] Win32 Disk Imager,

http://sourceforge.net/projects/win32diskimager/.

