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Abstract—Protocol splitting has been used to enable 

protocols to be split at a server level without client 

involvement. We describe a novel split protocol 

client/server architecture that completely separates 

connections and data transfers within a typical session. 

In this approach, a client becomes aware of its multiple 

server sources and communicates with them using their 

IP addresses. Specifically, a client makes a single TCP 

connection to a connection server and subsequently 

communicates with one or more data servers to obtain 

its data and close the connection. We also conduct 

experiments and measure performance to demonstrate 

the feasibility of this architecture. Our results indicate 

that scalable server cluster configurations can be built 

using this approach. The proposed architecture 

simplifies server implementations, avoids traditional 

load balancing techniques, and isolates clients from data 

servers. It also results in a scalable and distributable 

approach to client/server computing that provides an 

alternative to the current paradigm.  
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I. INTRODUCTION 

Network protocols are typically implemented as layered 
entities within an OS-controlled stack. Alternatively, they 
can be implemented in an intertwined manner as in bare PC 
applications [16]. The intertwining of HTTP and TCP 
protocols in a Web server is shown in Figure 1. The 
intertwined HTTP/TCP protocols can also be split after 
receiving the GET request by partitioning a single server into 
two servers consisting of a connection server (CS) and a data 
server (DS) [2]. In this case, the CS establishes the TCP 
connection and has two-way communication with the client 
whereas DS communication with the client is only one-way 
(i.e., it only sends data to the client). The CS also sends an 
inter-server packet to the DS to communicate the client’s 
request and its state. The CS is connected to the client 
throughout processing of a given request. In this architecture, 
one CS interfaces with one or more DSs to provide client 
services and thus becomes a bottleneck in a mini-cluster 
configuration [3].  

To address such a bottleneck, we split the protocol at an 
architectural level. This results in a modified client/server 

architecture, where establishing connections, and data 
transfers and connection closing are separated entirely. 
Initially, clients communicate only with the CS and are 
unaware of the location of the DSs. Then, a DS can 
completely take over the request from the CS and inform the 
client. This separation of connection establishment and 
subsequent data transfer/closing provides increased security 
at a server level. In this architecture, when a connection is 
established between a client and a CS, the CS will terminate 
its connection processing by sending an inter-server packet 
to a DS and the DS will finish the rest of the session by 
sending the data and closing the connection. The resulting 
client/server interactions are shown in Figure 2, where the 
client sends SYN, ACK-SYN-ACK and GET messages to 
the CS, and the CS only sends the SYN-ACK and GET-
ACK messages to the client. After the CS establishes the 
connection and sends the GET-ACK, it sends an inter-server 
packet to a DS and removes itself from further processing of 
this request. The sending of DATA, ACKs and closing FIN-
ACKs will be done by the DS. This enables the CS to be 
freed completely from the HTTP request and the TCP 
connection after the GET is processed.   

  

 
 

Figure 1. Intertwined HTTP/TCP protocols 
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In real-world applications, some servers may be close to 
data sources, and some servers may be close to clients. 
Splitting a protocol request and the underlying TCP 
connection in this manner allows servers to dynamically 
balance the workload. In protocol splitting, clients can be 
located anywhere on the Internet. However, there are 
security and firewall issues that arise when deploying split 
servers in an Internet if a CS and a DS are on different 
networks [2]. We have therefore tested the splitting concept 
with the servers located in a LAN that consists of multiple 
subnets connected by routers. Splitting and this modified 
client/server architecture can also be implemented in 
principle on an OS-based system. However, it is more 
convenient and much simpler to implement the architecture 
on a bare PC with no kernel or OS running on the machine. 

     The rest of the paper is organized as follows. Section II 

presents related work; Section III describes the split design 

and implementation; Section IV presents experimental 

results; Section V discusses the impact of this split 

architecture; and Section VI contains the conclusion. 

II. RELATED WORK 

  Bare PC applications use the Bare Machine Computing 

(BMC) paradigm, which was previously called dispersed 

OS computing [19]. That is, there is no OS or centralized 

kernel running in the machine. Instead, the application is 

written in C++ and runs as an application object (AO) [20] 

by using its own device drivers and interfaces to the 

hardware [18]. The BMC paradigm resembles approaches 

that reduce OS overhead and/or use lean kernels such as 

Exokernel [5,11], IO-Lite [22], Palacio [14], Libra [9], 

factored OS [7], bare-metal Linux [21], and TinyOS [13]. 

However, there are significant differences such as the lack 

of centralized code that manages system resources on behalf 

of applications and the absence of a standard kernel-based 

TCP/IP protocol stack and socket interface. In essence, the 

AO itself manages the CPU and memory, and contains lean 

versions of the necessary protocols. The BMC paradigm 

also facilitates protocol intertwining, which is a form of 

cross-layer design. Further details on bare PC applications 

and bare machine computing (BMC) can be found in [16, 

17].    

  Splitting protocol at a client/server architectural level is 

different from previous approaches based on migrating TCP 

connections (or processes or Web sessions), splicing TCP 

connections or masking failures in TCP-based servers. For 

example, in migratory TCP (M-TCP) [15], a TCP 

connection is migrated between servers with client 

involvement and a new TCP connection. Similarly, in 

process migration [6], an executing process is transferred 

between machines, and in proxy-based session handoff [10], 

a proxy is used to migrate Web sessions in a mobile 

environment. Protocol splitting is also different from TCP 

splicing [1] in which two separate TCP connections are 

established for each request, and from fault-tolerant TCP 

(FT-TCP) [8] in which a TCP connection continues after a 

failure enabling a replicated service to survive. 

 

 
Figure 2. Modified split protocol architecture  

    

III. DESIGN AND IMPLEMENTATION 

The modified split protocol client/server architecture 

differs considerably from that of a conventional client/server 

system. To demonstrate its feasibility and study 

performance, we have designed and implemented a client 

and servers on bare PC systems. The absence of an OS or 

kernel running in the machine makes it simpler and easier to 

make the necessary modifications compared to OS-based 

protocol implementations. Figure 3 shows the high-level 

design of a client and server in a bare PC. Each client and 

server updates a TCP state table (TCB) that contains the 

state of each request. Each TCB entry is made unique by 

using a hash table with key values determined by an IP 

address and port number. The CS and DS TCB table entries 

are referenced by IP3 and Port# (the client’s IP address and 

port number respectively). Similarly, the TCB entry in the 

client is referenced by IP1 (server IP) and Port#.  

The TCB table is the key system component in the client 

and server design. An entry in this table maintains complete 

state and data information for a given request. A typical 

entry consists of about 160 bytes of connection information 

and another 160 bytes that provide trace, error, logs, and 

miscellaneous control information. A TCB entry is 

independent of the machine and can be easily migrated to 

another PC that runs at a different location. This is not same 

as process migration [6] as there is no process information 

contained in the entry. The information in the inter-server 

packet is derived from the TCB entry and sent to a DS when 

a GET message arrives from the client.     

The client uses IP1 and Port# to address the TCB entry. 

This requires that the DS use IP1 as its source address when 

sending data and other packets to the client. However, a 

client must be aware of both server addresses IP1 and IP2 

since they are needed for different purposes. The client 



 

 

knows the CS address IP1 through its original request and 

by resolving the server’s domain name. To inform the client 

of the DS address IP2 address that it should use on outgoing 

packets during data transmission, it is included in the HTTP 

header using a special field. In this architecture, a client 

could get data from any unknown DS and learn its IP 

address from the initial data it receives (i.e. the HTTP 

header). This mechanism simplifies the design and 

implementation of the split protocol client/server 

architecture. It also allows the CS to distribute its load 

among DSs based on their CPU utilization without resorting 

to complex load balancing techniques [4].  

  

 
 

Figure 3. Design structure 

     

   It is assumed here that the DS’s network allows it to send 

packets using the address of CS as source. This may be 

acceptable if the CS and DS are in the same subnet. In 

general, such IP spoofing could be avoided if the CS 

informs the client to switch to the IP address of the DS 

(using the GET-ACK for example). Then the client would 

change the IP address used to reference the TCB entry of the 

server from IP1 to IP2, and the DS would send data using its 

own IP address IP2 as source. For this to be done correctly 

the TCP connection to IP1 would be closed and a new TCP 

connection to IP2 would be established by the client. This 

would increase the overhead, which is avoided by using this 

approach. For simplicity, the preceding discussion ignored 

NAT.  

 We have modified existing bare PC server designs to 

create the servers and the client. The CS design turned out 

to be fairly simple as its sliding window and data 

transmission logic is removed. The DS design also became 

somewhat simpler since the connection logic is removed. To 

implement the bare PC client, the server is modified by 

swapping its logic with respect to sending and receiving. It 

is also necessary to implement the client request generator 

logic in addition to the server logic. 

The bare PC server applications do not use any OS-

related libraries or system calls. However, the application 

itself is developed using a standard MS Windows 

environment and written in Visual C++ (without any *.h 

files) and MASM Assembler. Most of the direct hardware 

interfaces are implemented in C/assembly language using 

software interrupts. The size of the assembly code is 

approximately 1,800 lines. These direct hardware interfaces 

include display, keyboard, timers, task management, NIC, 

and real/protected mode switching. The Intel 82540EM NIC 

driver code is approximately 3100 lines of C/C++ and 43 

lines of assembly code. Similarly, the USB driver uses 

approximately 133 lines of assembly code; the rest of the 

code is written in C. The code implementing the Web server 

is written in C++ in an object-oriented manner. The size of 

the source code is approximately 22,452 lines of code (not 

including comments) and 13,744 executable lines. This 

yields a single monolithic executable AO consisting of 344 

sectors of code size 176,128 bytes, which is placed on the 

USB. The code implementing the Web client is similar, but 

about 5% larger. The same USB also contains boot code and 

other user interfaces to load and run the program on a bare 

PC.   

IV.  EXPERIMENTAL RESULTS 

 A. Experimental Setup 

The experiments were conducted using a prototype 

server cluster consisting of Dell Optiplex GX260 PCs with 

Intel Pentium 4, 2.8GHz Processors, 1GB RAM, and an 

Intel 1G NIC on the motherboard. All systems were 

connected to a Linksys 16-port 1 Gbps Ethernet switch. 

Bare PC Web clients capable of generating 5700 

requests/sec were used to create the server workload.  

 

B. Configurations 

Figure 4 shows a general configuration for connecting 

one CS and one or more DSs and clients. The requested file 

size was 64K. The CS delegates all its requests to one or 

more DSs for data processing.  

 

C. Measurements: 1-4 DSs, Performance 

Figure 5 shows measurements conducted using a single 

CS and respectively 1-4 DSs. A minimum configuration of a 

split protocol client server system consists of a single CS 

and DS. This system can process 900 requests/sec for 64K 

files. When the number of DSs is increased, performance 

improves linearly. Figure 6 shows CPU utilization for the 

CS and DS. CS utilization also increases linearly to 20% for 

4 DSs. The DS utilization is maximized as we stressed the 

server to conduct this experiment. 

We expect CS performance to increase linearly until it 

gets saturated. This is to be expected since the CS causes no 

bottleneck and all DSs execute concurrently and 

independently to process client requests.  The number of 

servers connected to a single CS can be estimated to be 15 

by extrapolation. In an earlier study for splitting based on 

the usual client/server architecture, it is shown that one CS 

can support up to 4 DSs before it gets saturated [3]. This 



 

 

implies that the modified client/server architecture can scale 

up to 15 DSs. Such clusters can   potentially be used to build 

large server clusters as in [12].  

 

 
 

Figure 4. Split protocol configuration 

 

 
Figure 5.Throughput 

 
 

Figure 6.   CS and DS CPU Utilization 

 

D. Measurements: 1-4 DSs, Actual Times 
Figure 7 shows the actual time taken by a client/server 

configuration for processing 1.62 million requests. As 

expected, these results indicate that the amount of time 

taken to process all the requests is inversely proportional to 

the number of DSs added to the system. Similar 

performance gains will be difficult to achieve using a 

conventional server cluster since it requires external load 

balancing techniques that would increase the overhead. The 

proposed CS/DS cluster manages the load balancing within 

the CS itself and eliminates this overhead. In addition, 

partitioning the load for DSs at the CS level is simpler since 

the latter communicates with all its DSs. In our experiments, 

a round robin approach was used to delegate requests 

incurring no penalty in load distribution.  

 
 

Figure 7.   Processing time 

 

 
Figure 8. Throughput with varying ACKs 

         

E. Measurements: 1-4 DSs, Varying Acks 
In order to improve DS performance further, we reduced 

the number of ACKs for data by modifying the client code. 

Instead of sending ACKs for each data packet, we sent a 

single ACK for all the data and another for closing the 



 

 

connection (FIN-ACK-ACK). This is similar to sending a 

negative ACK (NAK) only when data is not received. By 

reducing data ACKs to a minimum, we measured the 

performance for one to four DSs as shown in Figure 8.  The 

figure also shows the throughput for normal ACKs. It can 

be seen that limiting the number of ACKs for data improves 

performance by 48% at the DS level.   

Figure 9 shows the CPU utilization for the CS and DSs 

with varying ACKS. The DS utilization has peaked due to 

the maximum load requested by the clients. The CS 

utilization also increases with limited ACKs because the CS 

is now handling more requests than before. With limited 

ACKs, the linear performance improvement continues up to 

4 DSs. This is also expected as CS poses no bottleneck for 4 

DSs. For limited ACKs, the number of DSs connected to a 

single CS can be estimated to be 13 by extrapolation. 

 

 
 

Figure 9.   Utilization with varying ACKs 

 

Thus, a typical CS-DS cluster may contain up to 13 DSs 

with limited ACKs and 15 DSs with normal ACKs. Figure 9 

shows that the CPU utilization increased from 24% to 29%, 

for 4 DSs due to handling additional load.  Thus, the 48% 

improvement shown for 4 DSs in Figure 8 may not continue 

when there are a large number of DSs in the system.  

 

F. Lack of comparison with OS based systems 

We were unable to compare performance of the modified 

client/server split protocol architecture for bare PC servers 

and clients with that for OS-based systems, as it is very 

difficult to implement split protocols on them. Most OS-

based systems do not provide easy access to split the 

protocol. In contrast, it is easy to access and modify the 

protocols in bare PC applications.  

V. IMPACTS OF SPLITTING 

Splitting enables the functionality of a protocol to be 

split across machines or processors. In particular, splitting 

the TCP protocol requires modification to the usual 

client/server architecture. Some of the impacts of splitting 

are as follows: 

 Split protocol configurations based on connections and 

data can be used for constructing large server clusters 

(4-15 DSs) 

 Scalable performance can be achieved by adding DSs to 

the cluster without incurring load balancing overhead 

 A uniform reduction in processing time can be achieved 

by adding additional DSs as they work independently 

and concurrently  

 Complex load balancing techniques and dispatchers are 

not needed  

 Connections and data transfers can be completely 

separated (this may provide additional security due to 

data server isolation)  

 Connection and data servers can be located in different 

places; for example, data servers can be located in close 

proximity to data (this raises some network-related 

issues as noted earlier)  

 Client connections can be easily monitored without 

interrupting client data communication  

 Server designs can be simplified; the CS design in 

particular is simpler and easier to manage 

 This approach can also be used for database servers and 

file servers. 

VI. CONCLUSION 

We studied a modified client/server computing system 

with protocol splitting across connection and data servers. 

This approach differs from conventional client/server design 

and implementation in that the data servers alone handle 

communication after a connection is initially set up by the 

connection server. The server architecture is scalable and 

allows large server clusters to be built. We discussed design 

and implementation details using clients and servers running 

on bare PC systems. The experimental results showed 

performance improvements of up to 48% by increasing the 

number of DSs and limiting the ACKs needed for data 

transmission.  

We also discussed the impacts of splitting. When 

evaluating the tradeoff of splitting versus non-splitting, it is 

necessary to consider the overhead and cost of load 

balancers and dispatchers, which will result in lower 

throughput and increased response times. This study used 

only bare PC systems; we were unable to provide a 

comparison with conventional systems due to the difficulty 

of implementing protocol splitting on OS-based clients and 

servers. It would be useful to investigate the benefits of 

splitting using OS-based Web servers and applications. 

More studies are also needed to evaluate the security 

benefits of split server clusters, and their scalability and 

performance using a variety of workloads. 
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