

Split Protocol Client/Server Architecture

 Bharat S. Rawal Ramesh K. Karne Alexander L. Wijesinha

 Department of Computer and Department of Computer and Department of Computer and

 Information Sciences Information Sciences Information Sciences

 Towson University Towson University Towson University

 Towson, Maryland, USA Towson, Maryland, USA Towson, Maryland, USA

 brawal@towson.edu rkarne@towson.edu awijesinha@towson.edu

Abstract—Protocol splitting has been used to enable

protocols to be split at a server level without client

involvement. We describe a novel split protocol

client/server architecture that completely separates

connections and data transfers within a typical session.

In this approach, a client becomes aware of its multiple

server sources and communicates with them using their

IP addresses. Specifically, a client makes a single TCP

connection to a connection server and subsequently

communicates with one or more data servers to obtain

its data and close the connection. We also conduct

experiments and measure performance to demonstrate

the feasibility of this architecture. Our results indicate

that scalable server cluster configurations can be built

using this approach. The proposed architecture

simplifies server implementations, avoids traditional

load balancing techniques, and isolates clients from data

servers. It also results in a scalable and distributable

approach to client/server computing that provides an

alternative to the current paradigm.

Keywords-Split Protocol, Performance, Client Server

Computing, Server Cluster, Web Servers, Bare Machine

Computing.

I. INTRODUCTION

Network protocols are typically implemented as layered
entities within an OS-controlled stack. Alternatively, they
can be implemented in an intertwined manner as in bare PC
applications [16]. The intertwining of HTTP and TCP
protocols in a Web server is shown in Figure 1. The
intertwined HTTP/TCP protocols can also be split after
receiving the GET request by partitioning a single server into
two servers consisting of a connection server (CS) and a data
server (DS) [2]. In this case, the CS establishes the TCP
connection and has two-way communication with the client
whereas DS communication with the client is only one-way
(i.e., it only sends data to the client). The CS also sends an
inter-server packet to the DS to communicate the client’s
request and its state. The CS is connected to the client
throughout processing of a given request. In this architecture,
one CS interfaces with one or more DSs to provide client
services and thus becomes a bottleneck in a mini-cluster
configuration [3].

To address such a bottleneck, we split the protocol at an
architectural level. This results in a modified client/server

architecture, where establishing connections, and data
transfers and connection closing are separated entirely.
Initially, clients communicate only with the CS and are
unaware of the location of the DSs. Then, a DS can
completely take over the request from the CS and inform the
client. This separation of connection establishment and
subsequent data transfer/closing provides increased security
at a server level. In this architecture, when a connection is
established between a client and a CS, the CS will terminate
its connection processing by sending an inter-server packet
to a DS and the DS will finish the rest of the session by
sending the data and closing the connection. The resulting
client/server interactions are shown in Figure 2, where the
client sends SYN, ACK-SYN-ACK and GET messages to
the CS, and the CS only sends the SYN-ACK and GET-
ACK messages to the client. After the CS establishes the
connection and sends the GET-ACK, it sends an inter-server
packet to a DS and removes itself from further processing of
this request. The sending of DATA, ACKs and closing FIN-
ACKs will be done by the DS. This enables the CS to be
freed completely from the HTTP request and the TCP
connection after the GET is processed.

Figure 1. Intertwined HTTP/TCP protocols

mailto:brawal@towson.edu
mailto:rkarne@towson.edu
mailto:awijesinha@towson.edu

In real-world applications, some servers may be close to
data sources, and some servers may be close to clients.
Splitting a protocol request and the underlying TCP
connection in this manner allows servers to dynamically
balance the workload. In protocol splitting, clients can be
located anywhere on the Internet. However, there are
security and firewall issues that arise when deploying split
servers in an Internet if a CS and a DS are on different
networks [2]. We have therefore tested the splitting concept
with the servers located in a LAN that consists of multiple
subnets connected by routers. Splitting and this modified
client/server architecture can also be implemented in
principle on an OS-based system. However, it is more
convenient and much simpler to implement the architecture
on a bare PC with no kernel or OS running on the machine.

 The rest of the paper is organized as follows. Section II

presents related work; Section III describes the split design

and implementation; Section IV presents experimental

results; Section V discusses the impact of this split

architecture; and Section VI contains the conclusion.

II. RELATED WORK

 Bare PC applications use the Bare Machine Computing

(BMC) paradigm, which was previously called dispersed

OS computing [19]. That is, there is no OS or centralized

kernel running in the machine. Instead, the application is

written in C++ and runs as an application object (AO) [20]

by using its own device drivers and interfaces to the

hardware [18]. The BMC paradigm resembles approaches

that reduce OS overhead and/or use lean kernels such as

Exokernel [5,11], IO-Lite [22], Palacio [14], Libra [9],

factored OS [7], bare-metal Linux [21], and TinyOS [13].

However, there are significant differences such as the lack

of centralized code that manages system resources on behalf

of applications and the absence of a standard kernel-based

TCP/IP protocol stack and socket interface. In essence, the

AO itself manages the CPU and memory, and contains lean

versions of the necessary protocols. The BMC paradigm

also facilitates protocol intertwining, which is a form of

cross-layer design. Further details on bare PC applications

and bare machine computing (BMC) can be found in [16,

17].

 Splitting protocol at a client/server architectural level is

different from previous approaches based on migrating TCP

connections (or processes or Web sessions), splicing TCP

connections or masking failures in TCP-based servers. For

example, in migratory TCP (M-TCP) [15], a TCP

connection is migrated between servers with client

involvement and a new TCP connection. Similarly, in

process migration [6], an executing process is transferred

between machines, and in proxy-based session handoff [10],

a proxy is used to migrate Web sessions in a mobile

environment. Protocol splitting is also different from TCP

splicing [1] in which two separate TCP connections are

established for each request, and from fault-tolerant TCP

(FT-TCP) [8] in which a TCP connection continues after a

failure enabling a replicated service to survive.

Figure 2. Modified split protocol architecture

III. DESIGN AND IMPLEMENTATION

The modified split protocol client/server architecture

differs considerably from that of a conventional client/server

system. To demonstrate its feasibility and study

performance, we have designed and implemented a client

and servers on bare PC systems. The absence of an OS or

kernel running in the machine makes it simpler and easier to

make the necessary modifications compared to OS-based

protocol implementations. Figure 3 shows the high-level

design of a client and server in a bare PC. Each client and

server updates a TCP state table (TCB) that contains the

state of each request. Each TCB entry is made unique by

using a hash table with key values determined by an IP

address and port number. The CS and DS TCB table entries

are referenced by IP3 and Port# (the client’s IP address and

port number respectively). Similarly, the TCB entry in the

client is referenced by IP1 (server IP) and Port#.

The TCB table is the key system component in the client

and server design. An entry in this table maintains complete

state and data information for a given request. A typical

entry consists of about 160 bytes of connection information

and another 160 bytes that provide trace, error, logs, and

miscellaneous control information. A TCB entry is

independent of the machine and can be easily migrated to

another PC that runs at a different location. This is not same

as process migration [6] as there is no process information

contained in the entry. The information in the inter-server

packet is derived from the TCB entry and sent to a DS when

a GET message arrives from the client.

The client uses IP1 and Port# to address the TCB entry.

This requires that the DS use IP1 as its source address when

sending data and other packets to the client. However, a

client must be aware of both server addresses IP1 and IP2

since they are needed for different purposes. The client

knows the CS address IP1 through its original request and

by resolving the server’s domain name. To inform the client

of the DS address IP2 address that it should use on outgoing

packets during data transmission, it is included in the HTTP

header using a special field. In this architecture, a client

could get data from any unknown DS and learn its IP

address from the initial data it receives (i.e. the HTTP

header). This mechanism simplifies the design and

implementation of the split protocol client/server

architecture. It also allows the CS to distribute its load

among DSs based on their CPU utilization without resorting

to complex load balancing techniques [4].

Figure 3. Design structure

 It is assumed here that the DS’s network allows it to send

packets using the address of CS as source. This may be

acceptable if the CS and DS are in the same subnet. In

general, such IP spoofing could be avoided if the CS

informs the client to switch to the IP address of the DS

(using the GET-ACK for example). Then the client would

change the IP address used to reference the TCB entry of the

server from IP1 to IP2, and the DS would send data using its

own IP address IP2 as source. For this to be done correctly

the TCP connection to IP1 would be closed and a new TCP

connection to IP2 would be established by the client. This

would increase the overhead, which is avoided by using this

approach. For simplicity, the preceding discussion ignored

NAT.

 We have modified existing bare PC server designs to

create the servers and the client. The CS design turned out

to be fairly simple as its sliding window and data

transmission logic is removed. The DS design also became

somewhat simpler since the connection logic is removed. To

implement the bare PC client, the server is modified by

swapping its logic with respect to sending and receiving. It

is also necessary to implement the client request generator

logic in addition to the server logic.

The bare PC server applications do not use any OS-

related libraries or system calls. However, the application

itself is developed using a standard MS Windows

environment and written in Visual C++ (without any *.h

files) and MASM Assembler. Most of the direct hardware

interfaces are implemented in C/assembly language using

software interrupts. The size of the assembly code is

approximately 1,800 lines. These direct hardware interfaces

include display, keyboard, timers, task management, NIC,

and real/protected mode switching. The Intel 82540EM NIC

driver code is approximately 3100 lines of C/C++ and 43

lines of assembly code. Similarly, the USB driver uses

approximately 133 lines of assembly code; the rest of the

code is written in C. The code implementing the Web server

is written in C++ in an object-oriented manner. The size of

the source code is approximately 22,452 lines of code (not

including comments) and 13,744 executable lines. This

yields a single monolithic executable AO consisting of 344

sectors of code size 176,128 bytes, which is placed on the

USB. The code implementing the Web client is similar, but

about 5% larger. The same USB also contains boot code and

other user interfaces to load and run the program on a bare

PC.

IV. EXPERIMENTAL RESULTS

 A. Experimental Setup

The experiments were conducted using a prototype

server cluster consisting of Dell Optiplex GX260 PCs with

Intel Pentium 4, 2.8GHz Processors, 1GB RAM, and an

Intel 1G NIC on the motherboard. All systems were

connected to a Linksys 16-port 1 Gbps Ethernet switch.

Bare PC Web clients capable of generating 5700

requests/sec were used to create the server workload.

B. Configurations

Figure 4 shows a general configuration for connecting

one CS and one or more DSs and clients. The requested file

size was 64K. The CS delegates all its requests to one or

more DSs for data processing.

C. Measurements: 1-4 DSs, Performance

Figure 5 shows measurements conducted using a single

CS and respectively 1-4 DSs. A minimum configuration of a

split protocol client server system consists of a single CS

and DS. This system can process 900 requests/sec for 64K

files. When the number of DSs is increased, performance

improves linearly. Figure 6 shows CPU utilization for the

CS and DS. CS utilization also increases linearly to 20% for

4 DSs. The DS utilization is maximized as we stressed the

server to conduct this experiment.

We expect CS performance to increase linearly until it

gets saturated. This is to be expected since the CS causes no

bottleneck and all DSs execute concurrently and

independently to process client requests. The number of

servers connected to a single CS can be estimated to be 15

by extrapolation. In an earlier study for splitting based on

the usual client/server architecture, it is shown that one CS

can support up to 4 DSs before it gets saturated [3]. This

implies that the modified client/server architecture can scale

up to 15 DSs. Such clusters can potentially be used to build

large server clusters as in [12].

Figure 4. Split protocol configuration

Figure 5.Throughput

Figure 6. CS and DS CPU Utilization

D. Measurements: 1-4 DSs, Actual Times
Figure 7 shows the actual time taken by a client/server

configuration for processing 1.62 million requests. As

expected, these results indicate that the amount of time

taken to process all the requests is inversely proportional to

the number of DSs added to the system. Similar

performance gains will be difficult to achieve using a

conventional server cluster since it requires external load

balancing techniques that would increase the overhead. The

proposed CS/DS cluster manages the load balancing within

the CS itself and eliminates this overhead. In addition,

partitioning the load for DSs at the CS level is simpler since

the latter communicates with all its DSs. In our experiments,

a round robin approach was used to delegate requests

incurring no penalty in load distribution.

Figure 7. Processing time

Figure 8. Throughput with varying ACKs

E. Measurements: 1-4 DSs, Varying Acks
In order to improve DS performance further, we reduced

the number of ACKs for data by modifying the client code.

Instead of sending ACKs for each data packet, we sent a

single ACK for all the data and another for closing the

connection (FIN-ACK-ACK). This is similar to sending a

negative ACK (NAK) only when data is not received. By

reducing data ACKs to a minimum, we measured the

performance for one to four DSs as shown in Figure 8. The

figure also shows the throughput for normal ACKs. It can

be seen that limiting the number of ACKs for data improves

performance by 48% at the DS level.

Figure 9 shows the CPU utilization for the CS and DSs

with varying ACKS. The DS utilization has peaked due to

the maximum load requested by the clients. The CS

utilization also increases with limited ACKs because the CS

is now handling more requests than before. With limited

ACKs, the linear performance improvement continues up to

4 DSs. This is also expected as CS poses no bottleneck for 4

DSs. For limited ACKs, the number of DSs connected to a

single CS can be estimated to be 13 by extrapolation.

Figure 9. Utilization with varying ACKs

Thus, a typical CS-DS cluster may contain up to 13 DSs

with limited ACKs and 15 DSs with normal ACKs. Figure 9

shows that the CPU utilization increased from 24% to 29%,

for 4 DSs due to handling additional load. Thus, the 48%

improvement shown for 4 DSs in Figure 8 may not continue

when there are a large number of DSs in the system.

F. Lack of comparison with OS based systems

We were unable to compare performance of the modified

client/server split protocol architecture for bare PC servers

and clients with that for OS-based systems, as it is very

difficult to implement split protocols on them. Most OS-

based systems do not provide easy access to split the

protocol. In contrast, it is easy to access and modify the

protocols in bare PC applications.

V. IMPACTS OF SPLITTING

Splitting enables the functionality of a protocol to be

split across machines or processors. In particular, splitting

the TCP protocol requires modification to the usual

client/server architecture. Some of the impacts of splitting

are as follows:

 Split protocol configurations based on connections and

data can be used for constructing large server clusters

(4-15 DSs)

 Scalable performance can be achieved by adding DSs to

the cluster without incurring load balancing overhead

 A uniform reduction in processing time can be achieved

by adding additional DSs as they work independently

and concurrently

 Complex load balancing techniques and dispatchers are

not needed

 Connections and data transfers can be completely

separated (this may provide additional security due to

data server isolation)

 Connection and data servers can be located in different

places; for example, data servers can be located in close

proximity to data (this raises some network-related

issues as noted earlier)

 Client connections can be easily monitored without

interrupting client data communication

 Server designs can be simplified; the CS design in

particular is simpler and easier to manage

 This approach can also be used for database servers and

file servers.

VI. CONCLUSION

We studied a modified client/server computing system

with protocol splitting across connection and data servers.

This approach differs from conventional client/server design

and implementation in that the data servers alone handle

communication after a connection is initially set up by the

connection server. The server architecture is scalable and

allows large server clusters to be built. We discussed design

and implementation details using clients and servers running

on bare PC systems. The experimental results showed

performance improvements of up to 48% by increasing the

number of DSs and limiting the ACKs needed for data

transmission.

We also discussed the impacts of splitting. When

evaluating the tradeoff of splitting versus non-splitting, it is

necessary to consider the overhead and cost of load

balancers and dispatchers, which will result in lower

throughput and increased response times. This study used

only bare PC systems; we were unable to provide a

comparison with conventional systems due to the difficulty

of implementing protocol splitting on OS-based clients and

servers. It would be useful to investigate the benefits of

splitting using OS-based Web servers and applications.

More studies are also needed to evaluate the security

benefits of split server clusters, and their scalability and

performance using a variety of workloads.

ACKNOWLEDGEMENT

We sincerely thank NSF and in particular the late Dr.

Frank Anger, who initially supported this work by funding

through SGER grant CCR-0120155. Without his

encouragement, bare machine computing concept and

explorations could not have been possible.

REFERENCES

[1] A. Cohen, S. Rangarajan, and H. Slye, “On the performance

of TCP splicing for URL-Aware redirection,” Proceedings of

USITS’99, The 2nd USENIX Symposium on Internet

Technologies & Systems, October 1999.

[2] B. Rawal, R. Karne, and A. L. Wijesinha. “Splitting HTTP

Requests on Two Servers,” The Third International

Conference on Communication Systems and Networks:

COMPSNETS 2011, January 2011, Bangalore, India.

[3] B. Rawal, R. Karne, and A. L. Wijesinha. “Mini Web Server

Clusters for HTTP Request Splitting,” 13th International

Confrence on High performance Computing and

Comunication, HPCC-2011, Banff, Canada, Sept 2-

4,2011.

[4] Ciardo, G., A. Riska and E. Smirni. EquiLoad: A Load

Balancing Policy for Clustered Web Servers". Performance

Evaluation, 46(2-3):101-124, 2001.

[5] D. R. Engler and M.F. Kaashoek, “Exterminate all operating

system abstractions,” Fifth Workshop on Hot Topics in

operating Systems.

[6] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler and S.

Zhou. “Process Migration,” ACM Computing Surveys,

September 2000, Vol. 32, Issue 3, pp. 241-299.

[7] D. Wentzlaff and A. Agarwal, “Factored operating systems

(fos): the case for a scalable operating system for

multicores,” ACM SIGOPS Operating Systems Review, April

2009, Volume 43, Issue 2, pp. 76-85.

[8] D. Zagorodnov, K. Marzullo, L. Alvisi and T.C. Bressourd,

“Practical and low overhead masking of failures of TCP-

based servers,” ACM Transactions on Computer Systems,

May 2009, Volume 27, Issue 2, Article 4.

[9] G. Ammons, J. Appayoo, M. Butrico, D. Silva, D. Grove, K.

Kawachiva, O. Krieger, B. Rosenburg, E. Hensbergen, R.W.

Isniewski, “Libra: A Library Operating System for a JVM in a

Virtualized Execution Environment,” VEE ’07: Proceedings

of the 3rd International Conference on Virtual Execution

Environments, June 2007.

[10] G. Canfora, G. Di Santo, G. Venturi, E. Zimeo and

M.V.Zito, “Migrating web application sessions in mobile

computing,” Proceedings of the 14th International

Conference on the World Wide Web, 2005, pp. 1166-

 1167.

 [11] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M.

Briceno, R. Hunt and T. Pinckney, “Fast and flexible

application-level networking on exokernel system,” ACM

Transactions on Computer Systems (TOCS), February, 2002,

vol. 20, Issue 1, pp. 49 – 83.

[12] L. A.Barreso, J. Dean, and U. Holzle, Web Search for a

Planet: The Google Cluster Architecture, IEEE Micro, March

2003.

[13] http://www.tinyos.net/.

[14] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P.

Bridges,S. Jaconette, M. Levenhagen, R. Brightwell, and P.

Widener. Palacios and Kitten: High performance operating

systems for scalable virtualized and native supercomputing.

Technical report, EECS Northwestern

University, July 2009.
[15] K. Sultan, D. Srinivasan, D. Iyer and L. lftod. “Migratory

 TCP: Highly Available Internet Services using Connection

Migration,” Proceedings of the 22nd International Conference

on Distributed Computing Systems, July 2002.

[16] L. He, R. K. Karne, and A. L. Wijesinha, “The Design and

Performance of a Bare PC Web Server,” International Journal

of Computers and Their Applications, IJCA, vol. 15, No. 2,

June 2008, pp. 100-112.

[17] L. He, R.K. Karne, A.L Wijesinha, and A. Emdadi, “A Study

of Bare PC Web Server Performance for Workloads with

Dynamic and Static Content,” The 11th IEEE International

Conference on High Performance Computing and

Communications (HPCC-09), Seoul, Korea, June 2009, pp.

494-499.

[18] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to run

C++ Applications on a bare PC,” SNPD 2005, Proceedings of

NPD 2005, 6th ACIS International Conference, IEEE, May

2005, pp. 50-55.

[19] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “DOSC:

Dispersed Operating System Computing,” OOPSLA ’05, 20th

Annual ACM Conference on Object Oriented

Programming,Systems, Languages, and Applications, Onward

Track, ACM,San Diego, CA, October 2005, pp. 55-61.

[20] R. K. Karne, “Application-oriented Object Architecture: A

Revolutionary Approach,” 6th International Conference, HPC

Asia 2002 (Poster), Centre for Development of Advanced

Computing, Bangalore, Karnataka, India, December 2002.

[21] T. Venton, M. Miller, R. Kalla, and A. Blanchard, “A

Linux-based tool for hardware bring up, Linux

development, and manufacturing,” IBM Systems J.,

Vol. 44 (2), IBM, NY, 2005, pp. 319-330.
[22] V. S. Pai, P. Druschel, and Zwaenepoel. “IO-Lite: A

Unified I/O Buffering and Caching System,”ACM

Transactions on Computer Systems, Feb. 2000, vol.18 (1),

ACM, pp. 37-66.

http://triton.towson.edu/~karne/dosc/paper17/bharat2.pdf
http://triton.towson.edu/~karne/dosc/paper17/bharat2.pdf
http://triton.towson.edu/~karne/dosc/paper17/bharat2.pdf
http://triton.towson.edu/~karne/dosc/paper17/bharat2.pdf
http://www.tinyos.net/

