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ABSTRACT
While IPv6 deployment in Ihe Interne! cont inues to grow slowly
at present, the imminent exhaustion of IPv4 addresses \ v i l l
encourage its increased use over the next several yeurs. I lowever.
due to (he predominance of IPv4 in the Internet , the t ransi t ion to
I P v 6 is l i k e l y to lake a long lime. During the transi t ion period,
translat ion mechanisms wi l l cnalile IPv6 hosts and IPv4 hosts to
communicate wilh eacli other. l;or example, translation can be
used when a server or application works with IPv4 but no! with
IPv6, and the effort or cost to niodily ihe eode is large. Stateless
and staleful translation is Ihe subject of several recent lli.TF RLCs.
We evaluate performance of the new IV! translator, which is
viewed as a design for stateless t rans la t ion by conduct ing
experiments in both LAN and Interne! environments using a
freely available L i n u x implementation of I V I . To study the impact
of operating system overhead on IVI translat ion, we implemented
ihe IVI translator on a bare PC thai runs applications without an
operating system or kernel. Our results based on in te rna l t imings
in each system show that t rans la t ing IPv4 packets into IPv6
packets is more expensive than the reverse, and that address
mapping is the most expensive I V I operation. We also measured
packets per second in the LAN, roundtr ip limes in ihe LAN and
Internet, IVI overhead for various prefix sizes, TCP connection
lime, and the delay and throughput over the Internet lor various
Hies si/es. Whi le both Ihe L i n u x and bare PC implementations of
IVI have low overhead, a modest performance gain is obtained
due to using a bare PC.
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1. INTRODUCTION
Internet Protocol vers ion 6 ( I P v 6 ) \\s the next generation IP
protocol for the Internet. IPv6 was introduced to replace the
existing Internet Protocol version 4 (IPv4). Although IPv6
provides the benelit of increased address space (16 byte
addresses), i t s deployment in the Internet has been slow primarily
due to the established and fami l ia r base of IPv4. Inter im measures
such as NA'l and C I D R have also served to conserve the l imi ted
IPv4 address space. However, it is expected tha t I P v 6 usage w i l l
increase as me number of networks and devices (such as low
power sensors) that require IP addresses continues to grow. IPv6
and IPv4 are not compatible due to using di l lerei i l header si/es
and formats.

To enable IPv4 and IPv6 to co-exist dur ing the transition period,
several mechanisms have been proposed. Dual stack and
tunneling are described in RK' 2X93 |2], with an update in RFC
4213 |3J to relied the i r usage in practice. Dual stack devices have
implementations of both IPv4 and IPv6 protocol stacks runn ing
independently. This makes it possible for such devices lo process
both I P v 4 and I P v 6 packets. Tunnel ing allows IPv6 packets lo be
carried on I P v 4 networks and vice versa. Address t ranslat ion is a
transi t ion mechanism that al lows communication between I P v 6
devices and IPv4 devices by conve r t ing between packets of each
type. Several RI;Cs dealing with stateless and stalefuI t r ans la t ion
have been recently publ i shed by the ILTK I h e new IVI translator
|4| is an implementat ion of stateless [Pv4-IPv6 translation that
can also support s tateful packet translation (the abbreviation IVI is
derived from the Roman numerals IV for 4 and VI for 6).

We evaluate the performance of IVI translation experimentally in
a LAN and on the Internet. We use a freely ava i l ab le
implementation on Linux, and our own implementation on a bare
PC that has no operat ing system or kernel. This enables us lo
compare the overhead due to only ihe I V I t rans la t ion process w i l h
the overhead measured using ihe I i n u x I V I translator.

The remainder of mis paper is organi/ed as follows. In Section 2.
we brielly discuss related work, in Section 3. we describe IVI
translation. In Section 4. we discuss Linux and bare PC
implementations of an IVI t ranslator . I n Suction 5. we present the
results of LAN and Internet experiments lo evaluate IVI
translation. In Section 6. we give the conclusion.

2. RELATED WORK
Several techniques have been proposed for t ransla t ing between
I P v 4 and IPv6 packets. One such technique. Network Address
Translation-Protocol Translation (NAT-PT and N A P I - P T ) |5J-
was defined in Kl-'C 2766. I t allowed a scl of IPv6 hosts to share a
single IPv4 address for IPv6 packets destined for IPv4 hosts, and
also allowed mapping of transport identifiers of the IPv6 hosts.
KLC 2766 has since been recommended for historical status (in
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RFC 4966) |6] because of several issues. In RFC 3142 |7J. the
operation of I l 'v6-to- l l 'v4 transport relay translators ( I 'RT) is
discussed. 'I'R'f enables IPv6-only hosts lo exchange two-way
TCPorUDI ' t r a f l i e .

Recent work on I l > v 4 - l l ' v 6 t rans la l ion is detailed in a group of
several related RFCs. A mechanism enabl ing an IPv6 client to
communicate with an IPv4 server (slateful NAT64) is described in
RFC 6146 |8|. Translation of IP/K'MP headers in NA'1'64 is done
based on the Stateless IP/ICMP Translation Algorithm (S11T) of
RFC 6145 [91- NAT64 uses an address mapping algori thm
discussed in RFC 6052 (I0| for IPv4-lPv6 address mapping. RI ;C
6147 [ l l | specifics Hie DNS64 meelianisin. wliich can be used
wi th NAT64 to enable IPv6 clients to communicate with IPv4
servers using the fu l ly qua l i f i ed domain name of the server.
I r a n s l a l i o n as a tool for IP\6/ l l 'v4 coexistence along with eight

t ransla t ion scenarios are discussed in RFC 6144 [ I2 | , These RFCs
provide the background for the I V I t ranslator and t rans la t ion
approach given in [4j, whose performance is the focus of this
study. Details concerning an [VI implementation lor stateless and
state 1111 packet translation, and its deployment, are provided in
| I3J.

3. IVI TRANSLATION
1V1 translation employs a prcllx-specirlc and stateless address
mapping scheme thai enables IPv4 hosts to communicate with
IPv6 hosls as described in RFC 6219 [4|. In ihis scheme, which is
based on that given in [ I0|. subsets of an ISP's IPv4 addresses are
embedded in the ISP's IPv6 addresses. Dur ing translation, an
address of one type (v4 or v6) is converted to the other type. To
represent IPv4 addresses in IPv6, the ISP inserts its I P v 4 address
prefix alter a un ique IPv6 prefix consisting of PL bits, where
PF-32 (4). 40(5). 48 (6). 56(7), 64 (8). or % (12) (the number in
parenthesis is the number of bytes p-PL/8). The representation for
p<12 is shown in Fig. I. where v4p and v4, respectively denote the
prefix and suffix of the IPv4 address and u is a byte of all Os (the
length of each Held in bytes appears above i t ) , lor example, if p^5
bytes (i .e. PL-40 bits)' the PRF.F1X, v4p. u. v4s. and SUFFIX
fields consist of 5. 3. 1. 1. and 6 bytes respectively. If p 12. the
P R F F I X Held is followed immediately by the entire IPv4 address
(n is not present).

P

PRFFIX

8-p

v4p

1

u

p-4

v4b

ll-p

SUFFIX

Figure 1. RepreseiKing IPv4 ISP addresses in 1P\

'fhus. an ISP with an IPv6/32 address can have a prefix of/40,
where bi ts 32 through 39 are set lo all ones. Similar ly . /24 I P v 4
addresses are translated into /64 IPv6 addresses, Phc suffixes of
Ihesc IPv6 addresses arc normally scl to all /eros. So with th i s
mapping scheme |4|, an ISP w i t h a /32 IPv6 address 2001 :dba::
wi l l translate Hie IPv4 address 202.38.97.205/24 into the
e q u i v a l e n t IPv6 address 2001 :dba:ffca:2661 :cd::.

Translation of IPv4 and IPv6 headers is done as prescribed in [9J
with the source and destination address translated according lo the
address mapping scheme described above. Alter t ransla t ing the
transport layer (TCP or UDP) and ICMP headers, their checksums
are recomputed lo reflect the changes in the IP header. The IP
header mapping scheme specified in [4| enables an I P v 6 header lo
be constructed from an IPv4 header, and conversely, in the
fol lowing manner ( i n addition to converting source and

destination IPv4 or IPv6 addresses into their IVI mapped
equivalent addresses). To translate an IPv4 header into a IPv6
header, the I I I L , i den t i f i ca t ion , flags, offset, header checksum,
and options are discarded; version (0x4). 'I OS. protocol- and T'M,
fields are mapped into version (0x6), traffic class, next header,
and hop l i m i t respectively; and the value of total length is
decremented by 20 and assigned lo payload length. Conversely, to
translate an IPv6 header into an IPv4 header. How label is
discarded; version (0x6), Iralilc class, next header, and hop l imi t
f ie lds are mapped into version (0x4). TOS, protocol, and TTL
respect ively: the value of payload length is incremented by 20 and
assigned to lolal length: I I1L is set to 5; and the remaining fields
in the IPv4 header arc assigned in the usual way (such as
generating a value for the identif icat ion field and comput ing the
IPv4 checksum). For convenience, we include Tables 1 and 2
taken from [4|. which summarize the key elements of header
translation from IPv4 to IPv6 and from IPv6 to IPv4 respectively
thai were discussed above.

Table I. IPv4-to-IPv6 Header Translalion (from |4|)

IPv4 Held
Version (0\4)
I l l l ,
Type of Service
Total Length

Identification
Flags
Offset
TTL
Protocol
1 leader Checksum
Source Address
Destination Address
Options

IPv6 lujuivalcnt
Version (0x6)
Discarded
Traffic Class
Payload Length - Total
Length -20
Discarded
Discarded
Discarded
1 lop L imi t
Next Header
Discarded
IVI address mapping
IVI address mapping
Discarded

Table 2. II*vfi-to-M'v4 Header Translation (from |41)

IPv6 Kield
Version (0x6)
Traffic Class
Flow Label
Payload Length

Next Header
1 lop Limit
Source Address
Destination Address

IPv4 Equivalent
Version (0x4)
' lype of Service
Discarded
Totiil Length ^ Payload
Length -* 20
Protocol
TTL
IVI address mapping
IVI address mapping
IHL-5
Header Checksum
Recalculated

4. IMPLEMENTATION

4.1 Linux Implementation
The Linux implementation of the I V I translator [14) has two main
components: a configurat ion u t i l i t y and a Iranslalion utility. 1 he
configuration u t i l i t y is used to setup the routes using mroitte or
mroiitt'6 commands. The translation u t i l i t y is responsible fur
translating the packets, lo run the I V I translator on Linux, a patch
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has to he applied to the Linux kernel source. Once tlic patch is
applied, the Linux kernel can he configured for [VI translat ion
alter recompiling the kernel. Patching the kernel results in some
kernel source Tiles being changed, and four other Tiles (mapping.c.
proto_trans.c, mroute.e and mroule6.e) being added for
configurat ion and translat ion.

'['lie funct ions required lor t rans la t ion referred to in the discussion
below arc a l l in the file protu trans.e. When an IPv4 packet is
received, the function mapping _address4to6 is invoked to map
the IPv4 address to an IPv6 address. Based on the value of the
protocol Held in the received IPv4 header, icmp4to(> trans,
tcp4to6 trans or udp4to6 trans is invoked to translate the
appropriate protocol. Lach of these methods cal ls a funct ion tha t
computes the appropriate higher layer protocol ( ICMP, TCP, or
UDP) checksum as wel l . Once the protocol translation is done.
iphdi-(>to4 trtinx is called to translate the IP header. Lor t rans la t ing
IPv6 to I P v 4 packets, a s i m i l a r process is used.

4.2 Bare PC Implementation
In a bare PC, appl icat ions run without the support of any
operating system or kernel. Bare PC appl ica t ions are b u i l t based
on the bare machine computing (BMC) paradigm, earlier called
the dispersed operating system computing (DOSC) paradigm [15].
Rare PC applications include Web servers | 1 6 j . email servers
117] . SIP servers [ 1 8 ] , and split protocol servers |19]. The first
bare I'C application wi th l l ' v f ) and IPv4 capabi l i ty was a
soflplione used for studying VoIP performance [20|. '['his
soflphone was bui l t by adding IPv6 capability to the bare PC
softphone application described in [21] .

The IVI t ranslator application that runs on a bare I'C was b u i l t by
adding IVI t ranslat ion capability on top of lean bare I'C versions
of the IPv6 and I P v 4 protocols [22, 23). The bare PC translator
appl ica t ion included the implementa t ion of two Ethernet objects
LTLIO and Li'I 1 1 1 that directly communicate with its two network
interface cards (NICs ) , each connecting to one of the two IP
networks. A key difference between the Linux and bare PC
implementations is that the IP protocols, address mappings, and
protocol mappings in the latter are implemented as part of a single
object called the XLATI-OBJ. The architecture of the bare PC I V I

I he M A I N and RLCLIVL (RCV) tasks are the only tasks runn ing
in the bare I 'C IVI translator appl icat ion. The MAIN task runs
when the system is started and whenever the RCV task is not
running. I he RCV task is invoked from the M A I N task when a
packet (Llhernel frame) arr ives on ei ther interface. The capabil i ty
to send out router advertisements on the IPv6 interface of the bare
PC' I V I t rans la tor is implemented in the (JW object as part of the
M A I N task- In XLATl-OBJ. the xto4h<mdk'>- and .\t<>6h<indk>>-
methods respectively translate between I P v 6 packets and IPv4
packets. To iniip the source and destination I P v 6 addresses to the
corresponding IP \  addresses, the xto4handlcr invokes the
ctddr6to4 method.

1 he processing logic of the hare PC' I V I translator is shown in Pig,
3. The translator i n i t i a l l y checks the a r r iv ing packet to determine
if it is an IPv6 or IPv4 packet. If the packet is an IPv6 packet, the
pay load protocol type is determined from the next header Held,
and the appropriate protocol checksum is computed. If the
checksum is va l id , the IPv6 packet is translated into an IPv4
packet and forwarded. I f the packet is an IPv4 packet, the IP
checksum is computed. If the checksum is valid, the packet is

translated in to an IPv6 packet based on the protocol type in the
packet and forwarded after va l ida t ing the higher layer protocol
checksum as needed. If any checksum fails, the packet is dropped.

5. EXPERIMENTAL RESULTS
5.1 LAN Experiments

5.1.1 LAN Environment
Pig. 4 shows the LAN used for testing.

Hi is LAN was used to generate ' IC 'P data. A s imilar LAN was
used to generate UDP and ICMP data. In the figure. SI , S2. S3
and S4 are 100 Mbps Ethernet switches, and R l and R2 arc IPv4
and IPv6 routers respectively. Router Rl serves the IPv4 routing
domain, which consists of an IPv4 c l ient C4 and an IPv4 server
SV4. On the IPv6 side. C6 is an IPv6 client and SV6 is an IPv6
server. C6 and SV6 obtain the necessary rout ing informat ion from
the IPv6 router R2. The IVI translator is represented by XT.

I l i n i . L L . - - i -

t

figure 2. Hare PC IVI architecture

figure 3. Hare IT I V I packet processing logic

The translator runs on a Dell Optiplcx C1X270 desktop with an
I n t e l Pent ium IV 2.4 ( i l l / , processor. 512 MB RAM. and I n t e l
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PRO 10/100 and 3Com 10/100 NICs. The translator either runs
with Fedora Linux (Fedora 12. Linux kernel 2.6.31) us the
operating system, or as a hare PC application with no operating
system or kernel, '['he client and server systems run on Dell
Optiplex GX52()s with a 2.6 Oil/ processor, I GU RAM. and an
Intel PRO/1000 NIC. and Fedora Linux as the operating system.
Apache 11 TIP Server 2.2.16 and Mo/.ila I'ire fox v3,6.7 were used
respectively as the Web server and Web browser.

To capture timings during translation with HTTP/TCP data,
connections were made as follows. For IPv4 to IPv6 translation,
the IPv4 client (C4) initiated a connection via the browser to the
IPv6 Web server (SV6) in the IPv6 network. Router Rl forwarded
the IPv4 request for a 320 KB file to the 1VI translator XT, which
translated the received packets to IPv6 packets, and sent them to
the IPv6 Web server (SV6) via the IPv6 router R2. For IPv6 to
IPv4 translation, the IPv6 client ((,'6) similarly initiated a
connection via the browser to (he IPv4 Wch server (SV4). Router
R2 forwarded this request to the IVI translator XT. The packet
was translated to an IPv6 packet and forwarded to the IPv6 router
Rl, which delivered the packet to the IPv4 server (SV4).

Hj>urc 4. Test network for LAN Kxncriments (HTTP/TCP)

5.1.2 LAN Results
The internal liming data presented in this section was captured by
inserting liming points in the Linux (Fedora) and the bare PC
source code. The I'd* traffic was generated by sending HTTP
requests from clients to servers using the LAN in Fig. 4 as
described earlier. Using a similar LAN. Mgen |24| was used to
gene-rate UDP traffic and the ping/pingo utility was used to
generate ICMP packets. Lach experiment was run three times and
the average data is reported (we omit the deviation since the
differences in the values lor each experiment were small).

Fig. 5 shows the time it takes internally to translate packets using
the Linux implementation of the IVI translator. It is seen that the
IP header translation is the most expensive operation lor both
N>v6-lPv4 and Il'v4-ll'v6 translation, while UDP, TCI' or ICMP
translation has almost the same translation time. The header
translation time is larger since it includes both address and
protocol (ICP. UDP or ICMI1) translation.

It is also evident that the II* address translation time is larger than
the UDP. I'CP. and ICMP header translation time since the higher
layer translations involve very little processing. Comparing

translations between the IP versions in each direction, the IP
address translation lime is 3.9 ps and 0.5 (is higher than TCI',
UDP. and ICMP translation time for the IPv4 to IPv6 and IPv6 to
IPv4 translations respectively. The larger lime for the IPv4 to
IPv6 address translation compared to the reverse is because the
IPv6 address needs to be constructed by extending the IPv4
address, whereas the IPv4 address is simply extracted from the
IPv6 address.

Fig. 6 shows the corresponding IVI translation times on a bare
PC. The times for IP header translation from IPv4 to IPv6 is 15.8
us compared to 12 us for translation from IPv6 to IPv4. ICP and
ICMP translation take almost the same lime; about 2.5 (is for IPv4
to IPv6 translation and 2.0 us Ibr IPv6 to IPv4 translation. For II'
address mapping, the processing lime is 5 us from IPv4 to IPv6,
and 2 us from IP\ lo IPv4, for UDP. translating from IPv4 to
IPv6 and from IPv6 lo IPv4 takes 2 us and 1.5 ns respectively.
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Bare PC Translation

V4-V6

V6-V4"

UDP ICMP

1'igurc <». Bare I'C translation overhead

Comparing the times lor IVI translation from IPv4 to IPv6 for the
Linux and bare PC implementations (using Figs. 5 and 6). it can
be seen that 1) for ICP, UDP and ICMP translalions, the time for
the bare PC is about 2.3 fis less than for the Linux
implementation; 2) for IP address translation, the processing time
for the bare PC is about 3.9 us less than for the Linux
implementation: and 3) for IP header translation, the processing
time for the bare I'C is 15 us less than for the Linux
implementation.
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Similarly, comparing the times for IVI translation from IPv6 to
IPv4 translation tor the Linux and bare PC' implementations, it can
also be seen thai 4) for TCP and HDP traffic, the improvement in
processing lime due to using a bare PC is 2.2 us; 5) for K'MP, the
improvement in processing time is 3.2 us; and 6) for IP address
mapping, il is 2.6 us.

To compare packets per second (pps) processed by the IVI
translator for IPv4 to IPv6 translation and IPv6 to IPv4
translation, the Mgcn generator was used to make TCP
connections between source and sink. Hie results when
transferring 1024-byte packels for which the throughput is at a
maximum are shown in Fig. 7. As expected, pps for IPv4 to IPv6
translation is less than for IPv6 to IPv4 translation, which rctlects
the decrease in processing time lor the latter; the drop in pps for
IPv4 to IPv6 translation compared to IPv6 to IPv4 translation is
about 18% lor Linux and about 13% for the bare I'C. I he
improvement due lo using a bare I'C instead of Linux is about
17% for IPv4 to IPv6 translation and about 9% lor IPv6 to IPv4
translation.

We also compared the round trip times for 1024 byte ICMP Ping
packels. Request packets undergo IPv4 to IPv6 translation and the
reply paekels undergo IPv6 lo IPv4 translation. The results are
shown in Fig. 8 and indicate that round trip lime is reduced by
about 17% on a bare PC.

These results show thai the overhead for IVI translation for both
the Linux and bare PC implementations is small. However, there
is a small improvement in processing lime (and hence, packels
processed per second) when using a hare PC.

20,000

15,000

10,000

5,000

PPS

v4-v6 • v6-v4 : v4-v6 ! v6~v4

Linux Bare

Linux v4-v6

Linux v6-v4

Bare v4-v6

Bare v6-v4

Figure 7. Packets per second (pps)

5.2 Internet Experiments

5.2.1 Interne! Environment
Fig. 9 shows the network used to enable a client lo connect to
servers on Hie Internet via (he IVI translator. One end of Ihe tesl
network with the client and translator was selup at Livingstone
College (IX') in Salisbury, North Carolina. LC's network only
allows IPv4 connectivity.

As shown in the figure, our IPv6 client (CL) connected to Ihe LC
network communicates with three different IPv4 Web servers (S I ,
S2. and S3) on the Internet. In accessing the Web servers, their IP
addresses were used instead of the domain names since most ISPs
on the Interne! cannot resolve IVI mapped addresses. An HTTP
request from the IPv6 client CL is initially routed to our default
IPv6 router (KT6). which forwards the request to the IVI

translator (X'l). 1 he IV! translator then translates the IPv6 packets
lo their equivalent IPv4 packels. and forwards the packels out on
Sis IPv4 interface to LC's IPv4 border router LC4.These packels
are seen as ordinary IPv4 packets, and the border router forwards
them to the Internet. When LC4 receives the response from Ihe
Internet, il forwards the IPv4 paekels lo Ihe IVI translator. The
translator maps each packet to ils IPv6 equivalent, and forwards it
lo the IPv6 router KT6, which delivers it lo Ihe IPv6 client CL.
The client CL and the router RT6 run on Fedora Linux 18 kernel
3.6.7. Ihe Linux IVI translator runs Fedora Linux 6. Ihe same
experiments were repeated with the bare PC IVI translator.

Round Trip Time (RTT)

Linux Bare

Figure 8. Ping round trip time (KTT)

Figure 9. Test network for Interne! experiments

5.2.2 Internet Results
Figs. 10 and 11 respectively show the IVI translation overhead
using the Linux and bare PC IVI implementations1 when IPv4
addresses arc mapped to IPv6 addresses with varying prefix
lengths. We used prefix lengths ranging from 32 to 64 bits in
increments of X bits with IPv4 addresses represented in IPv6 as
shown in Fig. 1. Il can be seen that translation overhead is lowest
for a prefix length of 32 bits. With prefix lengths of 40 bits or
more, the translation overhead is slightly higher for both the
Linux and bare PC implementations. 1 his can be explained by (he
fact that in mapping prefix lengths less than 40 bits as specified in
[10|. the IPv4 addresses appear within the IPv6 addresses in a
contiguous manner, which results in relatively less processing
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overhead. Mapping Il'v4 addresses to IPv6 addresses is more
expensive than llie reverse irrespective of whether a Linux or hare
PC implementation is used.

rigs. 12 and 13 show the respeeli\ round trip times (Rl Is) lor
Linux and hare translators bv pinging three dilTerent Inlernel \Veh
sites: vvvvvv.i lu.dk (Site I), www.lli-oficnhurg.de (Site 1}. and
www.knnst.cdu.gh (Site 3) with different hop counts. We compare
RTTs with IVl translation and lor a direct request using IPv4.
Requests to Site I have the highest RTT followed by Site 2 and
Site ?. This is heeausc the hop eounl lor Site I is higher than lor
Site 2 and Site .V It is also evident that the RTT when using [VI
can he between a lew milliseconds to about 15 milliseconds
higher compared to a direct request li> a site using ll'\4, R 1 I s lor
Linux are higher than li>r the bare PC as expected. I hese results
provide an estimate of the extra overhead due to 1VI translation.

Linux Translation Times

I'refii l.cnfilh (l>i

I-'igure 10. Liniiv translation with different prefix lengths

Bare Translation Time

« \ - -\l<

• \  -'\

4(1 -IN 5d 64

Prefix l,fii|:lli(hil*)

Kigure 11. Hare PC translation with different prefix lengths

l igs. 1-4 ;iiul 15 show llie respective ctmilection limes liir I imi\d hare translators using I! I I P requests to the same three Web

sites. Connection lime is defined as the lime tor a TCP connection
to be established. I he connection times lor Linux range from 42-
121 ms tor IPv4-IPv4 requests and from 46-126 ins tor IVl
translated requests. The corresponding connection times for the
bare PC range from 40-1 18 ins for IPv4-lPv4 requests and from
4-1-124 ms lor IVl iranslated requests,

figs. 16 and 17 show the internal timings tor the various IVl
translation functions using the Linux and the hare PC
implementations respectively with tralTic to and from the Internet.

It is seen that irrespective of the translat ion function and
implementation. IPv4 to IPv6 translation has a higher overhead
compared to IPv6 to IPv4 translation. I he results for Internet
trafllc are \ c r v similar to ihosc for LAN traflic (f igs. 5 and 6) as
would be expected.

Linux RTT

IJII
120
I HI
KM)

ligure 12. Linux K I Is for three \\eh sites

Bare RTT
14(1

12(1

UK)

• Translated

• V 4

l-i|iurc 13. Bare PC KT'l's for three \Veb sites

Linux Connection Time

Sire I Silc 1 Silc

14. Linux i-oiini'dimi time for three \Vel> sites

We also conducted experiments over the Internet to evaluate IVl
performance when the IPv6 LC client (in Livingston. North
Carolina) makes HI IP requests lor Tiles of si/cs 11)4. 318, and
5 3 1 KM respectively from an IPv4 Apache Web server running at
low son I 'ni \ersi tv (Tl1) in ' low son. Mankind.
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Figure 17. Bare Translation lime

Figs. 18-20 ivipeclively compare (he results for connection lime,
delay ;uul throughput using the Linux and hare IT IVI
implementations. The connection lime is defined as lor I'igx 14
and I?, iiml therefore is essentially llie same lor all three file sixes.
Delay is defined as die time between tile I Cl1 SYN request and
last ACK. and llmmgliput is the data rate for the duration of the
KT connection. As expected, the larger files have the higher
delays: they also have higher throughput. The throughput, which
was obtained using a Wireshark packet analy/cr [ 2 5 ] connected to
the local I.C switch, is the total throughput; it include?, all llie
bytes (headers, data, and acks) seen b> W ireshark. I he measured
throughput is there lore close !o (but not identical to) the

calculated throughput in i''ig. l(>. which is llie file si/.e divided by
the delay. The performance di(Terence between Ihe bare PC and
l.inux IVI implementations tor these Internet experiments is seen
to be relatively small (as >*een abo\ tor tlie ease of the LAN
experiments).

6. CONCLUSION
IVI translation is a U.'chnk|iic recently proposed by the 11:1 !•' to
enable communication between hosts on IPv4 and IPv6 networks.
We delermined the overhead due to IVI translation by measuring
the internal timings for both ll'\ to IPv4 and IP\ to IPv6
translation on an ordinary desktop running l.inux l-'edora. We also
implemented an IVI translator as a bare PC application on the
same machine with no opera!ing system or kernel, ami compared
the corresponding timings.

Several experiments were conducted in LAN ami Internet
environments to evaluate IVI translation performance. The results
show that in general il is more expensive to translate packets from
IPv4 to l l 'vd than from IPv6 to IPv4 wi th a 4.1 us dillerence on
Linux and a 3.8 us dillerence on a bare IT. It was found that
address mapping is the most expensive operation in [VI
translation regardless of the system on which ihe translator is
implemented. IVI translation has little overhead for both the
Linux and bare PC implementations regardless of the higher layer
protocol carried in the pay loud. However, eliminating the
operating system overhead would enable more efficient
translation. Ihe lefi-over CIM! cycles could he used to process
more packets, or for enhanced security-related processing during
packet translation.

Connection Time
60

SO

40

Figure IS. Connection time (I.C lo Tl")

Delay

I-if;ure 19. Dclaj for various files ti/,cs (I.C to '
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