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ABSTRACT

While IPv6 deployment in the Internel continues to grow slowly
at present, the imminent exhaustion of IPv4 addresses will
encourage its increased use over the next several years. However,
due to the predominance of 1Pv4 in the Internet. the transition to
1Pv6 is likely to take a long time. During the transition period.
translation mechanisms will enable Hv6 hosts and 1Pv4 hosts (o
communicate with cach other. For example. translation can be
used when a server or application works with [Pv4 but not with
IPv6, and the cffort or cost to modily the code is large. Stateless
and stateful translation is the subject of several recent 1ETF RECs,
We evaluate performance of the new [VI translator, which is
viewed as a design for stateless franslation by conducting
experiments in both LAN and Inlernet environments using a
freely available Linux implementation of IVL. To study the impact
of operating system overhead on 1V translation, we implemented
the VI translator on a bare PC that runs applications without an
operating system or kernel. Qur results based on internal timings
in cach system show that translating IPv4 packets into [Pv6
packets is more expensive than the reverse. and that address
mapping is the most expensive 1VI operation. We also measured
packets per second in the LAN, roundtrip times in the [LAN and
Internet, 1V1 overhead for various prefix sizes, TCP connection
time. and the delay and throughput over the Internet for various
files sizes. While both the Linux and bare PC implementations of
IV have low overhead, a modest performance gain is obtained
due to using a bare PC.!
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1. INTRODUCTION

Internet Protocol version 6 (IPv6) [1] is the next generation [P
protocol for the Internet. 1Pv6 was introduced to replace the
existing Internet Protocol version 4 ([Pyd), Although [Pv6
provides the benefit of increased  address spacc (16 byte
addresses). its deployment in the Internet has been slow primarily
due to the established and familiar base of 1Pv4. Interim measures
such uas NAT and CIDR have also served to conserve the limited
[Pv4 address space. However, it is expected that [Pv6 usage will
increase as the number of networks and devices (such as low
power sensors) that require [P addresses continues to grow. [Pvo
and 1Pv4 are not compatible duc 1o using diflerent header sizes
and formats.

To cnable [Pv4 and [PV6 to co-exist during the transition period.
several - mechanisms have been proposed. Dual stack  and
tunneling are described in RFC 2893 2], with an update in RFC
4213 |3] to relleet their usage in practice. Dual stack devices have
implementations of both 1Pv4 und [Pv6 protocol stacks running
independently. This makes it possible for such devices 1o process
both IPv4 and 1Pv6 packets. Tunncling allows [Pv6 packets to be
carried on IPvd networks and vice versa. Address translation is a
transition mechanism that allows communication between 1Pv6
devices and 1Pvd devices by converting between packets of cach
type. Several RIFCs dealing with stateless and stateful translation
have been recently published by the 1ETE. The new IV] translator
[4] is an implementation of stateless [Pvd-1Pv6 translation that
can also support stateful packet translation (the abbreviation 1V1 is
derived from the Roman numerals 1V for 4 and VI for 0).

We evaluate the performance of TV translation experimentally in
a LAN and on the Iniernet. We use a freely  available
implementation on Linux. and our own implementation on a bare
PC that has no operaling system or kernel. This enables us to
compare the overhead due to only the V] translation process with
the overhead measured using the Linux 1VI translator.

The remainder of this paper is organized as follows. In Seetion 2.
we brielly discuss related work. In Section 3. we describe 1V]
translation.  In Scction 4. we  discuss Linux and bare PC
implementations of an [V translator. Tn Seetion 5, we present the
results of EAN and  Internet experiments to evaluate VI
translation. In Scction 6, we give the conclusion.,

2. RELATED WORK

Several techniques have been proposed for translating between
IPv4 and IPv6 packets. One sueh technigque, Network Address
Translation-Protocol Translation (NAT-PT and NAP1-PT) |5).
was delined in REC 2766. it allowed a set of 1Pv6 hosts to share a
single 1Pv4 address for 1Pv6 packets destined for IPv4 hosts. and
also allowed mapping of teansport identifiers of the 1°v6 hosts.
REC 2766 has since been recommended tfor historical status (in



REC 4966) |6] because of several issues. In RIFC 3142 |7). the
operation of 1Pv6-to-IPv4 transport relay translators (IR'T) is
discussed. TRT enables [Pv6-only hosts 1o exchange two-way
TCP or UDP traftic.

Reeent work on 1Pv4-1Pv6 translation is detailed in a group of
several related RIFCs. A mechanism enabling an 1Pv6 client to
communicate with an [Pv4 server (stateful NAT64) is deseribed in
RIFC 6146 |8]. Translation of 1IP/LCMP headers in NAT64 is done
bascd on the Stateless IP/ICMP Translation Algorithm (S1IT) of
REC 6145 [9]. NAT64 uses an address mapping  algorithm
discussed in REC 6052 [10] for IPv4-1Pv6 address mapping, REC
6147 [T1] speeilics the DNS64 mechanism, which can be used
with NAT64 to cnable 1Pv6 clients o communicate with 1Pv4
servers using the fully qualificd domain name of the server,
Translation as a ol for [Pv6/1Pv4 coexistence along with eight
translation scenarios are discussed in REC 6144 [12]. These RI'Cs
provide the background for the 1VI translator and translation
approach given in [4], whose performance is the focus of this
study. Details concerning an [VI implementation for stateless and
stateful packet translation. and its deployment, are provided in
[13].

3. IVI TRANSLATION

IVI translation cmploys a prefix-specific and stateless address
mapping scheme that cnables 1Pv4 hosts to communicate with
IPv6 hosts as described in RFC 6219 [4]. In this scheme. which is
bascd on that given in [10]. subscts of an ISP"s 1Pv4 addresses are
cmbedded in the [SP*s 1Pv6 addresses. During translation, an
address of one type (v4 or v6) is converted to the other type. To
represent IPvd addresses in 1PvO, the ISP inserts its 1Pvd address
prefix after a unigque 1Pv6 prefix consisting of PL bits, where
PL=32 (4). 40 (5). 48 (6). 56 (7). 64 (8), or 96 (12} (the number in
parenthesis is the number ot bytes p=PL/8). The representation for
p<12 is shown in Fig. [, where vd, and v4, respectively denote the
prefix and suffix of the 1Pv4 address and u is a byte of all 0s (the
length of cach ficld in bytes appears above it). For example, il p=35
bytes (i.e. PL=40 bits), the PREFIX, \’4’,. u, vd,. and SUFFIX
fields consist of 5. 3. 1. 1. and 6 bytes respectively, It p 12, the
PREFIX field is tollowed immediately by the entire 1Pvd address
(u is not present).

P 8p | 1 p-4 1-p
PREFIX v4 SUFFIX

P u v

Figure 1. Representing [Pv4 ISP addresses in IPv6

Thus. an ISP with an 1Pv6/32 address can have a prefix of /40,
where bits 32 through 39 are set o all ones. Similarly. /24 1PvA
addresses are translated into /64 1Pv6 addresses. The suftixes of
these IPv6 addresses are normally set to all zeros, So with this
mapping scheme [4], an ISP with a /32 [Pv6 address 2001 :dba::
will translate  the IPv4  address  202.38.97.205/24 into  the
eyuivalent IPv6 address 2001:dba:(Tca:2661:cd::.

Translation of 1Pv4 and [Pv6 headers is done as prescribed in [9]
with the source and destination address translated according (o the
address mapping scheme described above. After translating the
transport layer (TCP or UDP) und ICMP headers. their checksums
are recomputed o refleet the changes in the [P header. The 1P
header mapping scheme specificd in 4] enables an 1Pv6 header to
be constructed from an IPv4 header. and conversely, in the
following  manner  (in - addition to  converting  source  and
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destination  [Pvd or [Pv6 addresses into their VI mapped
equivalent addresses). To translate an 1Pv4 header into a 1Pv6
header. the [H0 ., identification, fags. offset, header checksum,
and options are discarded; version (0x4). TOS. protocol, and T'T1,
ficlds ure mapped into version (0x6), traffic class, next header.
and hop limit respectively: and the value of total length is
decremented by 20 and assigned to payload length. Conversely, to
translate an IPv6 header into an 1Pv4 header, flow label is
discarded: version (0x6), traffic class. next header. and hop limit
ticlds are mapped into version (0x4). 108, protocol. and TT'l,
respectively: the value of payload length is incremented by 20 and
assigned to total length: 1111 is set to 3: and the remaining fields
in the [Pv4 header are assigned in the usual way (such as
generating a value for the identification field and computing the
IPv4 checksum). For convenience, we include Tables 1 and 2
taken from [4]. which summarize the key clements of header
translation from [Pv4 10 IPv6 and from IPv6 (o 1Pv4 respectively
that were discussed above,

Table 1. 1Pv4-to-1Pv6 Header Translation (from [4])

1Pvd Field IPv6 liquivalent

Version (0x4) Version (0x6)

1, Discarded

Type of Service Traftic Class

Total Length Payloud  Length - Total
Length — 20

[dentification Discarded

Flags Discarded

Ottset Discarded

TTL 1lop Limit

Protocol Next Header

lleader Checksum Discarded

Source Address IV1 address mapping

Destination Address
Options

IVI[ address mapping
Discarded

Table 2. IPv6-to-1Pv4 Header Transtation (from 14})

1Pv6 Field [Pv4 Fquivalent

Version (0x6) Version (Oxd)

Traftic Class Type ol Service

Ilow Label Discarded

Payload Length Total  Tength = Payload
Length + 20

Next Header Protocol

Hop Limit TTL,

Source Address 1VI address mapping

Destination Address IV address mapping

[HI.=5

[eader Checksum
Recalculated

4. IMPLEMENTATION

4.1 Linux Implementation

The Linux implementation of the [V] translator [14] has two main
components: a configuration utility and a translation utility. The
configuration utility is used to setup the routes using mroute or
mroute6 commands. The translation utility is responsible for
translating the packets. To run the 1VI transtator on Linux. a patch
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has to be applied to the Linux kernel source. Onee the pateh is
applied, the Linux kernel can be configured for VI translation
after recompiling the kernel. Patching the kernel results in some
kernel source liles being changed, and four other files {mapping.c.
proto_trans.c, mroute.c and mroule6.¢) being  added  for
contiguration and translation.

The Tunctions required for translation reterred to in the discussion
below are all in the file proto trans.c. When an 1Pv4 packet is
reccived. the function mapping_address$to6 s invoked o map
the [Pv4 address to an 1Pv6 address. Based on the value of the
protocol field in the received IPv4 heuader, icmpdto6 trans,
epdtob trans or udp4tob trans s invoked 1o translate the
appropriate protocol. Fach of these methods calls a function that
computes the appropriate higher layer protocol (ICMP. TCP, or
UDP) checksum as well. Once the protocol translation is done,
iphdr6tod _trans is called 1o translate the [P header, For translating
[Pv6 10 IPvd packets, a similar process is used.

4.2 Bare PC Implementation

In a bare PC. applications run without the support of any
operating system or kernel. Bare PC applications are built based
on the bare machine computing (BMC) paradigm. carlicr called
the dispersed operating system computing (DOSC) paradigm [15].
Bare PC applications include Web servers | 16], email servers
117]. SIP servers [18]. and split protocol servers | 19]. The first
bare PC application with IPv6 and [PPv4 capability was a
sofiphone  used for studying VolP performance [20]. This
sollphone was built by adding 1Pv6 capability to the bare PC
sottphone application described in [21].

The IVI translator application that runs on a bare PC was built by
adding VI translation capability on top of lean bare PC versions
ot the [Pv6 and 1Pv4 protocols [22, 23], ‘The bare PC translator
application included the implementation of two Iithernet objects
1 THO and ETHI that dircctly communicate with its two network
interface cards (NICs), cach connecting 1o one of the two [P
networks. A key difterence between the Linus and bare PC
implementations is that the [P protocols, address mappings, and
protocol mappings in the latter arc implemented as part of a single
objeet called the XLATEOBI, The architecture of the bare PC VI
translator is shown in Fig. 2,

The MAIN and RECEIVE {RCV) tasks are the only tasks running
in the bare PC VI translator application. The MAIN task runs
when the system is started and whenever the RCV task is not
running. The RCV task is invoked from the MAIN task when a
packet (Lthernet frame) arrives on either interlace. The capability
1o send out router advertisements on the IPv6 interface of the bare
PC IV translator is implemented in the GW object as part ot the
MAIN task. [In XLATEOBL the xtodhandler and xto6handier
methods respectively transiate between [Pv6 packets and 1Pv4
packets. To map the source and destination 1IPv6 addresses (o the
corresponding  [Pv4  addresses. the xtodhandler invokes  the
addr6to4 method.

I'he processing logic of the bare PC VI translator is shown in Fig,
3. The translator initially checks the arriving packet to determine
il'it 1s an 1IPv6 or [Pv4 pucket. If the packet is an IPv6 packet. the
payioad protocol type is determined from the next header ficld,
and the appropriate protocol checksum is computed. 117 the
checksum iy valid, the IPv6 packet is franslated into an 1Pv4
packet and torwarded. [t the packet is an 1Pv4 packet, the 1P
cheeksum is computed. If the checksum is valid. the packet is
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translated into an 1Pv6 packet based on the protocol type in the
packet and forwarded afler validating the higher layer protocol
checksum as needed. [Fany checksum tails, the packet is dropped.

5. EXPERIMENTAL RESULTS
S.1 LAN Experiments

5.1.1 LAN Environment
Iig. 4 shows the LAN used for testing.

This EAN was used to generate TCP data. A similar LAN was
used to generate UDP and ICMP data. [n the figure, S1, S2. 83
and S84 ar¢ 100 Mbps Ethernet switches, and R and R2 arc [1'v4
and IPv6 routers respectively. Router R serves the [Pv4 routing
domain, which consists ol an [Pv4 client C4 and an 1Pv4 server
SV4. On the 1Pv6 side, C6 is an [Pv6 client and SV6 is an IPv6
scrver. CO and SV6 obtain the necessary routing information from
the 1Pv6 router R2. The EVI translator is represented by XT.

’-«———bi EUIIO3 I
| xtoe S xeoa
! Handler | | Nandlers

Figure 2. Bare PC IV architecture
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Figure 3. Bare PC 1V] packet processing logic

The translator runs on a Dell Optiplex (X270 desktop with an
Intel Pentium 1V 2.4 Gllz processor. 512 MB RAM., and Intel



PRO 1O/100 and 3Com 10/100 NICs. The translator cither runs
with Fedors Linux (IFedora 12, Linux kernel 2,6.31) as the
operating system, or as a bare ’C application with no operating
system or kernel. The client and server systems run on Dell
Optiplex GX520s with a 2.6 Gllz processor, T GB RAM, and an
[nte] PRO/T000 NIC. and Fedora Linux as the operating system,
Apache FITTP Server 2.2.16 and Movila Firefox v3.6.7 were used
respectively as the Web server and Web browser.

To capture timings during translation with IITTP/TCP  data,
connections were made as {ollows. For 1Pv4 to [Pvo translation,
the 1Pv4 client (€C4) initiated a connection via the browser to the
IPv6 Web server (SVO) in the [Pv6 network. Router R1 forwarded
the 1Pv4 request for a 320 KB file to the 1VE translator X'T, which
translated the reccived packets 10 [Pv6 packets. and sent them to
the 1Pv6 Web server (SV6) via the IPv6 router R2. For IPv6 (o
1Pv4  translation. the IPvo client (C6) similarly initiated a
connection via the browser to the 1IPv4 Web server (SV4). Router
R2 forwarded this request to the VI translator X[ The packet
was translated to an IPv6 pucket and forwarded to the 1Pv6 router
R1, which delivered the packet to the [Pv4 seever (SV4).

Figure 4. Test network for LAN Experviments (HTTP/TCP)
5.1.2 LAN Results

The internal timing data presented in this section was captured by
inserting timing points in the Linux {Fedora) and the bare PC
source code. The TCP traffic was generated by sending 11177
requests from clients to servers using the LAN in Fig. 4 as
described earlier. Using a similar LAN. Mgen |24} was used to
generate UDP trattic and the ping/ping6 utility was used 1o
generate [CMP packets. LEach experiment was run three times and
the average data is reported (we omit the deviation since the
differences in the values for cach experiment were smatll).

Iig. 5 shows the time it takes internally to translate packets using,
the Linux implementation of the VI translator, 1t is scen that the
1P header translation is the most expensive operation for hoth
IPvo-1Pv4 and 1Pv4-1Pv6 translation, while UDP, TCP or ICMP
translation has almost the same translation time. The header
translation time is larger since it includes both address and
protocol (1'CP. UDP or ICMIP) translation.

Itis also evident that the 1P address translation time is larger than
the HIDP. TCP. and 1CMP header translation time since the higher
layer translations  involve very little processing.  Comparing
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translations between the [P versions in cach direction. the 1P
address translation time is 3.9 ps and 0.5 ps higher than TCP,
UBDP. and 1CMP translation time for the IPv4 to IPv6 and 1Pv6 0
IPv4 translations respectively. The larger time for the 1Pvd to
IPv6 address translation compared to the reverse is because the
IPv6 address needs to be constructed by extending the 1Pv4
address, whereas the [Pv4 address is simply extracted from the
1Pv6 address.

Iig. 6 shows the corresponding 1V translation times on a bare
PC. The times for 1P header translation from [Pv4 1o [Pv6 is 15.8
ps compared to 12 ps for translation from [Pv6 1o [Pv4. TCP and
ICMP translation take almost the same time: about 2.5 ps for [Pv4
1o 1Pv6 translation and 2.0 ps for [Pv6 to 1Pv4 translation. For [P
address mapping, the processing time is 5 ps from 1Pvd to [Pvo,
and 2 ps from IPv6 1o [Pvd. For UDP. translating from 1Pv4 1o
[Pv6 and from 1Pv6 o 1Pv4 takes 2 ps and 1.5 ps respectively,

Linux Translation

Time (ps)

s 1P Header  1CP ubpr ICMP
Address

Figure 5. Linux translation overhead

= 15
. ®V4-V6
£ ®mV6-vV4
5 . e ———
- e B

1P 1P TP uUnp
Address Hcader

ICMP

igure 6. Bare PC translation overhead

Comparing the times for VI translation from [Pv4 to IPv6 for the
Linux and bare PC implementations {using Figs. § and 6). it can
be scen that 1) tor TCP, UDP and 1ICMP translations, the time for
the bare PC is about 2.3 ps less than for the Linux
implementation; 2) for IP address translation. the processing time
for the bare PC is about 3.9 pus less than for the Linux
implementation: and 3) for 1P header translation, the processing
time tor the bare PC is 15 ps less than for the Linux
implementation.




Similarly, comparing the times for 1V1 translation from IPv6
1Pv4 transiation for the Linux and bare PC implementations. it can
also be seen that 4) for TCP and UDP tralfic, the improvement in
processing time due to using a bare PC is 2.2 ps: 5) for ICMP, the
improvement in processing time is 3.2 ps; and 6) for 1P address
mapping, it is 2.6 ps.

To compare packets per sccond (pps) processed by the 1VI
translator for IPv4 to IPv6 translation and [Pv6 to 1Pvd
translation, the Mgen generator was used to make TCP
connections  between  source  and  sink. The  results  when
transferring 1024-byte packets for which the throughput is at a
maximum are shown in Fig. 7. As expected. pps for [Pv4 to [Pv6
translation is less than for [Pv6 to [Pv4 translation, which reflects
the deerease in processing time for the latter: the drop in pps for
1Pv4 to [Pv6 translation compared o IPv6 1o 1Pv4 translation is
about 8% for linux and about 13% tor the bare PC. The
improvement due (o using a bare PC instecad ol Linux is about
17% tor [Pv4 to [Pv6 transiation and about 9% for [Pv6 Lo 1Pv4
translation.

We also compared the round trip times for 1024 byte ICMP Ping
packets. Request packets undergo 1°v4 to 11'v6 translation and the
reply packets undergo IPv6 1o [Pv4 translation. The results are
shown in Fig. 8 and indicate that round trip time is reduced by
about 17% on a barc PC.

These results show that the overhead for 1VI translation for both
the Linux and bare PC implementations is small. However, there
is a small improvement in processing time (and hence. packets
processed per second) when using a bare PC.

20,000 PPS
15,000
10,000 W Linux v4-v6
5,000 " Linux v6-v4
e vEve vas vea e

:
. { @ Bare v6-v4
Linux Bare i

Figure 7. Packets per second (pps)
5.2 Internet Experiments

5.2.1 Internet Environment

Fig. 9 shows the network used to enable a client 1o conneet 1o
servers on the Internet via the 1V translator. One end ol the test
network with the client and translator was sctup at Livingstone
College (1.C) in Salisbury, North Carolina. LC's network only
allows [Pv4 connectivity.

As shown in the ligure. our IPv6 client (CL) connected to the 1L.C
network communicates with three different [Pvd Web servers (S1,
S2. and S3) on the Internet. In accessing the Web servers, their [P
addresses were used instead of the domain names since maost [SPs
on the Internet cannot resolve V] mapped addresses. An [TTTP
request from the [Pv6 client CL is initially routed to our default
IPv6 router (R16), which forwards the request to the [VI
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translator (X'1). The VI translator then translates the 1°v6 packets
to their equivalent [Pv4 packets, and forwards the packets out on
its IPv4 intertace to LC's IPv4 border router [.C4. These packets
are seen as ordinary 1Pv4 packets, and the border router forwards
them to the Internct. When [LC4 receives the response from the
Internet, it forwards the [Pv4 packets Lo the [VI translator. The
translator maps cach packet to its 1Pv6 cquivalent. and forwards it
to the 1Pv6 router RT6, which delivers it to the IPv6 client Cl..
The client CL and the router RT6 run on Fedora Linux 18 kernel
3.6.7. The Linux IVI translator runs Fedora Linux 6. The same
experiments were repeated with the bare PC VI translator.

Round Trip Time (RTT}

160
140
120
100
80
60
40
20

%)
32

Linux Bare

Figure 8. Ping round trip time (R1T)

% . —

Figure 9. Test network for Internet experiments

3.2.2 Internet Resulls

Iigs. 10 and 11 respectively show the IV translation overhead
using the Linux and bare PC IV implementations when 1Pv4
addresses are mapped to 1Pv6 addresses with varying prefix
lengths. We used pretix lengths ranging trom 32 to 64 bits in
increments of 8 bits with 1Pv4 addresses represented in IPv6 as
shown in Fig. 1. It can be seen that translation overhead is Towest
for a prefix length of 32 bits. With prefix lengths of 40 bits or
more. the translation overhead is slightly higher tor both the
Linux and bare PC implementations. This can be explained by the
lact that in mapping prelix lengths less than 40 bits as specified in
[10]. the IPv4 addresses appear within the 1Pv6 addresses in a
contiguous manner, which results in relatively less processing
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overhead. Mapping 1Pv4 addresses 10 1Pv6 addresses is more
expensive than the reverse irrespective of whether a Linux or bare
PC implementation is used.

Figs. 12 and 13 show the respective round trip times (R11s) for
Linux and bare translators by pinging three difterent Internet Web
sites: www.itudk (Site 1), wwaw h-ottenburg.de (Site 2). and
wawaw knust.edu.gh (Site 3) with difterent hop counts. We compare
RTTs with IV translation and lor a direet request using [Pyvd,
Requests to Site 1 have the highest RTT followed by Site 2 and
Site 3. This is hecause the hop count lor Site | s higher than for
Site 2 and Site 3. 1Cis also evident that the RTT when using [V
can be between a few milliseconds o about 15 milliscconds
higher compared 10 a direet request 1o a site using 1Pvd, RTTs for
Linux are higher than tor the bare PC as expected. These results
provide an estimate of the extra overhead due to 1VI translation.

Linux Translation Times

5 LRI
§ 1 MGV
32 10 48 L6 64

)

Time(us)
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Figare 10. Linux translation with different prefix lengths
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Figure 11. Bare PC transtation with different prefix fengths

Figs. 14 and 15 show the respective connection times for Linux
and bare translators using TP requests o the same three Web
sites. Connection time is defined as the time for a TCP connection
to be established. The connection times for Linux range from 42-
121 ms tor [Pvd=1Pv4 requests and from 46-126 ms tor VI
translated requests. The corresponding connection times for the
bare PC range from 40-118 ms for IPvd-IPv4 requests and trom
41-124 ms tor VI translated reguests.

Figs. 16 and 17 show the internal timings tor the various VI
translation  functions  using  the  Linux  and  the  bare PC
implementations respectively with traflic to and from the Internet.
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It is seen that drrespective ol the  translation  function and
implementation. 1Pv4 to 1'v6 translation bhas a higher overhead
compared to 1Pv6 to IPvd trunslation. The results tor Internet
trallic are very sumilar (o those tor LAN trattic (Figs. 5 and 6) as
would be expected.
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Figure 12. Linux R'TT's for three Web sites
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Figure 14, Linux conneetion time for three Web sites

We also conduceted experiments over the Internet o evaluate 1V
performance when the [Pve LC chent (in Livingston, North
Carolina) makes HTTP requests tor files of sizes 104, 318, and
S31 KB respectively from an IPv4 Apache Web server running at
Towson University (TU) in Towson. Maryland.
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Figs, 18-20 respectively compiare the results for connection time.
delav and  throughput using the Linux and bare PC VI
mplementations, The connection time is defined as tor FFigs, 14
and 15, and therelore is essentially the same tor all three 1ile sizes.
Delay is delined as the time between the TCP SYN request and
lust ACK, and (throughput is the data rate for the duration of the
[CP connection. As expected, the Targer files have the higher
delays: they also have higher throughput. The throughput, which
was obtained using a Wireshark packet analyzer [25] connected to
the locul LC switch, iy the total throughput: it includes all the
bytes (headers. data, and acks) seen by Wireshark. The measured
throughput is theretore close to (but not identical 10) the
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caleulated throughput in Fig, 190 which is the file size divided by
the delay. The performance difference between the bare PC and
Linux IVE implementations tor these Internet experiments is seen
to be relatively small (as seen above tor the case of the 1LAN
experiments).

6. CONCLUSION

VI translation is a eehnigue recently proposed by the TETF o
enable communication between hosts on 1Pv4 and IPv6 networks.,
We determined the overhead due to VI translation by measuring
the internal timings tor both 1Pv6 0 IPvd and IPv4 10 IPv6
translation on an ordinary desktop running Linux Fedora, We also
implemented an V] wanslator as a bare PC application on the
same machine with no operating system or kernel. and compared
the corresponding timings.

Several experiments were conducted in LAN and  Internet
environments to evaluate 1VI translation perlformance. The results
show that in general it is more expensive to translate packets from
IPv4 to IPv6 than trom IPV6 (o [Pvd swith a0 4.1 us diflerence on
Linux and a 3.8 us difference on a bare PC. 1t was tound that
address mapping is the most expensive  operation in V]
translation regardless of the system on which the trunslator is
implemented, TV translation has little overhead for both the
Linux and bare PC implementations regardless of the higher layer
protocol carried in the payload. However, climinating  the
operating — system  overhead  would  enable more  efficient
translation. The lef-over CPU eyveles could be used to process
more packhets, or tor enhanced seeurity-related processing during
packhet translation,
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