
Measuring the IPv4-IPV6 IVI Translation Overhead
Anthony K. Tsetse

Towson University
Dept. of Comp. & Info. Sci.
Towson, MD 21252, U.S.A.

atsetse@towson.edu

Alexander L. Wijesinha
Towson University

Dept. of Comp. & Info. Sci.
Towson, MD 21252, U.S.A.

awijesinha@towson.edu

Ramesh K. Karne
Towson University

Dept. of Comp. & Info. Sci.
Towson, MD 21252, U.S.A.

rkarne@towson.edu

Alae Loukili
Towson University

Dept. of Comp. & Info. Sci.
Towson, MD 21252, U.S.A.

aloukili@towson.edu

ABSTRACT

While IPv6 deployment in the Internet continues to grow slowly

at present, the imminent exhaustion of IPv4 addresses will

encourage its increased use over the next several years. However,

due to the predominance of IPv4 in the Internet, the transition to

IPv6 is likely to take a long time. During the transition period,

translation mechanisms will enable IPv6 hosts and IPv4 hosts to

communicate with each other. For example, translation can be

used when a server or application works with IPv4 but not with

IPv6, and the effort or cost to modify the code is large. Stateless

and stateful translation is the subject of several recent IETF RFCs.

We measure the overhead due to the new IVI translator, which is

viewed as a design for stateless translation, by measuring the

internal timing for a freely available Linux implementation of IVI.

To study the impact of operating system overhead on IVI

translation, we also implement the IVI translator on a bare PC that

runs applications without an operating system or kernel. Our

results show that translating IPv4 packets into IPv6 packets is

more expensive than the reverse, and that address mapping is the

most expensive IVI operation. While both implementations of IVI

have low overhead, a modest performance gain is obtained due to

using a bare PC.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network

Protocols – Applications, Protocol architecture.

C.2.6 [Computer-Communication Networks]: Internetworking –

Routers, Standards.

C.4 [Performance of Systems]: Measurement techniques.

D.4.4 [Operating Systems]: Communications Management –

Network communication.

General Terms

Measurement and Performance.

Keywords

IPv6; IVI Translation; IPv4-IPv6 transition; bare PC; Linux.

1. INTRODUCTION
Internet Protocol version 6 (IPv6) [1] is the next generation IP

protocol for the Internet. IPv6 was introduced to replace the

existing Internet Protocol version 4 (IPv4). Although IPv6

provides the benefit of increased address space (16 byte

addresses), its deployment in the Internet has been slow primarily

due to the established and familiar base of IPv4. Interim measures

such as NAT and CIDR have also served to conserve the limited

IPv4 address space. However, it is expected that IPv6 usage will

increase as the number of networks and devices (such as low

power sensors) that require IP addresses continues to grow. IPv6

and IPv4 are not compatible due to using different header sizes

and formats.

To enable IPv4 and IPv6 to co-exist during the transition period,

several mechanisms have been proposed. Dual stack and

tunneling are described in RFC 2893 [2], with an update in RFC

4213 [3] to reflect their usage in practice. Dual stack devices have

implementations of both IPv4 and IPv6 protocol stacks running

independently. This makes it possible for such devices to process

both IPv4 and IPv6 packets. Tunneling allows IPv6 packets to be

carried on IPv4 networks and vice versa. Address translation is a

transition mechanism that allows communication between IPv6

devices and IPv4 devices by converting between packets of each

type. Several RFCs dealing with stateless and stateful translation

have been recently published by the IETF. The new IVI translator

[4] is an implementation of stateless IPv4-IPv6 translation that

can also support stateful packet translation (the abbreviation IVI

is derived from the Roman numerals IV for 4 and VI for 6).

In this paper, we measure the overhead due to IVI translation by

measuring internal timings for the existing Linux implementation.

We also implement the IVI translator on a bare PC without an

operating system or kernel. This enables us to compare the

overhead due to only the IVI translation process with the

overhead measured using Linux (Fedora) IVI translator.

The remainder of this paper is organized as follows. In Section 2,

we briefly discuss related work. In Section 3, we provide an

overview of IVI translation. In Sections 4 and 5, we describe the

Linux and bare PC implementations of the IVI translator. In

Section 6, we present the results of the performance study to

determine IVI overhead. In Section 7, we give the conclusion.

2. RELATED WORK
Several techniques have been proposed for translating between

IPv4 and IPv6 packets to IPv6 packets. One such technique,

Network Address Translation–Protocol Translation (NAT-PT and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

RACS’12, October 23-26, 2012, San Antonio, TX, USA.

Copyright 2012 ACM 978‐1‐4503‐1492‐3/12/10…$10.00.

NAPT-PT) [5], was defined in RFC 2766. It allowed a set of IPv6

hosts to share a single IPv4 address for IPv6 packets destined for

IPv4 hosts, and also allowed mapping of transport identifiers of

the IPv6 hosts. RFC 2766 has since been recommended for

historical status (in RFC 4966) [6] because of several issues. In

RFC 3142 [7], the operation of IPv6-to-IPv4 transport relay

translators (TRT) is discussed. TRT enables IPv6-only hosts to

exchange two-way TCP or UDP traffic.

Recent work on IPv4-IPv6 translation is detailed in a group of

several related RFCs. A mechanism enabling an IPv6 client to

communicate with an IPv4 server (stateful NAT64) is described in

RFC 6146 [8]. Translation of IP/ICMP headers in NAT64 is done

based on the Stateless IP/ICMP Translation Algorithm (SIIT) of
RFC 6145 [9]. NAT64 uses an address mapping algorithm

discussed in RFC 6052 [10] for IPv4-IPv6 address mapping. RFC

6147 [11] specifies the DNS64 mechanism that can be used with

NAT64 to enable IPv6 clients to communicate with IPv4 servers

using the fully qualified domain name of the server. Translation as

a tool for IPv6/IPv4 coexistence along with eight translation

scenarios are discussed in RFC 6144 [12]. These RFCs provide

the background for the IVI translator and translation approach

given in [4], whose performance is the focus of this study. Details

concerning an IVI implementation for stateless and stateful packet

translation, and its deployment, are provided in [13].

3. OVERVIEW OF IVI TRANSLATION
IVI translation employs a prefix-specific and stateless address

mapping scheme that enables IPv4 hosts to communicate with

IPv6 hosts as described in RFC 6219 [4]. In this scheme, which is

based on that given in [10], subsets of an ISP’s IPv4 addresses are

embedded in the ISP’s IPv6 addresses. During translation, an

address of one type (v4 or v6) is converted to the other type. To

represent IPv4 addresses in IPv6, the ISP inserts its IPv4 address

prefix after a unique IPv6 prefix consisting of PL bits, where

PL=32 (4), 40 (5), 48 (6), 56 (7), 64 (8), or 96 (12) (the number in

parenthesis is the number of bytes p=PL/8). The representation for

p<12 is shown in Fig. 1, where V4p and V4s respectively denote

the prefix and suffix of the IPv4 address and u is a byte of all 0s

(the length of each field in bytes appears above it). For example, if

p=5 bytes (i.e. PL=40 bits), the PREFIX, V4p, u, V4s, and

SUFFIX fields consist of 5, 3, 1, 1, and 6 bytes respectively. If

p=12, the PREFIX field is followed immediately by the entire

IPv4 address (u is not present)..

Figure 1. Representing IPv4 ISP addresses in IPv6.

Thus, an ISP with an IPv6 /32 address block can have a prefix of

/40, where bits 32 through 39 are set to all ones. Similarly, /24

IPv4 address blocks are translated into /64 IPv6 addresses. The

suffixes of these IPv6 addresses are normally set to all zeros. So

with this mapping scheme [4], an ISP with a /32 IPv6 address

block 2001:dba:: will translate the IPv4 address 202.38.97.205/24

into the equivalent IPv6 address 2001:dba:ffca:2661:cd::.

Translation of IPv4 and IPv6 headers is done as prescribed in [9]

with the source and destination address translated according to the

address mapping scheme described above. After translating the

transport layer (TCP or UDP) and ICMP headers, their checksums

are recomputed to reflect the changes in the IP header. The IP

header mapping scheme specified in [4] enables an IPv6 header to

be constructed from an IPv4 header, and conversely, in the

following manner (in addition to converting source and

destination IPv4 or IPv6 addresses into their IVI mapped

equivalent addresses). To translate an IPv4 header into a IPv6

header, the IHL, identification, flags, offset, header checksum,

and options are discarded; version (0x4), TOS, protocol, and TTL

fields are mapped into version (0x6), traffic class, next header,

and hop limit respectively; and the value of total length is

decremented by 20 and assigned to payload length. Conversely, to

translate an IPv6 header into an IPv4 header, flow label is

discarded; version (0x6), traffic class, next header, and hop limit

fields are mapped into version (0x4), TOS, protocol, and TTL

respectively; the value of payload length is incremented by 20 and

assigned to total length; IHL is set to 5; and the remaining fields

in the IPv4 header are assigned in the usual way (such as

generating a value for the identification field and computing the

IPv4 checksum). For convenience, we include Tables 1 and 2

taken from [4], which summarize the key elements of header

translation from IPv4 to IPv6 and from IPv6 to IPv4 respectively

that were discussed above.

Table 1. IPv4-to-IPv6 Header Translation (from [4])

IPv4 Field IPv6 Equivalent

Version (0x4) Version (0x6)

IHL Discarded

Type of Service Traffic Class

Total Length Payload Length = Total

Length – 20

Identification Discarded

Flags Discarded

Offset Discarded

TTL Hop Limit

Protocol Next Header

Header Checksum Discarded

Source Address IVI address mapping

Destination Address IVI address mapping

Options Discarded

Table 2. IPv6-to-IPv4 Header Translation (from [4])

IPv6 Field IPv4 Equivalent

Version (0x6) Version (0x4)

Traffic Class Type of Service

Flow Label Discarded

Payload Length Total Length = Payload

Length + 20

Next Header Protocol

Hop Limit TTL

Source Address IVI address mapping

Destination Address IVI address mapping

 IHL=5

 Header Checksum

Recalculated

4. IVI LINUX IMPLEMENTATION
The Linux implementation of the IVI translator [14] has two main

components: a configuration utility and a translation utility. The

 p 8-p 1 p-4 11-p

PREFIX V4p u V4s SUFFIX

configuration utility is used to setup the routes using mroute or

mroute6 commands. The translation utility is responsible for

translating the packets. To run the IVI translator on Linux, a patch

has to be applied to the Linux kernel source. Once the patch is

applied, the Linux kernel can be configured for IVI translation

after recompiling the kernel. Patching the kernel results in some

kernel source files being changed, and 4 other files (mapping.c,

proto_trans.c, mroute.c and mroute6.c) being added for

configuration and translation.

The functions required for translation referred to in the discussion

below are all in the file proto_trans.c. When an IPv4 packet is

received, the function mapping_address4to6 is invoked to map

the IPv4 address to an IPv6 address. Based on the value of the

protocol field in the received IPv4 header, icmp4to6_trans,

tcp4to6_trans or udp4to6_trans is invoked to translate the

appropriate protocol. Each of these methods calls a function that

computes the appropriate higher layer protocol (ICMP, TCP, or

UDP) checksum as well. Once the protocol translation is done,

iphdr6to4_trans is called to translate the IP header. For

translating IPv6 to IPv4 packets, a similar process is used.

5. IVI BARE PC IMPLEMENTATION
The IVI translator application that runs on a bare PC with no

operating system/kernel support was built by adding IVI

translation capability on top of lean bare PC versions of the IPv6

and IPv4 protocols. The bare PC translator application included

the implementation of two Ethernet objects ETH0 and ETH1 that

directly communicate with its two network interface cards (NICs)

each connecting to one of the two IP networks. A key difference

between the Linux and bare PC implementations is that the IP

protocols, address mappings, and protocol mappings in the latter

are implemented as part of a single object called the XLATEOBJ.

The architecture of the bare PC IVI translator is shown in Fig. 2.

The MAIN and RECEIVE (RCV) tasks are the only tasks running

in the bare PC IVI translator application. The MAIN task runs

when the system is started and whenever the RCV task is not

running. The RCV task is invoked from the MAIN task when a

packet (Ethernet frame) arrives on either interface. The capability

to send out router advertisements on the IPv6 interface of the bare

PC IVI Translator is implemented in the GW object as part of the

MAIN task. In XLATEOBJ, the xto4handler and xto6handler

methods respectively translate between IPv6 packets and IPv4

packets. To map the source and destination IPv6 addresses to the

corresponding IPv4 addresses, the xto4handler invokes the

addr6to4 method.

The processing logic of the bare PC IVI translator is shown in

Fig. 3. The translator initially checks the arriving packet to

determine if it is an IPv6 or IPv4 packet. If the packet is an IPv6

packet, the payload protocol type is determined from the next

header field, and the appropriate protocol checksum is computed.

If the checksum is valid, the IPv6 packet is translated into an IPv4

packet and forwarded. If the packet is an IPv4 packet, the IP

checksum is computed. If the checksum is valid, the packet is

translated into an IPv6 packet based on the protocol type in the

packet and forwarded after validating the higher layer protocol

checksum as needed. If any checksum fails, the packet is dropped.

6. INTERNAL TIMINGS

6.1 Experimental Setup
Fig. 4 shows the test LAN used to generate TCP data. A similar

set up was used to generate UDP and ICMP data. In the figure,

S1, S2, S3 and S4 are 100 Mbps Ethernet switches, and R1 and

R2 are IPv4 and IPv6 routers respectively. Router R1 serves the

IPv4 routing domain, which consists of an IPv4 client C4 and an

IPv4 server SV4. On the IPv6 side, C6 is an IPv6 client and SV6

is an IPv6 server. C6 and SV6 obtain the necessary routing

information from the IPv6 router R2. The IVI translator is

represented by XT. It runs on a Dell Optiplex GX270 desktop

with an Intel Pentium IV 2.4 GHz processor, 512 MB RAM, and

Intel PRO 10/100 and 3Com 10/100 NICs. The translator either

runs with Fedora Linux (Fedora 12, Linux kernel 2.6.31) as the

operating system, or as a bare PC application with no operating

system/kernel. The client and server systems run on Dell Optiplex

GX520s with a 2.6 GHz processor, 1 GB RAM, and an Intel

PRO/1000 NIC, and Fedora Linux as the operating system.

Apache HTTP Server 2.2.16 and Mozila Firefox v3.6.7 were used

respectively as the Web server and Web browser.

MAIN

RCV

xto6

Handler

xto4

Handler

ETHOBJ

GW

XLATEOBJ

Figure 2. Bare PC IVI architecture.

To capture timings during translation with HTTP/TCP data,

connections were made as follows. For IPv4 to IPv6 translation,

the IPv4 client (C4) initiated a connection via the browser to the

IPv6 Web server (SV6) in the IPv6 network. Router R1 forwarded

the IPv4 request to the IVI translator XT, which translated the

received packets to IPv6 packets, and sent them to the IPv6 Web

server (SV6) via the IPv6 router R2. For IPv6 to IPv4 translation,

the IPv6 client (C6) similarly initiated a connection via the

browser to the IPv4 Web server (SV4). Router R2 forwarded this

request to the IVI translator XT. The packet was translated to an

IPv6 packet and forwarded to the IPv6 router R1, which delivered

the packet to the IPv4 server (SV4).

6.2 Results
The internal timing data presented in this section was captured by

inserting timing points in the Linux (Fedora) and the bare PC

source code. The TCP traffic was generated by sending HTTP

requests from clients to servers based on the network setup in Fig.

4 as described earlier. Using a similar setup, Mgen [15] was used

to generate UDP traffic and the ping/ping6 utility was used to

generate ICMP packets. Each experiment was run three times and

the average data is reported (we omit the deviation since the

differences in the values for each experiment were small).

Fig. 5 shows the time it takes internally to translate packets using

the Linux implementation of the IVI translator. It is seen that the

IP header translation is the most expensive operation for both

IPv6-IPv4 and IPv4-IPv6 translation, while UDP, TCP or

RCV PKT

V6 PKT?
Valid IP

Chksum?

DROP

PKT

Translate

Address

Forward Pkt

Check

Protocol
N

Compute

Checksum

Valid

Chksum?

Translate

Address

Translate IP

Header

DROP

PKT

Y N

Check

Protocol

Valid

Chksum?

N

Y

Figure 3. Bare PC IVI packet processing logic

S2

S1

S3

S4

R1 R2

C6

SV6C4

SV4

XT

Figure 4. Test LAN for TCP connections.

ICMP translation has almost the same translation time. The

header translation time is larger since it includes both address and

protocol (TCP, UDP or ICMP) translation.

It is also evident that the IP address translation time is larger than

the UDP, TCP, and ICMP header translation time since the higher

layer translations involve very little processing. Comparing

translations between the IP versions in each direction, the IP

address translation time is 3.9 µs and 0.5 µs higher than TCP,

UDP, and ICMP translation time for the IPv4 to IPv6 and IPv6 to

IPv4 translations respectively. The larger time for the IPv4 to

IPv6 address translation compared to the reverse is because the

IPv6 address needs to be constructed by extending the IPv4

address, whereas the IPv4 address is simply extracted from the

IPv6 address.

Figure 5. Linux translation overhead.

Fig. 6 shows the corresponding IVI translation times on a bare

PC. The times for IP header translation from IPv4 to IPv6 is 15.8

µs compared to 12 µs for translation from IPv6 to IPv4. TCP and

ICMP translation take almost the same time: about 2.5 µs for IPv4

to IPv6 translation and 2.0 µs for IPv6 to IPv4 translation. For IP

address mapping, the processing time is 5 µs from IPv4 to IPv6,

and 2 µs from IPv6 to IPv4. For UDP, translating from IPv4 to

IPv6 and from IPv6 to IPv4 takes 2 µs and 1.5 µs respectively.

Figure 6. Bare PC translation overhead.

Comparing the times for IVI translation from IPv4 to IPv6 for the

Linux and bare PC implementations (using Figs. 5 and 6), it can

be seen that 1) for TCP, UDP and ICMP translations, the time for

the bare PC is about 2.3 µs less than for the Linux

implementation; 2) for IP address translation, the processing time

for the bare PC is about 3.9 µs less than for the Linux

implementation; and 3) for IP header translation, the processing

time for the bare PC is 15 µs less than for the Linux

implementation.

Similarly, comparing the times for IVI translation from IPv6 to

IPv4 translation for the Linux and bare PC implementations, it

can also be seen that 4) for TCP and UDP traffic, the

improvement in processing time due to using a bare PC is 2.2 µs;

5) for ICMP, the improvement in processing time is 3.2 µs; and 6)

for IP address mapping, it is 2.6 µs.

To compare packets per second (pps) processed by the IVI

translator for IPv4 to IPv6 translation and IPv6 to IPv4

translation, the Mgen generator was used to make TCP

connections between source and sink. The results when

transferring 1024-byte packets when the throughput is at a

maximum are shown in Fig. 7. As expected, pps for IPv4 to IPv6

translation is less than for IPv6 to IPv4 translation which reflects

the decrease in processing time for the latter; the drop in pps for

IPv4 to IPv6 translation compared to IPv6 to IPv4 translation is

about 18% for Linux and about13% for the bare PC. The

improvement due to using a bare PC instead of Linux is about

17% for IPv4 to IPv6 translation and about 9% for IPv6 to IPv4

translation.

We also compared the round trip times for 1024 byte ICMP Ping

packets. Request packets undergo IPv4 to IPv6 translation and the

reply packets undergo IPv6 to IPv4 translation. The results are

shown in Fig. 8 and indicate that round trip time is reduced by

about 17% on a bare PC.

These results show that the overhead for IVI translation for both

the Linux and bare PC implementations is small. However, there

is a small improvement in processing time (and hence, packets

processed per second) when using a bare PC.

Figure 7. Packets per second (pps).

7. CONCLUSION
We determined the overhead due to IVI translation by measuring

the internal timings for both IPv6 to IPv4 and IPv4 to IPv6

translation on an ordinary desktop running Linux Fedora. We also

implemented an IVI translator as a bare PC application on the

same machine with no operating system or kernel, and compared

the corresponding timings. The results show that in general it is

more expensive to translate packets from IPv4 to IPv6 than from

IPv6 to IPv4 with a 4.1 µs difference on Linux and a 3.8 µs

difference on a bare PC. It was also found that address mapping is

the most expensive operation in IVI translation regardless of the

system on which the translator is implemented. IVI translation has

little overhead for both the Linux and bare PC implementations

regardless of the higher layer protocol carried in the payload.

However, eliminating the operating system overhead would

enable more efficient translation. The left-over CPU cycles could

be used to process more packets, or for enhanced security-related

processing during packet translation.

8. REFERENCES
[1] Deering, S., and Hinden, R. Internet Protocol, Version 6 (IPv6)

Specification. RFC 2460, Dec. 1998.

[2] Gilligan, R., and Nordmark, E. Transition Mechanisms for IPv6
Hosts and Routers. RFC 2893, Aug. 2000.

[3] Nordmark, E., and Gilligan, R. Basic Transition Mechanisms for
IPv6 Hosts and Routers. RFC 4213, Oct. 2005.

[4] Li X., et al. The China Education and Research Network (CERNET)
IVI Translation Design and Deployment for the IPv4/IPv6
Coexistence and Transition. RFC 6219, May 2011.

[5] Tsirtsis, G., and Srisuresh, P. Network Address Translation –
Protocol Translation (NAT-PT). RFC 2766, Feb. 2000 .

[6] Aoun, C., and Davies, E. Reasons to Move the Network Address
Translator - Protocol Translator (NAT-PT) to Historic Status. RFC
4966, Jul. 2007.

[7] Hagino, J., and Yamamoto, K. An IPv6-to-IPv4 Transport Relay
Translator. RFC 3142, Jun. 2001.

[8] Bagnulo, M., Matthews, P., and van Beijnum, I. Stateful NAT64:
Network Address and Protocol Translation from IPv6 Clients to
IPv4 Servers. RFC 6146, Apr. 2011.

[9] Li, X., Bao, C., and Baker, F. IP/ICMP Translation Algorithm. RFC
6145, Mar. 2011.

[10] Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and Li, X. IPv6
Addressing of IPv4/IPv6 translators. RFC 6052, Oct. 2010.

[11] Bagnulo, M., Sullivan, A., Mathews, P., and van Beijnum, I.
DNS64: DNS Extensions for Network Address Translation from
IPv6 Clients to IPv4 Servers. RFC 6147, Apr. 2011.

[12] Baker, F., Li, X., Bao, C., and Yin, K. Framework for IPv4/IPv6
Translation. RFC 6144, Apr. 2011.

[13] Zhai, Y., Bao, C., and Li, X. Transition from IPv4 to IPv6: A
Translation Approach. 2011 Sixth IEEE International Conference
on Networking, Architecture and Storage. 30-39.

[14] Source Code of the IVI implementation for Linux:
http://linux.ivi2.org/impl/. accessed 05/10/2012.

[15] Mgen, http://cs.itd.nrl.navy.mil, accessed 05/10/2012.

Figure 8. Ping round trip time (RTT).

