
Measuring the IPv4-IPV6 IVI Translation Overhead 
Anthony K. Tsetse 

Towson University 
Dept. of Comp. & Info. Sci. 
Towson, MD 21252, U.S.A. 

 

atsetse@towson.edu 

Alexander L. Wijesinha 
Towson University 

Dept. of Comp. & Info. Sci. 
Towson, MD 21252, U.S.A. 

 

awijesinha@towson.edu 

Ramesh K. Karne 
Towson University 

Dept. of Comp. & Info. Sci. 
Towson, MD 21252, U.S.A. 

 

rkarne@towson.edu 

Alae Loukili 
Towson University 

Dept. of Comp. & Info. Sci. 
Towson, MD 21252, U.S.A. 

 

aloukili@towson.edu 

 

 

ABSTRACT 

While IPv6 deployment in the Internet continues to grow slowly 

at present, the imminent exhaustion of IPv4 addresses will 

encourage its increased use over the next several years. However, 

due to the predominance of IPv4 in the Internet, the transition to 

IPv6 is likely to take a long time. During the transition period, 

translation mechanisms will enable IPv6 hosts and IPv4 hosts to 

communicate with each other. For example, translation can be 

used when a server or application works with IPv4 but not with 

IPv6, and the effort or cost to modify the code is large. Stateless 

and stateful translation is the subject of several recent IETF RFCs. 

We measure the overhead due to the new IVI translator, which is 

viewed as a design for stateless translation, by measuring the 

internal timing for a freely available Linux implementation of IVI. 

To study the impact of operating system overhead on IVI 

translation, we also implement the IVI translator on a bare PC that 

runs applications without an operating system or kernel. Our 

results show that translating IPv4 packets into IPv6 packets is 

more expensive than the reverse, and that address mapping is the 

most expensive IVI operation. While both implementations of IVI 

have low overhead, a modest performance gain is obtained due to 

using a bare PC.   

Categories and Subject Descriptors 

C.2.2 [Computer-Communication Networks]: Network 

Protocols – Applications, Protocol architecture. 

C.2.6 [Computer-Communication Networks]: Internetworking – 

Routers, Standards. 

C.4 [Performance of Systems]: Measurement techniques. 

D.4.4 [Operating Systems]: Communications Management – 

Network communication. 

General Terms 

Measurement and Performance. 

Keywords 

IPv6; IVI Translation; IPv4-IPv6 transition; bare PC; Linux. 

1. INTRODUCTION 
Internet Protocol version 6 (IPv6) [1] is the next generation IP 

protocol for the Internet. IPv6 was introduced to replace the 

existing Internet Protocol version 4 (IPv4). Although IPv6 

provides the benefit of increased address space (16 byte 

addresses), its deployment in the Internet has been slow primarily 

due to the established and familiar base of IPv4. Interim measures 

such as NAT and CIDR have also served to conserve the limited 

IPv4 address space. However, it is expected that IPv6 usage will 

increase as the number of networks and devices (such as low 

power sensors) that require IP addresses continues to grow. IPv6 

and IPv4 are not compatible due to using different header sizes 

and formats.  

To enable IPv4 and IPv6 to co-exist during the transition period, 

several mechanisms have been proposed. Dual stack and 

tunneling are described in RFC 2893 [2], with an update in RFC 

4213 [3] to reflect their usage in practice. Dual stack devices have 

implementations of both IPv4 and IPv6 protocol stacks running 

independently. This makes it possible for such devices to process 

both IPv4 and IPv6 packets. Tunneling allows IPv6 packets to be 

carried on IPv4 networks and vice versa. Address translation is a 

transition mechanism that allows communication between IPv6 

devices and IPv4 devices by converting between packets of each 

type. Several RFCs dealing with stateless and stateful translation 

have been recently published by the IETF. The new IVI translator 

[4] is an implementation of stateless IPv4-IPv6 translation that 

can also support stateful packet translation (the abbreviation IVI 

is derived from the Roman numerals IV for 4 and VI for 6).  

In this paper, we measure the overhead due to IVI translation by 

measuring internal timings for the existing Linux implementation. 

We also implement the IVI translator on a bare PC without an 

operating system or kernel. This enables us to compare the 

overhead due to only the IVI translation process with the 

overhead measured using Linux (Fedora) IVI translator.   

The remainder of this paper is organized as follows. In Section 2, 

we briefly discuss related work. In Section 3, we provide an 

overview of IVI translation. In Sections 4 and 5, we describe the 

Linux and bare PC implementations of the IVI translator. In 

Section 6, we present the results of the performance study to 

determine IVI overhead. In Section 7, we give the conclusion. 

2. RELATED WORK 
Several techniques have been proposed for translating between 

IPv4 and IPv6 packets to IPv6 packets. One such technique, 

Network Address Translation–Protocol Translation (NAT-PT and 
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NAPT-PT) [5], was defined in RFC 2766. It allowed a set of IPv6 

hosts to share a single IPv4 address for IPv6 packets destined for 

IPv4 hosts, and also allowed mapping of transport identifiers of 

the IPv6 hosts. RFC 2766 has since been recommended for 

historical status (in RFC 4966) [6] because of several issues. In 

RFC 3142 [7], the operation of IPv6-to-IPv4 transport relay 

translators (TRT) is discussed. TRT enables IPv6-only hosts to 

exchange two-way TCP or UDP traffic.  

Recent work on IPv4-IPv6 translation is detailed in a group of 

several related RFCs. A mechanism enabling an IPv6 client to 

communicate with an IPv4 server (stateful NAT64) is described in 

RFC 6146 [8]. Translation of IP/ICMP headers in NAT64 is done 

based on the Stateless IP/ICMP Translation Algorithm (SIIT) of 
RFC 6145 [9]. NAT64 uses an address mapping algorithm 

discussed in RFC 6052 [10] for IPv4-IPv6 address mapping. RFC 

6147 [11] specifies the DNS64 mechanism that can be used with 

NAT64 to enable IPv6 clients to communicate with IPv4 servers 

using the fully qualified domain name of the server. Translation as 

a tool for IPv6/IPv4 coexistence along with eight translation 

scenarios are discussed in RFC 6144 [12]. These RFCs provide 

the background for the IVI translator and translation approach 

given in [4], whose performance is the focus of this study. Details 

concerning an IVI implementation for stateless and stateful packet 

translation, and its deployment, are provided in [13]. 

3.   OVERVIEW OF IVI TRANSLATION  
IVI translation employs a prefix-specific and stateless address 

mapping scheme that enables IPv4 hosts to communicate with 

IPv6 hosts as described in RFC 6219 [4]. In this scheme, which is 

based on that given in [10], subsets of an ISP’s IPv4 addresses are 

embedded in the ISP’s IPv6 addresses. During translation, an 

address of one type (v4 or v6) is converted to the other type. To 

represent IPv4 addresses in IPv6, the ISP inserts its IPv4 address 

prefix after a unique IPv6 prefix consisting of PL bits, where 

PL=32 (4), 40 (5), 48 (6), 56 (7), 64 (8), or 96 (12) (the number in 

parenthesis is the number of bytes p=PL/8). The representation for 

p<12 is shown in Fig. 1, where V4p and V4s respectively denote 

the prefix and suffix of the IPv4 address and u is a byte of all 0s 

(the length of each field in bytes appears above it). For example, if 

p=5 bytes (i.e. PL=40 bits), the PREFIX, V4p, u, V4s, and 

SUFFIX fields consist of 5, 3, 1, 1, and 6 bytes respectively. If 

p=12, the PREFIX field is followed immediately by the entire 

IPv4 address (u is not present).. 

 

 

 

Figure 1. Representing IPv4 ISP addresses in IPv6. 

Thus, an ISP with an IPv6 /32 address block can have a prefix of 

/40, where bits 32 through 39 are set to all ones. Similarly, /24 

IPv4 address blocks are translated into /64 IPv6 addresses. The 

suffixes of these IPv6 addresses are normally set to all zeros. So 

with this mapping scheme [4], an ISP with a /32 IPv6 address 

block 2001:dba:: will translate the IPv4 address 202.38.97.205/24 

into the equivalent IPv6 address 2001:dba:ffca:2661:cd::. 

Translation of IPv4 and IPv6 headers is done as prescribed in [9] 

with the source and destination address translated according to the 

address mapping scheme described above. After translating the 

transport layer (TCP or UDP) and ICMP headers, their checksums 

are recomputed to reflect the changes in the IP header. The IP 

header mapping scheme specified in [4] enables an IPv6 header to 

be constructed from an IPv4 header, and conversely, in the 

following manner (in addition to converting source and 

destination IPv4 or IPv6 addresses into their IVI mapped 

equivalent addresses). To translate an IPv4 header into a IPv6 

header, the IHL, identification, flags, offset, header checksum, 

and options are discarded; version (0x4), TOS, protocol, and TTL 

fields are mapped into version (0x6), traffic class, next header, 

and hop limit respectively; and the value of total length is 

decremented by 20 and assigned to payload length. Conversely, to 

translate an IPv6 header into an IPv4 header, flow label is 

discarded; version (0x6), traffic class, next header, and hop limit 

fields are mapped into version (0x4), TOS, protocol, and TTL 

respectively; the value of payload length is incremented by 20 and 

assigned to total length; IHL is set to 5; and the remaining fields 

in the IPv4 header are assigned in the usual way (such as 

generating a value for the identification field and computing the 

IPv4 checksum). For convenience, we include Tables 1 and 2 

taken from [4], which summarize the key elements of header 

translation from IPv4 to IPv6 and from IPv6 to IPv4 respectively 

that were discussed above. 

Table 1.  IPv4-to-IPv6 Header Translation (from [4]) 

IPv4 Field IPv6 Equivalent 

Version (0x4) Version (0x6) 

IHL  Discarded 

Type of Service  Traffic Class 

Total Length Payload Length = Total 

Length – 20 

Identification Discarded 

Flags Discarded 

Offset Discarded 

TTL Hop Limit 

Protocol Next Header 

Header Checksum Discarded 

Source Address IVI address mapping 

Destination Address IVI address mapping 

Options Discarded 

 

Table 2.  IPv6-to-IPv4 Header Translation (from [4]) 

IPv6  Field IPv4 Equivalent 

Version (0x6) Version (0x4) 

Traffic Class Type of Service 

Flow Label Discarded 

Payload Length Total Length = Payload 

Length + 20  

Next Header Protocol 

Hop Limit TTL 

Source Address IVI address mapping 

Destination Address IVI address mapping 

 IHL=5 

 Header Checksum 

Recalculated 

4. IVI LINUX IMPLEMENTATION 
The Linux implementation of the IVI translator [14] has two main 

components: a configuration utility and a translation utility. The 

      p  8-p  1 p-4   11-p 

PREFIX V4p  u V4s SUFFIX 



configuration utility is used to setup the routes using mroute or 

mroute6 commands. The translation utility is responsible for 

translating the packets. To run the IVI translator on Linux, a patch 

has to be applied to the Linux kernel source. Once the patch is 

applied, the Linux kernel can be configured for IVI translation 

after recompiling the kernel. Patching the kernel results in some 

kernel source files being changed, and 4 other files (mapping.c, 

proto_trans.c, mroute.c and mroute6.c) being added for 

configuration and translation.  

The functions required for translation referred to in the discussion 

below are all in the file proto_trans.c. When an IPv4 packet is 

received, the function mapping_address4to6 is invoked to map 

the IPv4 address to an IPv6 address. Based on the value of the 

protocol field in the received IPv4 header, icmp4to6_trans, 

tcp4to6_trans or udp4to6_trans is invoked to translate the 

appropriate protocol. Each of these methods calls a function that 

computes the appropriate higher layer protocol (ICMP, TCP, or 

UDP) checksum as well. Once the protocol translation is done, 

iphdr6to4_trans is called to translate the IP header. For 

translating IPv6 to IPv4 packets, a similar process is used. 

5. IVI BARE PC IMPLEMENTATION 
The IVI translator application that runs on a bare PC with no 

operating system/kernel support was built by adding IVI 

translation capability on top of lean bare PC versions of the IPv6 

and IPv4 protocols. The bare PC translator application included 

the implementation of two Ethernet objects ETH0 and ETH1 that 

directly communicate with its two network interface cards (NICs) 

each connecting to one of the two IP networks. A key difference 

between the Linux and bare PC implementations is that the IP 

protocols, address mappings, and protocol mappings in the latter 

are implemented as part of a single object called the XLATEOBJ. 

The architecture of the bare PC IVI translator is shown in Fig. 2. 

The MAIN and RECEIVE (RCV) tasks are the only tasks running 

in the bare PC IVI translator application. The MAIN task runs 

when the system is started and whenever the RCV task is not 

running. The RCV task is invoked from the MAIN task when a 

packet (Ethernet frame) arrives on either interface. The capability 

to send out router advertisements on the IPv6 interface of the bare 

PC IVI Translator is implemented in the GW object as part of the 

MAIN task. In XLATEOBJ, the xto4handler and xto6handler 

methods respectively translate between IPv6 packets and IPv4 

packets. To map the source and destination IPv6 addresses to the 

corresponding IPv4 addresses, the xto4handler invokes the 

addr6to4 method. 

The processing logic of the bare PC IVI translator is shown in 

Fig. 3. The translator initially checks the arriving packet to 

determine if it is an IPv6 or IPv4 packet. If the packet is an IPv6 

packet, the payload protocol type is determined from the next 

header field, and the appropriate protocol checksum is computed. 

If the checksum is valid, the IPv6 packet is translated into an IPv4 

packet and forwarded. If the packet is an IPv4 packet, the IP 

checksum is computed. If the checksum is valid, the packet is 

translated into an IPv6 packet based on the protocol type in the 

packet and forwarded after validating the higher layer protocol 

checksum as needed. If any checksum fails, the packet is dropped. 

6. INTERNAL TIMINGS 

6.1 Experimental Setup 
Fig. 4 shows the test LAN used to generate TCP data. A similar 

set up was used to generate UDP and ICMP data. In the figure, 

S1, S2, S3 and S4 are 100 Mbps Ethernet switches, and R1 and 

R2 are IPv4 and IPv6 routers respectively. Router R1 serves the 

IPv4 routing domain, which consists of an IPv4 client C4 and an 

IPv4 server SV4. On the IPv6 side, C6 is an IPv6 client and SV6 

is an IPv6 server. C6 and SV6 obtain the necessary routing 

information from the IPv6 router R2. The IVI translator is 

represented by XT. It runs on a Dell Optiplex GX270 desktop 

with an Intel Pentium IV 2.4 GHz processor, 512 MB RAM, and 

Intel PRO 10/100 and 3Com 10/100 NICs. The translator either 

runs with Fedora Linux (Fedora 12, Linux kernel 2.6.31) as the 

operating system, or as a bare PC application with no operating 

system/kernel. The client and server systems run on Dell Optiplex 

GX520s with a 2.6 GHz processor, 1 GB RAM, and an Intel 

PRO/1000 NIC, and Fedora Linux as the operating system. 

Apache HTTP Server 2.2.16 and Mozila Firefox v3.6.7 were used 

respectively as the Web server and Web browser. 

MAIN

RCV

xto6 

Handler 

xto4 

Handler

ETHOBJ

GW

XLATEOBJ

 

Figure 2. Bare PC IVI architecture. 

To capture timings during translation with HTTP/TCP data, 

connections were made as follows. For IPv4 to IPv6 translation, 

the IPv4 client (C4) initiated a connection via the browser to the 

IPv6 Web server (SV6) in the IPv6 network. Router R1 forwarded 

the IPv4 request to the IVI translator XT, which translated the 

received packets to IPv6 packets, and sent them to the IPv6 Web 

server (SV6) via the IPv6 router R2. For IPv6 to IPv4 translation, 

the IPv6 client (C6) similarly initiated a connection via the 

browser to the IPv4 Web server (SV4). Router R2 forwarded this 

request to the IVI translator XT. The packet was translated to an 

IPv6 packet and forwarded to the IPv6 router R1, which delivered 

the packet to the IPv4 server (SV4). 

6.2 Results 
The internal timing data presented in this section was captured by 

inserting timing points in the Linux (Fedora) and the bare PC 

source code. The TCP traffic was generated by sending HTTP 

requests from clients to servers based on the network setup in Fig. 

4 as described earlier. Using a similar setup, Mgen [15] was used 

to generate UDP traffic and the ping/ping6 utility was used to 

generate ICMP packets. Each experiment was run three times and 



the average data is reported (we omit the deviation since the 

differences in the values for each experiment were small).  

Fig. 5 shows the time it takes internally to translate packets using 

the Linux implementation of the IVI translator. It is seen that the 

IP header translation is the most expensive operation for both 

IPv6-IPv4 and IPv4-IPv6 translation, while UDP, TCP or 
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Figure 3. Bare PC IVI packet processing logic 
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Figure 4. Test LAN for TCP connections. 

ICMP translation has almost the same translation time. The 

header translation time is larger since it includes both address and 

protocol (TCP, UDP or ICMP) translation. 

It is also evident that the IP address translation time is larger than 

the UDP, TCP, and ICMP header translation time since the higher 

layer translations involve very little processing. Comparing 

translations between the IP versions in each direction, the IP 

address translation time is 3.9 µs and 0.5 µs higher than TCP, 

UDP, and ICMP translation time for the IPv4 to IPv6 and IPv6 to 

IPv4 translations respectively. The larger time for the IPv4 to 

IPv6 address translation compared to the reverse is because the 

IPv6 address needs to be constructed by extending the IPv4 

address, whereas the IPv4 address is simply extracted from the 

IPv6 address. 

 

Figure 5. Linux translation overhead. 

Fig. 6 shows the corresponding IVI translation times on a bare 

PC. The times for IP header translation from IPv4 to IPv6 is 15.8 

µs compared to 12 µs for translation from IPv6 to IPv4. TCP and 

ICMP translation take almost the same time: about 2.5 µs for IPv4 

to IPv6 translation and 2.0 µs for IPv6 to IPv4 translation. For IP 

address mapping, the processing time is 5 µs from IPv4 to IPv6, 

and 2 µs from IPv6 to IPv4. For UDP, translating from IPv4 to 

IPv6 and from IPv6 to IPv4 takes 2 µs and 1.5 µs respectively. 

 

 

Figure 6. Bare PC translation overhead. 

Comparing the times for IVI translation from IPv4 to IPv6 for the 

Linux and bare PC implementations (using Figs. 5 and 6), it can 

be seen that 1) for TCP, UDP and ICMP translations, the time for 

the bare PC is about 2.3 µs less than for the Linux 

implementation; 2) for IP address translation, the processing time 

for the bare PC is about 3.9 µs less than for the Linux 

implementation; and 3) for IP header translation, the processing 

time for the bare PC is 15 µs less than for the Linux 

implementation.  

Similarly, comparing the times for IVI translation from IPv6 to 

IPv4 translation for the Linux and bare PC implementations, it 

can also be seen that 4) for TCP and UDP traffic, the 

improvement in processing time due to using a bare PC is 2.2 µs; 



5) for ICMP, the improvement in processing time is 3.2 µs; and 6) 

for IP address mapping, it is 2.6 µs. 

To compare packets per second (pps) processed by the IVI 

translator for IPv4 to IPv6 translation and IPv6 to IPv4 

translation, the Mgen generator was used to make TCP 

connections between source and sink. The results when 

transferring 1024-byte packets when the throughput is at a 

maximum are shown in Fig. 7. As expected, pps for IPv4 to IPv6 

translation is less than for IPv6 to IPv4 translation which reflects 

the decrease in processing time for the latter; the drop in pps for 

IPv4 to IPv6 translation compared to IPv6 to IPv4 translation is 

about 18% for Linux and about13% for the bare PC. The 

improvement due to using a bare PC instead of Linux is about 

17% for IPv4 to IPv6 translation and about 9% for IPv6 to IPv4 

translation.  

We also compared the round trip times for 1024 byte ICMP Ping 

packets. Request packets undergo IPv4 to IPv6 translation and the 

reply packets undergo IPv6 to IPv4 translation. The results are 

shown in Fig. 8 and indicate that round trip time is reduced by 

about 17% on a bare PC. 

These results show that the overhead for IVI translation for both 

the Linux and bare PC implementations is small. However, there 

is a small improvement in processing time (and hence, packets 

processed per second) when using a bare PC.  

 

Figure 7. Packets per second (pps). 

7. CONCLUSION 
We determined the overhead due to IVI translation by measuring 

the internal timings for both IPv6 to IPv4 and IPv4 to IPv6 

translation on an ordinary desktop running Linux Fedora. We also 

implemented an IVI translator as a bare PC application on the 

same machine with no operating system or kernel, and compared 

the corresponding timings. The results show that in general it is 

more expensive to translate packets from IPv4 to IPv6 than from 

IPv6 to IPv4 with a 4.1 µs difference on Linux and a 3.8 µs 

difference on a bare PC. It was also found that address mapping is 

the most expensive operation in IVI translation regardless of the 

system on which the translator is implemented. IVI translation has 

little overhead for both the Linux and bare PC implementations 

regardless of the higher layer protocol carried in the payload. 

However, eliminating the operating system overhead would 

enable more efficient translation. The left-over CPU cycles could 

be used to process more packets, or for enhanced security-related 

processing during packet translation. 
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Figure 8. Ping round trip time (RTT). 

 


