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Abstract—IPv6 was proposed as the next-generation IP 

primarily to deal with the problem of IPv4 address depletion 

caused by the rapid growth of the Internet. 6to4 tunneling is one 

of the currently used transition mechanisms for enabling IPv6 

devices and networks to connect to today’s Internet, which is 

primarily IPv4-based. Since most internal networks use private 

IPv4 addresses, it becomes necessary to provide both 6to4 and 

NAT functionality at the network boundary in order to handle 

IPv4 and IPv6 traffic. We evaluate the performance of a 6to4 

Linux gateway with a co-located NAT. To enable 6to4 and NAT 

overhead to be determined, we also compare performance of the 

Linux gateway and a compatible 6to4 gateway with a co-located 

NAT that runs on a bare PC with no operating system or kernel 

installed. We describe the design and implementation of the bare 

PC 6to4 gateway with a co-located NAT, and also compare the 

performance of 6to4 in a test LAN with a co-located and a 

decoupled NAT (where 6to4 and NAT run on different devices). 

We conducted experiments with HTTP and VoIP traffic, and also 

measured RTT and CPU utilization. The results show that 

performance using 6to4 with a co-located NAT is better than with 

a decoupled NAT regardless of whether a Linux or a bare 6to4 

gateway is used. In general, performance improvements with a 

co-located versus a decoupled NAT range from 34%-57% for the 

bare PC gateway and 7%-45% for the Linux gateway. 

Furthermore, performance improvements for a bare PC versus a 

Linux gateway range from 23%-86% with co-located and 

decoupled NATs. A 6to4 gateway with a co-located NAT can be 

used to improve network performance during the IPv6-IPv4 

transition.   
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I. INTRODUCTION 

Deployment of Internet Protocol Version 6 (IPv6) [1] in the 
Internet has been relatively slow since its introduction over a 
decade ago. There are a variety of business and practical 
reasons for the low prevalence of IPv6 networks. However, the 
difficulty of agreeing on a single technology or standard for use 
during the IPv4-IPv6 transition has made it harder for IPv6 
networks to communicate across the existing IPv4 network 
infrastructure. Several transition mechanisms were originally 
proposed [2]. Since then, an automatic tunneling technique 
known as 6to4 [3] has become one of the most widely used 
transition mechanisms [4]. 6to4 can be deployed on end 
systems as well as on routers/gateways, and most operating 
systems support 6to4. 

Unfortunately, using 6to4 on the Internet has proved to be 
challenging due to asymmetry in outbound and return 
addresses with long routing paths, firewalls, and other causes. 
This has resulted in a relatively high rate of connection failures 

being reported on many Web sites, and suggestions have been 
made to disable 6to4 altogether. A recent informational RFC 
[5] provides advice to ISPs, content providers and 
implementers regarding the avoidance of 6to4 failures. It is 
expected therefore that 6to4 will continue to be used during the 
transition period.  

6to4 gateways are usually dual stack devices deployed at 
the edge of the network. It is convenient to configure 6to4 
gateways to handle both IPv4 and IPv6 packets that may be 
generated by internal networks. Since internal IPv4 traffic 
almost always uses private (non-routable) addresses, Network 
Address Translation (NAT) [6] is then needed. This implies 
that a 6to4 gateway must have a co-located NAT [7], or else 
have NAT performed on another device. We refer to the latter 
approach as 6to4 with a decoupled NAT. While a co-located 
NAT is convenient to use, it has more overhead than a gateway 
that only handles 6to4 traffic. We conduct studies to evaluate 
the performance of a 6to4 gateway on Linux with a co-located 
NAT. In order to compare the overhead of only the 6to4 and 
NAT functions, we also implemented a 6to4 gateway with a 
co-located NAT as a bare PC application that runs with no 
operating system (OS) or kernel support. 

In particular, we describe the design and implementation of 
the bare PC 6to4 gateway with a co-located NAT, and present 
the results of experiments conducted in a test LAN 
environment to compare the performance of the Linux and bare 
PC gateways with a co-located NAT. Our results show that 
both the Linux and bare PC 6to4 gateways with a co-located 
NAT perform better than their respective counterparts with a 
6to4 gateway and a decoupled NAT. We also determine the 
extent of network performance improvement for HTTP and 
VoIP traffic when a bare PC 6to4 gateway with co-located and 
decoupled NATs are used instead of the Linux systems.  

The remainder of this paper is organized as follows. In 
Section II, we briefly discuss related work. In Section III, we 
describe the design and implementation of the bare PC 6to4 
gateway with a co-located NAT, and in Section IV we present 
the results of the performance study. The conclusion is given in 
Section V. 

II. RELATED WORK 

Currently, 6to4 [3], Teredo [7, 8], tunnel-brokers [9], dual 
stack [10], and translation [11] are the main IPv4-IPv6 
transition mechanisms in use. 6to4 [3] allows IPv6 nodes to 
communicate with each other over the global IPv4 
infrastructure. This is done by using a 2002 address prefix for 
IPv6 hosts.  



Teredo and its Linux version Miredo help nodes located 
behind NATs to gain IPv6 connectivity. However, 
Teredo/Miredo requires relays and/or servers, and is intended 
to be used as a last resort due to its encapsulation overhead. 
Tunnel brokers can use Tunnel Setup Protocol (TSP) to set up 
tunnel parameters and encapsulate IPv6 in IPv4 and vice-versa. 
Dual stack devices have implementations of both IPv4 and 
IPv6 protocols running independently; most operating systems 
support dual stacks. The dual stack approach only allows 
communication between like network nodes (i.e., IPv6-IPv6 
and IPv4-IPv4). Translation mechanisms attempt to translate 
the IPv6 headers into IPv4 headers and vice-versa. The China 
Education and Research Network (CERNET) recently 
proposed a new technique for IPv4-IPv6 translation [12]. 

Most studies dealing with IPv4-IPv6 transition propose new 
transition mechanisms, or compare the performance of existing 
transition mechanisms. In [13], a hierarchical routing 
architecture to integrate both IPv4 and IPv6 networks is 
proposed. A performance study on configured tunnels and 6to4 
mechanisms running on Linux is described in [14], while 6to4 
and tunnel broker performance is compared in [15]. In [16], 
VoIP performance over IPv4 and IPv6 is evaluated using a bare 
PC softphone as a control to analyze the effect of OS overhead 
on VoIP call quality. VoIP performance with IPv6 and IPsec is 
studied in [17], and it is concluded that NAT and 6to4 
processing (using a decoupled NAT) have little impact on VoIP 
quality in IPv6 networks. 

Although there have been several studies on the 
performance of various IPv4/IPv6 transition mechanisms, this 
is the first study evaluating the performance of 6to4 gateways 
with a co-located NAT. Our work also differs from previous 
work in that we describe the design and implementation of a 
6to4 gateway application with NAT on a bare PC that runs 
without an OS. The study in [16] uses a bare PC softphone to 
study VoIP performance, while this study uses a bare PC as a 
network gateway device. Moreover, we use IPv6 background 
traffic for our measurements as opposed to [17], which uses 
IPv4 background traffic and primarily focuses on VoIP 
performance with 6to4 and IPsec. In contrast, we consider 
network performance with both VoIP and HTTP traffic passing 
through the 6to4/NAT gateway. The study in [18] only deals 
with the design, implementation, and performance of a bare PC 
NAT box for an IPv4 network. It does not consider IPv6 or the 
design and implementation of a 6to4 gateway with a co-located 
NAT. Here, we also compare network performance using 6to4 
with both co-located and decoupled NATs. 

III. DESIGN AND IMPLEMENTATION 

The self-supporting bare PC 6to4 gateway application has 
its own lean IPv6 and IPv4 stacks with direct interfaces to the 
hardware. There is no OS or kernel in the bare machine, and 
the application itself processes packets arriving from its two 
network interfaces. Ethernet Objects ETHOBJ1 and ETHOBJ2 
were implemented to interface with the two NICs. Fig. 1 shows 
the software architecture of the bare PC 6to4 application. 
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Figure 1.  Bare PC 6to4 gateway software architecture 

In the bare PC 6to4 gateway, only two tasks are 
implemented (MAIN and RCV). These two tasks are present in 
all bare PC applications. Other tasks are added as needed based 
on the application. The gateway application includes v4 and v6 
handlers to process the IPv4 and IPv6 packets respectively. In 
addition, a 6to4 handler is used for 6to4 processing. The 6to4 
gateway also has a NAT handler to process IPv4 traffic 
entering and exiting the internal network. The NAT mapping 
table is stored in a data structure called TCBTABLE. The bare 
gateway application also sends router advertisements to IPv6 
clients as done by the radvd daemon [19] used in Linux routers. 
Router advertisements in the bare gateway are handled 
independently of the RCV task since they have to be sent even 
if no packets are received. All bare gateway application code is 
written in C/C++. 

The bare PC 6to4 gateway application is started by 
invoking an executable boot program stored on a USB flash 
drive. The initial sector of the USB loads the menus that an 
administrator can use to select and configure the 6to4 
application. Once the 6to4 executable is run, the self-
supporting bare PC application object containing the 
monolithic executable is loaded. Control is then passed to the 
MAIN task, which starts the IPv6 router advertisements and 
passes control to the v6 handler. The RCV task is only called 
when a packet arrives on either interface. 

The packet processing logic of the 6to4 gateway is shown 
in Fig. 2. When a packet arrives, the RCV task checks the 
packet to determine the packet type (i.e., IPv4 or IPv6). If the 
packet is an IPv6 packet, it is encapsulated and forwarded. If 
the packet is an IPv4 packet, the IP header is checked to see if 
it is a 6to4 packet. If so, the packet is forwarded after 
decapsulation or dropped, depending respectively on whether 
the IP checksum is valid or fails. If the packet is not 6to4, the 
usual IPv4 processing is done prior to forwarding it. 
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Figure 2.  Packet processing logic 

IV. PERFORMANCE 

We performed several experiments to measure performance 
of 6to4/NAT gateways as described below. The generic 
network setup for the experiments is shown in Fig. 3. 
Modifications were made as needed to this setup for 
experiments with co-located or decoupled NATs. The 
6to4/NAT gateways run on Linux (Fedora 12) or a bare PC. In 
the first set of experiments, 6to4 and NAT functionality were 
configured on the same gateway (co-located NAT). In this 
case, NAT was configured to process encapsulated IPv6 
packets with protocol type 41. In the second set of experiments, 
NAT and 6to4 functionalities were decoupled to run on 
separate machines. We conducted four different experiments 
with decoupled NATs: 

 Linux-Linux (both NAT and 6to4 on Linux) 

 Linux-bare (NAT on Linux and 6to4 on bare) 

 bare-Linux (NAT on bare and 6to4 on Linux) 

 bare-bare (both NAT and 6to4 on bare) 

The hardware and software used were as follows: the 6to4 
and NAT gateways run on Dell OptiPlex GX270 PCs with  
Intel Pentium IV 2.4 GHz processors, Intel PRO 10/100 and 
3Com 10/100 NICs, and 512 MB RAM. The Linux systems 
used Fedora 12 Linux kernel 2.6.35 with IPtables for NAT and 
radvd for router advertisements. The client and server systems 
were Dell Optiplex G520 PCs with 1 GB RAM, Intel 
PRO/1000 NICs, and 2.4GHz processors. The switches were 
100 Mbps Ethernet Cisco Catalyst 2950 (S1 and S4) and 
Netgear GS108 (S2 and S3). Data collection was done by 
capturing packets using Wireshark [20] with mirrored ports on 
switches S1 and S4. 
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Figure 3.  Experimental setup 

The experiments were conducted by passing different types 
of traffic through the gateway in the presence of background 
traffic generated by using the MGEN traffic generator version 
5 [21]. For HTTP traffic, we configured an Apache Web server 
with IPv6 and IPv4 running on Fedora 12. For VoIP traffic, we 
used Linphone clients [22]. Each experiment was run 3 times 
and the measured values were averaged. The values averaged 
did not differ significantly. The Linux gateway was configured 
with minimal functionality i.e., all unessential services on it 
were disabled. 

A. Connection Time 

We define the connection time as the time it takes for a 
TCP connection to be established by measuring the delay 
between the SYN and ACK from the client. The connections to 
the Web server were made in the presence of IPv6 background 
network traffic at 50 Mbps. Fig. 4 shows that the connection 
time for a decoupled NAT is higher than that for a co-located 
NAT. For Linux, the average connection times are 1.91 ms and 
1.72 ms with decoupled and co-located NATs respectively, 
indicating an improvement of about 11% with a co-located 
NAT. For the bare PC, the average connections times are 1.38 
ms and 0.98 ms with decoupled and co-located NATs 
respectively. This shows a performance improvement of 40% 
with a co-located NAT. Comparing the bare PC and Linux 
gateways, the bare PC performs 76% and 39% better than a 
Linux gateway with co-located and decoupled NATs 
respectively. With decoupled NATs, using a bare PC gateway 
for both devices (bare-bare) is best, and a bare 6to4 gateway 
and a Linux NAT (Linux-bare) has better performance than the 
reverse configuration (bare-Linux) as would be expected. 

 



 

Figure 4.  Connection time 

B. Response Time 

The response time is the time to download a file for an 
HTTP GET request i.e., the delay between the GET and OK 
messages. The HTTP traffic was generated by requesting 
HTML pages with embedded images of sizes ranging from 4 
KB to 150 KB in the presence of 50 Mbps IPv6 background 
network traffic. Fig. 5 shows that performance of both the 
Linux and bare gateways with a co-located NAT is better than 
with a decoupled NAT. The performance improvements with a 
co-located NAT versus a decoupled NAT are 7% and 34% for 
the Linux and bare gateways respectively, and the bare PC 
performs 51% and 38% better than the Linux gateway with a 
co-located and decoupled NAT respectively. The figure also 
shows the increase in IPv6 response time as file size increases; 
with decoupled NATs, performance for a bare 6to4 gateway 
and a Linux NAT (Linux-bare) is again better than for the 
reverse configuration (bare-Linux). 

 
Figure 5.  Response time 

C. VoIP Call Setup 

VoIP traffic was generated by playing a 3-minute audio file 
while the background traffic rate was varied from 0-90 Mbps. 
Fig. 6 shows the call setup times for VoIP at various 
background traffic rates measured as the delay between the SIP 
INVITE and the 200 OK messages. Call setup times with a co-
located NAT is less than with a decoupled NAT for both the 
Linux and bare gateways. The improvements with co-located 
versus decoupled NATs are 38% and 57% for the Linux and 
bare gateways respectively, and the bare gateway has an 86% 
and 65% improvement over the Linux gateway with co-located 
and decoupled NATs respectively. 

 

Figure 6.  VoIP call setup time 

D. Mean Jitter 

Fig. 7 shows the increase in mean jitter for VoIP traffic 
with increasing background traffic. The performance 
improvements with a co-located NAT over a decoupled NAT 
for the Linux and bare gateways are 28% and 33% 
respectively, and the bare PC performs 82% and 75% better 
than the Linux gateway with co-located and decoupled NATs 
respectively. 

 

Figure 7.  Mean jitter for VoIP  

E. VoIP Throughput 

Fig. 8 shows the decrease in VoIP throughput with 
increasing background traffic.  
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The performance improvements for the Linux and bare 
gateways with a co-located versus a decoupled NAT are 12% 
and 5% respectively, and the bare PC performs 23% and 35% 
better than the Linux gateway with co-located and decoupled 
NATs respectively. 

 
 

Figure 8.  VoIP throughput 

F. Packet Loss 

The increase in packet loss as the background traffic rate 

increases is shown in Fig 9. No packet loss occurs when the 

background traffic is less than 50 Mbps. The packet loss ratio 

(or rate) is less with a co-located than with a decoupled NAT 

for both the bare and Linux gateways. The decrease in packet 

loss ratio with a co-located over a decoupled NAT for the 

Linux and bare gateways is 16% and 13% respectively, and 

the packet loss ratio decreases by 51% and 52% due to using a 

bare gateway instead of a Linux gateway with co-located and 

decoupled NATs respectively. 

 

 
Figure 9.  VoIP packet loss rate 

G. RTT 

Fig. 10 shows the IPv6 round trip time (RTT) for the 
network.  

To measure the RTT, we used the ping6 utility to send 100 
packets containing 1400 bytes each with background traffic 
varying from 10-90 Mbps. The RTT increases with increasing 
background traffic as expected irrespective of whether co-
located or decoupled NATs are used, and a co-located NAT has 
a smaller RTT than a decoupled NAT for both the Linux and 
bare gateways. The RTT decreases by 45% and 34% with a co-
located over a decoupled NAT for the Linux and bare gateways 
respectively, and the RTT decreases by 57% and 60% for the 
bare PC versus the Linux gateway with co-located and 
decoupled NATs respectively. 

 

Figure 10.  RTT for Ping6 

H. CPU Utilization 

To measure the CPU utilization of the co-located gateways, 
we varied the background traffic rate from 10-200 Mbps. Fig. 
11 shows that the peak CPU utilization occurs with 90 Mbps of 
network traffic and is 1.9% for Linux and 0.5% for the bare 
gateway. The smaller CPU utilization in the bare gateway is 
due to using a single thread of execution and streamlined code 
to process packets. 

 

Figure 11.  CPU utilization  
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V. CONCLUSION 

We considered the performance of 6to4 gateways with co-
located and decoupled NATs using Linux and a bare PC with 
no operating system. We also discussed implementation details 
of the latter. To compare gateway performance, we evaluated 
response and connection time for HTTP traffic, and call setup 
time, jitter, and throughput for VoIP traffic in a test LAN. We 
also compared packet loss, RTT, and CPU utilization. In 
general, our results show that performance of a 6to4 gateway is 
better with a co-located NAT than with a decoupled NAT. For 
a Linux gateway, there is a performance improvement of 
between 7%-45%, and for a bare PC gateway, there is a 
performance improvement of between 13%-57%. Moreover, 
using a bare PC instead of Linux gateway improves 
performance by 23%-86% with co-located and decoupled 
NATs. Reduction of operating system overhead can improve 
performance on a 6to4 gateway with either a co-located or a 
decoupled NAT. 
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