
A 6to4 Gateway with Co-located NAT

Anthony K. Tsetse, Alexander L. Wijesinha, Ramesh K. Karne, and Alae Loukili

Department of Computer & Information Sciences

Towson University

Towson, MD 21252, U.S.A.

{atsetse, awijesinha, rkarne,aloukili}@towson.edu

Abstract—IPv6 was proposed as the next-generation IP

primarily to deal with the problem of IPv4 address depletion

caused by the rapid growth of the Internet. 6to4 tunneling is one

of the currently used transition mechanisms for enabling IPv6

devices and networks to connect to today’s Internet, which is

primarily IPv4-based. Since most internal networks use private

IPv4 addresses, it becomes necessary to provide both 6to4 and

NAT functionality at the network boundary in order to handle

IPv4 and IPv6 traffic. We evaluate the performance of a 6to4

Linux gateway with a co-located NAT. To enable 6to4 and NAT

overhead to be determined, we also compare performance of the

Linux gateway and a compatible 6to4 gateway with a co-located

NAT that runs on a bare PC with no operating system or kernel

installed. We describe the design and implementation of the bare

PC 6to4 gateway with a co-located NAT, and also compare the

performance of 6to4 in a test LAN with a co-located and a

decoupled NAT (where 6to4 and NAT run on different devices).

We conducted experiments with HTTP and VoIP traffic, and also

measured RTT and CPU utilization. The results show that

performance using 6to4 with a co-located NAT is better than with

a decoupled NAT regardless of whether a Linux or a bare 6to4

gateway is used. In general, performance improvements with a

co-located versus a decoupled NAT range from 34%-57% for the

bare PC gateway and 7%-45% for the Linux gateway.

Furthermore, performance improvements for a bare PC versus a

Linux gateway range from 23%-86% with co-located and

decoupled NATs. A 6to4 gateway with a co-located NAT can be

used to improve network performance during the IPv6-IPv4

transition.

Keywords-IPv6; 6to4; gateway; tunelling; NAT; bare PC.

I. INTRODUCTION

Deployment of Internet Protocol Version 6 (IPv6) [1] in the
Internet has been relatively slow since its introduction over a
decade ago. There are a variety of business and practical
reasons for the low prevalence of IPv6 networks. However, the
difficulty of agreeing on a single technology or standard for use
during the IPv4-IPv6 transition has made it harder for IPv6
networks to communicate across the existing IPv4 network
infrastructure. Several transition mechanisms were originally
proposed [2]. Since then, an automatic tunneling technique
known as 6to4 [3] has become one of the most widely used
transition mechanisms [4]. 6to4 can be deployed on end
systems as well as on routers/gateways, and most operating
systems support 6to4.

Unfortunately, using 6to4 on the Internet has proved to be
challenging due to asymmetry in outbound and return
addresses with long routing paths, firewalls, and other causes.
This has resulted in a relatively high rate of connection failures

being reported on many Web sites, and suggestions have been
made to disable 6to4 altogether. A recent informational RFC
[5] provides advice to ISPs, content providers and
implementers regarding the avoidance of 6to4 failures. It is
expected therefore that 6to4 will continue to be used during the
transition period.

6to4 gateways are usually dual stack devices deployed at
the edge of the network. It is convenient to configure 6to4
gateways to handle both IPv4 and IPv6 packets that may be
generated by internal networks. Since internal IPv4 traffic
almost always uses private (non-routable) addresses, Network
Address Translation (NAT) [6] is then needed. This implies
that a 6to4 gateway must have a co-located NAT [7], or else
have NAT performed on another device. We refer to the latter
approach as 6to4 with a decoupled NAT. While a co-located
NAT is convenient to use, it has more overhead than a gateway
that only handles 6to4 traffic. We conduct studies to evaluate
the performance of a 6to4 gateway on Linux with a co-located
NAT. In order to compare the overhead of only the 6to4 and
NAT functions, we also implemented a 6to4 gateway with a
co-located NAT as a bare PC application that runs with no
operating system (OS) or kernel support.

In particular, we describe the design and implementation of
the bare PC 6to4 gateway with a co-located NAT, and present
the results of experiments conducted in a test LAN
environment to compare the performance of the Linux and bare
PC gateways with a co-located NAT. Our results show that
both the Linux and bare PC 6to4 gateways with a co-located
NAT perform better than their respective counterparts with a
6to4 gateway and a decoupled NAT. We also determine the
extent of network performance improvement for HTTP and
VoIP traffic when a bare PC 6to4 gateway with co-located and
decoupled NATs are used instead of the Linux systems.

The remainder of this paper is organized as follows. In
Section II, we briefly discuss related work. In Section III, we
describe the design and implementation of the bare PC 6to4
gateway with a co-located NAT, and in Section IV we present
the results of the performance study. The conclusion is given in
Section V.

II. RELATED WORK

Currently, 6to4 [3], Teredo [7, 8], tunnel-brokers [9], dual
stack [10], and translation [11] are the main IPv4-IPv6
transition mechanisms in use. 6to4 [3] allows IPv6 nodes to
communicate with each other over the global IPv4
infrastructure. This is done by using a 2002 address prefix for
IPv6 hosts.

Teredo and its Linux version Miredo help nodes located
behind NATs to gain IPv6 connectivity. However,
Teredo/Miredo requires relays and/or servers, and is intended
to be used as a last resort due to its encapsulation overhead.
Tunnel brokers can use Tunnel Setup Protocol (TSP) to set up
tunnel parameters and encapsulate IPv6 in IPv4 and vice-versa.
Dual stack devices have implementations of both IPv4 and
IPv6 protocols running independently; most operating systems
support dual stacks. The dual stack approach only allows
communication between like network nodes (i.e., IPv6-IPv6
and IPv4-IPv4). Translation mechanisms attempt to translate
the IPv6 headers into IPv4 headers and vice-versa. The China
Education and Research Network (CERNET) recently
proposed a new technique for IPv4-IPv6 translation [12].

Most studies dealing with IPv4-IPv6 transition propose new
transition mechanisms, or compare the performance of existing
transition mechanisms. In [13], a hierarchical routing
architecture to integrate both IPv4 and IPv6 networks is
proposed. A performance study on configured tunnels and 6to4
mechanisms running on Linux is described in [14], while 6to4
and tunnel broker performance is compared in [15]. In [16],
VoIP performance over IPv4 and IPv6 is evaluated using a bare
PC softphone as a control to analyze the effect of OS overhead
on VoIP call quality. VoIP performance with IPv6 and IPsec is
studied in [17], and it is concluded that NAT and 6to4
processing (using a decoupled NAT) have little impact on VoIP
quality in IPv6 networks.

Although there have been several studies on the
performance of various IPv4/IPv6 transition mechanisms, this
is the first study evaluating the performance of 6to4 gateways
with a co-located NAT. Our work also differs from previous
work in that we describe the design and implementation of a
6to4 gateway application with NAT on a bare PC that runs
without an OS. The study in [16] uses a bare PC softphone to
study VoIP performance, while this study uses a bare PC as a
network gateway device. Moreover, we use IPv6 background
traffic for our measurements as opposed to [17], which uses
IPv4 background traffic and primarily focuses on VoIP
performance with 6to4 and IPsec. In contrast, we consider
network performance with both VoIP and HTTP traffic passing
through the 6to4/NAT gateway. The study in [18] only deals
with the design, implementation, and performance of a bare PC
NAT box for an IPv4 network. It does not consider IPv6 or the
design and implementation of a 6to4 gateway with a co-located
NAT. Here, we also compare network performance using 6to4
with both co-located and decoupled NATs.

III. DESIGN AND IMPLEMENTATION

The self-supporting bare PC 6to4 gateway application has
its own lean IPv6 and IPv4 stacks with direct interfaces to the
hardware. There is no OS or kernel in the bare machine, and
the application itself processes packets arriving from its two
network interfaces. Ethernet Objects ETHOBJ1 and ETHOBJ2
were implemented to interface with the two NICs. Fig. 1 shows
the software architecture of the bare PC 6to4 application.

MAIN

RCV

V6

Handler

V4

Handler

6to4

Handler

NAT

Handler

TCB

TABLE

GW

Figure 1. Bare PC 6to4 gateway software architecture

In the bare PC 6to4 gateway, only two tasks are
implemented (MAIN and RCV). These two tasks are present in
all bare PC applications. Other tasks are added as needed based
on the application. The gateway application includes v4 and v6
handlers to process the IPv4 and IPv6 packets respectively. In
addition, a 6to4 handler is used for 6to4 processing. The 6to4
gateway also has a NAT handler to process IPv4 traffic
entering and exiting the internal network. The NAT mapping
table is stored in a data structure called TCBTABLE. The bare
gateway application also sends router advertisements to IPv6
clients as done by the radvd daemon [19] used in Linux routers.
Router advertisements in the bare gateway are handled
independently of the RCV task since they have to be sent even
if no packets are received. All bare gateway application code is
written in C/C++.

The bare PC 6to4 gateway application is started by
invoking an executable boot program stored on a USB flash
drive. The initial sector of the USB loads the menus that an
administrator can use to select and configure the 6to4
application. Once the 6to4 executable is run, the self-
supporting bare PC application object containing the
monolithic executable is loaded. Control is then passed to the
MAIN task, which starts the IPv6 router advertisements and
passes control to the v6 handler. The RCV task is only called
when a packet arrives on either interface.

The packet processing logic of the 6to4 gateway is shown
in Fig. 2. When a packet arrives, the RCV task checks the
packet to determine the packet type (i.e., IPv4 or IPv6). If the
packet is an IPv6 packet, it is encapsulated and forwarded. If
the packet is an IPv4 packet, the IP header is checked to see if
it is a 6to4 packet. If so, the packet is forwarded after
decapsulation or dropped, depending respectively on whether
the IP checksum is valid or fails. If the packet is not 6to4, the
usual IPv4 processing is done prior to forwarding it.

RCV PKT

V6 PKT? 6to4?
V4

Process

Valid

Chksum?

DROP

PKT

DecapsulateForward Pkt

Encapsulate
Y N

N

N

Figure 2. Packet processing logic

IV. PERFORMANCE

We performed several experiments to measure performance
of 6to4/NAT gateways as described below. The generic
network setup for the experiments is shown in Fig. 3.
Modifications were made as needed to this setup for
experiments with co-located or decoupled NATs. The
6to4/NAT gateways run on Linux (Fedora 12) or a bare PC. In
the first set of experiments, 6to4 and NAT functionality were
configured on the same gateway (co-located NAT). In this
case, NAT was configured to process encapsulated IPv6
packets with protocol type 41. In the second set of experiments,
NAT and 6to4 functionalities were decoupled to run on
separate machines. We conducted four different experiments
with decoupled NATs:

 Linux-Linux (both NAT and 6to4 on Linux)

 Linux-bare (NAT on Linux and 6to4 on bare)

 bare-Linux (NAT on bare and 6to4 on Linux)

 bare-bare (both NAT and 6to4 on bare)

The hardware and software used were as follows: the 6to4
and NAT gateways run on Dell OptiPlex GX270 PCs with
Intel Pentium IV 2.4 GHz processors, Intel PRO 10/100 and
3Com 10/100 NICs, and 512 MB RAM. The Linux systems
used Fedora 12 Linux kernel 2.6.35 with IPtables for NAT and
radvd for router advertisements. The client and server systems
were Dell Optiplex G520 PCs with 1 GB RAM, Intel
PRO/1000 NICs, and 2.4GHz processors. The switches were
100 Mbps Ethernet Cisco Catalyst 2950 (S1 and S4) and
Netgear GS108 (S2 and S3). Data collection was done by
capturing packets using Wireshark [20] with mirrored ports on
switches S1 and S4.

6to4

Client

Wireshark

Webserver

IPv4

Client

S1

S2

S3

S4

6to4

Gateway
NAT

Gateway

6to4

Gateway

Wireshark

Figure 3. Experimental setup

The experiments were conducted by passing different types
of traffic through the gateway in the presence of background
traffic generated by using the MGEN traffic generator version
5 [21]. For HTTP traffic, we configured an Apache Web server
with IPv6 and IPv4 running on Fedora 12. For VoIP traffic, we
used Linphone clients [22]. Each experiment was run 3 times
and the measured values were averaged. The values averaged
did not differ significantly. The Linux gateway was configured
with minimal functionality i.e., all unessential services on it
were disabled.

A. Connection Time

We define the connection time as the time it takes for a
TCP connection to be established by measuring the delay
between the SYN and ACK from the client. The connections to
the Web server were made in the presence of IPv6 background
network traffic at 50 Mbps. Fig. 4 shows that the connection
time for a decoupled NAT is higher than that for a co-located
NAT. For Linux, the average connection times are 1.91 ms and
1.72 ms with decoupled and co-located NATs respectively,
indicating an improvement of about 11% with a co-located
NAT. For the bare PC, the average connections times are 1.38
ms and 0.98 ms with decoupled and co-located NATs
respectively. This shows a performance improvement of 40%
with a co-located NAT. Comparing the bare PC and Linux
gateways, the bare PC performs 76% and 39% better than a
Linux gateway with co-located and decoupled NATs
respectively. With decoupled NATs, using a bare PC gateway
for both devices (bare-bare) is best, and a bare 6to4 gateway
and a Linux NAT (Linux-bare) has better performance than the
reverse configuration (bare-Linux) as would be expected.

Figure 4. Connection time

B. Response Time

The response time is the time to download a file for an
HTTP GET request i.e., the delay between the GET and OK
messages. The HTTP traffic was generated by requesting
HTML pages with embedded images of sizes ranging from 4
KB to 150 KB in the presence of 50 Mbps IPv6 background
network traffic. Fig. 5 shows that performance of both the
Linux and bare gateways with a co-located NAT is better than
with a decoupled NAT. The performance improvements with a
co-located NAT versus a decoupled NAT are 7% and 34% for
the Linux and bare gateways respectively, and the bare PC
performs 51% and 38% better than the Linux gateway with a
co-located and decoupled NAT respectively. The figure also
shows the increase in IPv6 response time as file size increases;
with decoupled NATs, performance for a bare 6to4 gateway
and a Linux NAT (Linux-bare) is again better than for the
reverse configuration (bare-Linux).

Figure 5. Response time

C. VoIP Call Setup

VoIP traffic was generated by playing a 3-minute audio file
while the background traffic rate was varied from 0-90 Mbps.
Fig. 6 shows the call setup times for VoIP at various
background traffic rates measured as the delay between the SIP
INVITE and the 200 OK messages. Call setup times with a co-
located NAT is less than with a decoupled NAT for both the
Linux and bare gateways. The improvements with co-located
versus decoupled NATs are 38% and 57% for the Linux and
bare gateways respectively, and the bare gateway has an 86%
and 65% improvement over the Linux gateway with co-located
and decoupled NATs respectively.

Figure 6. VoIP call setup time

D. Mean Jitter

Fig. 7 shows the increase in mean jitter for VoIP traffic
with increasing background traffic. The performance
improvements with a co-located NAT over a decoupled NAT
for the Linux and bare gateways are 28% and 33%
respectively, and the bare PC performs 82% and 75% better
than the Linux gateway with co-located and decoupled NATs
respectively.

Figure 7. Mean jitter for VoIP

E. VoIP Throughput

Fig. 8 shows the decrease in VoIP throughput with
increasing background traffic.

0

0.5

1

1.5

2

2.5

C
o

n
n

ec
ti

o
n

 T
im

e(
m

s)

6to4/NAT configuration

Connection Time

Linux-

Linux

Bare-Bare

Co-located

Bare

Co-located

Linux

Linux-Bare

Bare-Linux

0.0

20.0

40.0

60.0

80.0

100.0

120.0

4 8 16 32 64 100 120 150

R
es

p
o

n
se

 T
im

e(
m

s)

File Size (KB)

IPv6 Response Time

Linux-Linux

Bare-Bare

Co-located

Bare

Co-located

Linux

Linux-Bare

Bare-Linux

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

10 20 30 40 50 60 70 80 90
C

a
ll

 S
et

u
p

n
 T

im
e(

m
s)

Background Traffic (Mbps)

Call Setup Time

Linux-

Linux

Bare-Bare

Co-located

Bare

Co-located

Linux

Linux-

Bare

Bare-

Linux

0.00

5.00

10.00

15.00

20.00

25.00

10 20 30 40 50 60 70 80 90

J
it

te
r
(m

s)

Background Traffic (Mbps)

Mean Jitter

Linux-Linux

Bare-Bare

Co-located

Bare

Co-located

Linux

Linux-Bare

Bare-Linux

The performance improvements for the Linux and bare
gateways with a co-located versus a decoupled NAT are 12%
and 5% respectively, and the bare PC performs 23% and 35%
better than the Linux gateway with co-located and decoupled
NATs respectively.

Figure 8. VoIP throughput

F. Packet Loss

The increase in packet loss as the background traffic rate

increases is shown in Fig 9. No packet loss occurs when the

background traffic is less than 50 Mbps. The packet loss ratio

(or rate) is less with a co-located than with a decoupled NAT

for both the bare and Linux gateways. The decrease in packet

loss ratio with a co-located over a decoupled NAT for the

Linux and bare gateways is 16% and 13% respectively, and

the packet loss ratio decreases by 51% and 52% due to using a

bare gateway instead of a Linux gateway with co-located and

decoupled NATs respectively.

Figure 9. VoIP packet loss rate

G. RTT

Fig. 10 shows the IPv6 round trip time (RTT) for the
network.

To measure the RTT, we used the ping6 utility to send 100
packets containing 1400 bytes each with background traffic
varying from 10-90 Mbps. The RTT increases with increasing
background traffic as expected irrespective of whether co-
located or decoupled NATs are used, and a co-located NAT has
a smaller RTT than a decoupled NAT for both the Linux and
bare gateways. The RTT decreases by 45% and 34% with a co-
located over a decoupled NAT for the Linux and bare gateways
respectively, and the RTT decreases by 57% and 60% for the
bare PC versus the Linux gateway with co-located and
decoupled NATs respectively.

Figure 10. RTT for Ping6

H. CPU Utilization

To measure the CPU utilization of the co-located gateways,
we varied the background traffic rate from 10-200 Mbps. Fig.
11 shows that the peak CPU utilization occurs with 90 Mbps of
network traffic and is 1.9% for Linux and 0.5% for the bare
gateway. The smaller CPU utilization in the bare gateway is
due to using a single thread of execution and streamlined code
to process packets.

Figure 11. CPU utilization

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Background Traffic (Mbps)

VoIP Throughput

Linux-Linux

Bare-Bare

Co-located

Bare

Co-located

Linux

Linux-Bare

Bare-Linux

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

40 50 60 70 80 90

L
o

ss
 R

a
ti

o
(%

)

Background Traffic (Mbps)

Loss Ratio

Linux-

Linux

Bare-Bare

Co-located

Bare

Co-located

Linux

Linux-Bare

Bare-Linux

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

10 20 30 40 50 60 70 80 90
R

T
T

(m
s)

Background Traffic (Mbps)

RTT

Linux-

Linux

Bare-Bare

Co-located

Bare

Co-located

Linux

Linux-Bare

Bare-Linux

0

0.5

1

1.5

2

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

C
P

U
 U

ti
li

za
ti

o
n

(%
)

Traffic (Mbps)

CPU Utilization

Linux Bare

V. CONCLUSION

We considered the performance of 6to4 gateways with co-
located and decoupled NATs using Linux and a bare PC with
no operating system. We also discussed implementation details
of the latter. To compare gateway performance, we evaluated
response and connection time for HTTP traffic, and call setup
time, jitter, and throughput for VoIP traffic in a test LAN. We
also compared packet loss, RTT, and CPU utilization. In
general, our results show that performance of a 6to4 gateway is
better with a co-located NAT than with a decoupled NAT. For
a Linux gateway, there is a performance improvement of
between 7%-45%, and for a bare PC gateway, there is a
performance improvement of between 13%-57%. Moreover,
using a bare PC instead of Linux gateway improves
performance by 23%-86% with co-located and decoupled
NATs. Reduction of operating system overhead can improve
performance on a 6to4 gateway with either a co-located or a
decoupled NAT.

REFERENCES

[1] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification”, RFC 2460, December 1998.

[2] R. Gilligan and E. Nordmark , “Transition Mechanisms for IPv6 Hosts
and Routers”, RFC 2893, August 2000.

[3] B. Carpenter and K. Moore, “Connection of IPv6 Domains via IPv4
Clouds”, RFC 3056, February 2001.

[4] D. Punithavathani and K. Sankaranarayanan, “IPv4/IPv6 Transition
Mechanisms”, European Journal of Scientific Research ISSN 1450-
216X Vol.34 No.1 (2009), pp.110-124.

[5] B. Carpenter, “Advisory Guidelines for 6to4 Deployment”,RFC 6343,
August 2011.

[6] P. Srisuresh and K. Egevang: “Traditional IP network address translator
(Traditional NAT)”, RFC3022, IETF Jan 2001.

[7] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs)”, RFC 4380, February 2006.

[8] D. Thaler, “Teredo Extension”, RFC 6081, January 2011.

[9] M. B. Viagenie and F. Parent, “IPv6 Tunnel Broker with the Tunnel
Setup Protocol (TSP) ”, RFC 5572, February 2010

[10] E. Nordmark and R. Gilligan, “Transition Mechanisms for IPv6 Hosts
and Routers”, RFC 4213, October 2005.

[11] G. Tsirtsis and P. Srisuresh, “Network Address Translation-Protocol
Translation (NAT-PT)”, RFC2766, February 2000.

[12] X. Li et al., “The China Education and Research Network (CERNET)
IVI Translation Design and Deployment for the IPv4/IPv6 Coexistence
and Transition”, RFC 6219 , May 2011.

[13] H. J. Liu and P. S. Liu, “Hierarchical Routing Architecture for
Integrating IPv4 and IPv6 Networks”, 2008 IEEE Asia-Pacific Services
Computing Conference.

[14] S. Narayan and S. Tauch, “IPv4-v6 Transition Mechanisms Network
Performance Evaluation on Operating Systems”, 2nd International
Conference on Signal Processing Systems (ICSPS), July 2010.

[15] C. Friaças, M. Baptista, M. Domingues and P. Ferreira, “6to4 versus
Tunnel Brokers”, International Multi-Conference on Computing in the
Global Information Technology (ICCGI'06).

[16] R. Yasinovskyy, A. L. Wijesinha, R. K. Karne and G. Khaksari, “A
Comparison of VoIP Performance on IPv6 and IPv4 Networks”,
ACS/IEEE International Conference on Computer Systems and
Applications”, pp. 603-609 , May 2009.

[17] R. Yasinovskyy, A. L. Wijesinha, and R Karne, “Impact of IPsec and
6to4 on VoIP Quality over IPv6”, 10th International Conference on
Telecommunications (ConTEL), pp 235-242, June 2009.

[18] A.K. Tsetse, A. L. Wijesinha, R. K. Karne, and A. Loukili, “A Bare PC
NAT Box”, The Second International Conference on Communications
and Information Technology (ICCIT 2012), to be published.

[19] Linux IPv6 Router Advertisement Daemon (radvd),
http://www.litech.org/radvd/ accessed 12/30/2011.

[20] Wireshark packet analyzer, http://www.wireshark.org/,accessed
12/28/2011.

[21] Multi-Generator (MGEN), http://cs.itd.nrl.navy.mil/work/mgen,
accessed 12/05/2011.

[22] Linphone, http://www.linphone.org/, accessed 12/28/2011.

