
A Bare PC NAT Box  

A.K. Tsetse, A. L. Wijesinha, R. K. Karne, and A. Loukili  

Department of Computer & Information Sciences 

Towson University 

Towson, MD 21252, U.S.A. 

{atsetse, awijesinha, rkarne,aloukili}@towson.edu 
 

Abstract—Bare PC systems are of interest to builders of 

minimalist platforms in the next-generation Internet. The bare 

platform enables software to run directly on ordinary PC 

hardware without using any operating system or kernel. Bare PC 

systems perform better than conventional systems and are 

immune to attacks that target the underlying operating system. 

We have designed and implemented a bare PC system to perform 

the essential function of NAT (Network Address Translation) 

that occurs at the boundary of all private and public networks 

including ISP boundaries in homes and businesses. We compared 

the performance of the bare PC NAT and that of a Linux-based 

NAT running on the same hardware in a test LAN environment. 

The results show that the bare PC NAT has significantly better 

performance than the Linux NAT with respect to inbound and 

outbound packet processing time, and throughput, regardless of 

packet size and payload application type. Moreover, there is a 

34% improvement in the maximum number of packets per 

second (pps) over Linux under heavy traffic. Internal timings on 

the bare PC NAT box indicate that there is plenty of capacity left 

for implementing supplementary functions such as packet 

filtering, deep packet inspection, and routing if needed.    

Keywords-NAT; bare PC; operating system; application object; 

home router; network security 

I. INTRODUCTION   

Network address translation (NAT) [1] is widely used in 
the Internet today for both IP address conservation [2] and 
security. In its most common form, known as Network Address 
Port Translation (NAPT), NAT translates the private (internal) 
IP address of the originating host device to a common public 
IP address representing the NAT device, and the application 
TCP or UDP port number to an external port number. NAT 
devices (also known as NAT boxes) are especially critical for 
corporate and home networks, and are usually co-located with 
a router and a firewall deployed at the entry/exit points of these 
networks. NAT functionality can also be provided by security 
gateways used as tunnel endpoints in IPsec VPNs.  

Currently, there is considerable interest in using 
“minimalist” platforms in the next-generation Internet for a 
variety of reasons [3]. While such “barebone” systems would 
likely contain some form of an OS, it is nevertheless useful to 
consider the extreme case of running software directly on the 
bare hardware with no intermediary or “layer” in between 
them. Bare PC prototypes can serve as gateway devices in 
secure networks due to their intrinsic immunity against typical 
OS-based attacks. Assuming that IPv4 will continue to exist for 
a reasonable period of time in the future Internet, it is 

necessary to implement at least basic NAT functionality on 
such bare gateway devices.    

In this paper, we describe the design and implementation of 
a self-supporting NAT application that runs on a bare PC with 
no operating system (OS), and conduct experiments in a LAN 
environment to compare its performance with a NAT device 
running on Linux. While it is expected that the bare PC NAT 
application will have better performance than a Linux NAT 
due to the elimination of OS overhead, it is important to 
determine the extent of improvement when designing 
“barebones” network security devices that incorporate NAT 
functionality. The remainder of this paper is organized as 
follows. In Section II, we provide a brief overview of related 
work. In Section III, we describe the design and 
implementation of the bare PC NAT application, and in 
Section IV, we present the experimental results. The 
conclusion is given in Section V. 

II. RELATED WORK 

Classically, NAT has been classified into four main types: 
Full Cone NAT, Restricted Cone NAT, Port Restricted Cone 
NAT, and Symmetric NAT [4]. However, the most common 
form used today is referred to as NAPT, which exist in all 
home and most corporate networks. NAPT requires the 
translation of both IP addresses and TCP or UDP port numbers 
in all inbound and outbound packets [1]. 

Well-known issues that arise due to using NAT are 
discussed in [5]. For example, to work in the presence of NAT, 
FTP requires special handling. NAT in general breaks the end-
to-end TCP connection paradigm in IP networks [6]. NAT also 
makes it difficult to initiate direct communication between 
peers. STUN [7] attempts to address this problem for UDP. In 
[8], a host-initiated approach to NAT is proposed wherein 
hosts would perform some of the NAT functions thereby 
reducing the workload on the NAT device. In [9], a NAT 
router relays the MAC addresses of internal hosts on a LAN to 
external hosts enabling them to identify LAN hosts using their 
MAC addresses. The design, implementation and performance 
of a programmable network address translator are the focus of 
[10]. The implementation and performance of a NAT gateway 
designed for signaling, and NAT traversal for peer-to-peer 
networks are discussed in [11] and [12] respectively. In 
contrast to previous work on NAT, this paper describes a novel 
network address translator that runs as an application on a bare 
PC with no OS. Such a NAT box is an alternative to a 
conventional NAT that would run on the hardware (typically 
supported by some form of an OS-most frequently Linux, or an 



adaptation of it). More details about bare PC applications are 
given in [13]-[15].  

III. DESIGN AND IMPLEMENTATION 

The bare PC NAT box runs an application that contains an 
Ethernet driver, does IP packet processing, and implements 
NAT functionality. Traffic enters from either of its two 
interfaces and is forwarded or dropped according to the criteria 
described below. NAT performance depends on the ability to 
process packets at high speed and look-up/update the NAT 
table efficiently when there is heavy traffic and a large number 
of entries in the table. Furthermore, the NAT application 
translates the address fields in the IP header and port number 
fields in the TCP or UDP header of received packets prior to 
forwarding them. It must also be capable of translating 
addresses and query IDs in ICMP packets (unless all ICMP 
traffic is dropped for security reasons). 

The software architecture of the bare PC NAT application 
is shown in Fig. 1. Only two tasks main and receive (RCV) are 
implemented. These tasks are required by all bare PC 
applications (additional tasks are added as needed for a given 
application). In this case, the RCV task is responsible for 
handling received packets all the way from the Ethernet level 
through the IP level and NAT-related processing. The main 
task runs at start-up and whenever the RCV task terminates 
i.e., after a packet is forwarded.  

As in all bare PC applications, the bare PC NAT 
application is started by invoking an executable boot program 
stored on a USB flash drive. The initial sector of the USB 
loads the menus that an administrator can use to select and 
configure the NAT application. Once the NAT application is 
selected, a self-supporting bare PC application object 
containing the monolithic executable is loaded. Control is then 
passed to the main task. The Ethernet objects ETHOBJ1 and 
ETHOBJ2 represent the two network interfaces. Depending on 
the interface from which a packet arrives, the RCV task 
(RCVTSK in the figure) reads data from either ETHOBJ1 or 
ETHOBJ2, and a flag is set to indicate the relevant interface. 
Next, the RCV task calls the NAT Object (NATOBJ) which is 
responsible for NAT-related processing. The main data 
structure that stores the NAT table and other relevant protocol-
related information is the Transition Control Block (TCB 
table). Depending on the source and destination IP address of 
the packet, after translating the headers, the NAT Table is 
updated accordingly, and the packet is either forwarded to the 
internal or external interface. We have implemented ETHOBJ1 
and ETHOBJ2 as two instances of the same Ethernet object. 
However, this only works if both network interfaces are to 
Ethernets.  

Fig. 2 shows the main packet processing logic in a bare PC 
NAT application. Whenever a packet is received, the IP header 
checksum is verified. If the checksum fails, the packet is 
discarded. Otherwise, the source and destination IP addresses 
are checked to determine if the packet entered from the 

external or internal interface. If the packet is from an interface 
and destined for the same interface, the packet is dropped. If 
the packet is from the internal “LAN” interface, NATOBJ 
checks the TCB table for an existing entry. If an entry exists, 
its timeout value is refreshed and the translated packet is 
forwarded to the external interface. 

NATOBJ

MAIN 

TASK

RCVTSK

ETHOBJ1 ETHOBJ2

TCB 

TABLE

 

Figure 1.  Software architecture of a bare PC NAT 

If there is no existing entry in the TCB table, an entry is 
added prior to forwarding the packet to the external interface. 
For a packet entering from the external interface, if a valid 
entry exists in the TCB table, the packet is forwarded to the 
internal interface; else the packet is dropped. Prior to 
forwarding a packet, the appropriate IP address and TCP or 
UDP port number (or ICMP ID) translations are made to the 
relevant packet header fields. In case ICMP packets are to be 
handled, the processing logic is similar (except that there are 
no port numbers).  

The AddEntry method was implemented as an overloaded 
method with different processing for ICMP and TCP/UDP 
packets. Once this method is called for an outgoing packet that 
has no prior entry in the table, it invokes the InsertTCB 
method. This method computes a hash value based on the IP 
address and port number and returns a pointer to the record 
number of the next free slot in the table (after doing a search if 
needed). The record number is the table index and also serves 
as the translated port (for TCP/UDP) or translated query ID 
(for ICMP).  

Before a record for an outgoing packet is added to the NAT 
table, the SearchTCB method checks if there is an existing 
entry in the table that should be used. If so, this method 
computes a hash value (with a search if needed) and returns a 
pointer to the corresponding record in the TCB table. For 
incoming packets (from the external “WAN/Internet” 
interface), the source IP address and destination port is 
extracted. Since the destination port serves as an index to the 
TCB table, a search is not needed to look up the entry in the 
table. In the case of incoming ICMP packets from the 
“WAN/Internet” interface, the query ID serves as an index. 



Depending on the age field in a NAT entry, it may be deleted 
from the NAT table.  

The TCB table, which is the primary data structure storing 
all the necessary protocol-related information, can hold a 
maximum of 100,000 TCB records. Each NAT entry in the 
TCB table is of type TCB record with the following fields: 
source and destination IP addresses and ports, protocol, query 
ID (for ICMP), translated port, translated query ID, age, and 
availability (which indicates if an active entry is present in a 
slot). The average size of a NAT entry is 25 bytes. Microsoft 
Visual Studio was used for developing the bare NAT 
application. The main code for NATOBJ and other auxiliary 
protocols were written in C++. Since there is no OS, the 
application does not use any system calls. The drivers for the 
hardware interfaces (NIC, keyboard, display, and USB) were 
written using a combination of assembly and C code. 

Outgoing

Entry 

Exists

?

Translate

Update 

Entry 

Drop 

Pkt

For 

LAN

Y

Y

Y

N Entry 

Exists?
Drop Pkt

N

Forward 

Pkt to 

LAN

Y

Compute

Checksum

Pkt 

Arrives

Forward 

Pkt to 

WAN

Correct 

Checksum

?

Check 

SrcIP, 

DstIP

Y

Drop Pkt
N

Translate

 

Figure 2.  Packet processing logic 

 

Bare NAT 

Gateway

Internet Sink

WireShark

LanTrafficV2

LAN Client

WireShark

LanTrafficV2

100Mbps Switch 100Mbps Switch

 

Figure 3.  Test LAN 

IV. EXPERIMENTAL RESULTS 

The test LAN used for the performance study is shown in 
Fig. 3. All links and the two Ethernet switches were 100 Mbps 
and the NAT boxes to be tested were placed between the 
switches. Although the figure only shows a single client, more 
clients were added as needed. We conducted experiments to 
study NAT performance under both normal and heavy traffic. 
Three different configurations were used: no NAT, bare PC 
NAT, and Linux (Fedora) NAT. The detailed hardware and 
software specifications are given in Table I. Three types of 
traffic (TCP, ICMP, and HTTP) were used to generate normal 
(moderate) loads as follows: first, the source clients were 
configured to establish 16 simultaneous connections via 
LanTraffic V2 [16] to the sink using different ports and 
different IP datagram sizes. These sizes were based on the 
guidelines given in [17]. For each size, the source node then 
continuously transmitted TCP data to the sink for 10 minutes 
and the data was collected using a Wireshark packet analyzer 
and the LanTrafficV2 network tool. For ICMP, the ping 
command was used to directly transmit 200 packets between 
source and the sink for each datagram size. For HTTP traffic, 
http_load [18] was used to request files of varying sizes from 
an IIS Web server running on Windows 2008/server. To ensure 
fair comparison between the bare PC and the Linux (Fedora 
12) NAT, all non-essential services on the latter were disabled 
with the exception of IPtables.  

TABLE I.  HARDWARE AND SOFTWARE SPECIFICATIONS 

PC/Switch Role Hardware OS/Software (non-

bare only) 

Dell 
Optiplex 

GX270 

bare/ 
Linux 

NAT 

Gateway; 
bare client  

Pentium 4, 2.4 
GHz, 512 MB 

RAM, 3Com 

10/100 NIC, Intel 
PRO/1000 

Fedora Core 12 
(2.6.18-92.1.22) 

IP Tables 

Dell 

Optiplex 
GX755 

Web 

server 
 sink; OS 

clients 

Pentium 4, 2.4 

GHz, 1GB  
RAM, Intel 

PRO/1000 NIC  

Windows 2008 

Server, Fedora Core 
12 (2.6.18-92.1.22) 

http_load, 

LanTraffic V2, 
Windows XP SP3, 

Mgen5 

Netgear 

GS108 

Ethernet 

Switch 

  

 

To compare performance of the NAT boxes under heavy 
traffic, a) a mix of UDP and TCP traffic (80% TCP and 20% 
UDP) and b) TCP traffic only was generated.  



For this purpose, bare PC TCP clients and Windows UDP 
clients running Mgen5 [19] were used as sources; and an IIS 
Web server running on Windows 2008/server (configured to 
have 10 different IP addresses) was used as the sink. The bare 
clients established TCP connections to the server using 
different source/destination IP addresses and port numbers. 

A. Throughput and RTT 

Fig. 4 compares the throughput for TCP traffic with and 
without NAT using LAN_Traffic V2. As expected, throughput 
without using NAT is higher compared to that using a bare 
PC/Linux NAT. However, the peak throughput is about 70 
Mbps for the bare PC NAT and about 63 Mbps for Linux (i.e., 
an improvement of about 11%).  Fig. 6 compares the round trip 
time (RTT) for ICMP traffic, which reflects the inbound and 
outbound NAT processing time. It can be seen that the 
processing times for the bare PC NAT are considerably less 
than those for the Linux NAT. 

 

Figure 4.  Throughput 

 

Figure 5.  RTT (ICMP) 

B. Connection and Response Times 

To measure connection and response time, HTTP_load was 
used to generate requests. In Fig. 6, the connection time for the 

Linux NAT increases with increasing file size to a peak value 
of 0.262ms for a size of 32KB. For the bare PC NAT, a 
relatively constant connection time of 0.214ms is maintained 
irrespective of the file size since data copying is minimized. In 
Fig. 7, the response times for the Linux and bare PC NAT are 
0.522ms and 0.5ms respectively. In both cases, a small 
performance improvement of about 5% is attained by the bare 
PC NAT. 

 

 

Figure 6.   Connection time 

 

Figure 7.  Response time 

C. Packets Processed Per Second (PPS) 

To measure pps, bare clients were used to generate TCP 
traffic. In Fig. 8, it is seen that the maximum number of 
packets processed per second (pps) by the Linux and bare NAT 
for TCP traffic only are 9,560 pps and 13,992 pps respectively 
(i.e., a 46% improvement). In Fig. 9, the corresponding 
maximum pps values for a traffic mix of UDP and TCP 
generated using bare clients and Mgen5 are 9,522 and 12,735 
for the Linux and bare PC NAT respectively (i.e., a 34% 
improvement). 

0
10
20
30
40
50
60
70
80
90

100

4
0

6
4

1
2

8

2
5

6

5
1

2

7
6

8

1
0

2
4

1
2

8
0

1
4

6
0

1
5

1
8

1
6

0
0

M
b

p
s

Packet Size (Bytes)

Bare Linux No- NAT 

0

0.2

0.4

0.6

0.8

1

1.2

4
0

6
4

1
2

8

2
5

6

5
1

2

7
6

8

1
0

2
4

1
2

8
0

1
4

6
0

1
5

1
8

1
6

0
0

m
s

Packet Size (Bytes)

Bare Linux No- NAT  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

16k 32K 64K

m
s

File Size (Bytes)

Linux Bare

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0.525

16k 32K 64K

m
s

File Size (Bytes)
Bare Linux



 

Figure 8.  Packets processed per second (TCP) 

 

Figure 9.  Packets processed per second (traffic mix) 

D. Internal Timings 

 Internal timings for key operations on the bare PC NAT 
are shown in Table II. The table also shows that the total CPU 
utilization measured at a maximum of 14,000 pps is 0.46%. 
This implies that the unused CPU cycles could be used by 
other processes (for example, to improve NAT security). 
Packet forwarding is seen to be the most expensive operation. 
This is because (unlike the Lookup and AddEntry functions, 
which only process headers), the forwarding function has to 
take into account the payload as well. The AddEntry function 
for outgoing packets is more expensive than Lookup because 
adding an entry to the NAT table requires a prior search and 
computation of a hash value. 

TABLE II.  INTERNAL TIMINGS FOR THE  BARE PC NAT  

Function 

Metric 

Processing Time 
(µs) 

CPU Utilization 
(%) 

Add Entry 1.83 0.144 

Look Up 0.165 0.12 

Forwarding 1.86 0.196 

 

V. CONCLUSION  

We described the design and implementation of a NAT 
application that runs on a bare PC with no OS. We also 
compared the performance of the bare PC NAT with a Linux 
NAT. The bare PC NAT has less overhead than the Linux 

NAT and performs better with respect to throughput, inbound 
and outbound processing, and packets processed per second. 
Results for moderate and heavy traffic, and for different packet 
sizes and various traffic types, were presented. Internal timings 
showed that while packet forwarding is the most expensive 
operation on the bare PC NAT, there is sufficient capacity left 
for implementing additional functionality such as security-
related processing and routing. Bare PC NAT applications 
could be used in the next-generation Internet to enhance 
performance as well as security. 

REFERENCES 

[1] P. Srisuresh and K. Egevang, “Traditional IP network address translator 
(Traditional NAT)”, RFC 3022, IETF Jan 2001. 

[2] M. Boucadair et al., ”Anticipate IPv4 address exhaustion a critical 
challenge for internet survival”, 1st International conference on evolving 
Internet , pp. 27-32, 2009. 

[3] S. Sen, R. Guerin  and K. Hosanagar, “Functionality-rich versus 
minimalist platforms”, Computer Communication Review, 41(5), pp. 
36-43, 2011. 

[4] J. Rosenberg, J. Weinberger, C. Huitema and R. Mahy, “STUN – 
Simple traversal of user datagram protocol (UDP) through network 
address translators (NATs)”, RFC 3489, IETF Mar 2003. 

[5] T. Hain, “Architectural implications of NAT”, RFC 2933, Nov 2000. 

[6]  S. Guha and P. Francis, “Characterization and measurement of TCP 
Traversal through NATs and firewalls”, Proceedings of the 5th ACM 
SIGCOMM conference on Internet measurement (IMC '05). 

[7] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session traversal 
utilities for NAT (STUN)”, RFC 5389,  Cisco October 2008. 

[8] L. Zheng,  “Host-initiated NAT, ” IETF Draft, March 2001. 

[9] R. Murakami, N. Yamai and K. Okayama, “A MAC-address relaying 
NAT router for PC identification from outside of a LAN”, 10th Annual 
international symposium on applications and the Internet, pp. 237-240, 
2010. 

[10] T-C. Huang, S. Zeadally, N. Chilamkurti and C-K. Shieh, “A 
programmable network address translator: design, implementation, and 
performance”, ACM Transactions on Internet technology, Vol. 10, No. 
1, Article 3, February 2010. 

[11]  R. Bless  and M. Rohricht, “Implementation and evaluation of a NAT-
Gateway for the general Internet signaling transport protocol”, IEEE 
12th International conference on high performance computing and 
communications, September  2010. 

[12] Z. Xiangming and W. Zheng, “A NAT traversal mechanism for peer-to-
peer networks”, International symposium on intelligent ubiquitous 
computing and education, 2009. 

[13] L. He, R. Karne and A. Wijesinha, “The design and performance of a 
bare PC Web Server”, International Journal of Computers and their 
Applications, vol. 15, June 2008, pp. 100 - 112. 

[14] G. Ford, R. Karne, A. L. Wijesinha and P. Appiah-Kubi, “The design 
and implementation of a bare PC email server”, 33rd Annual IEEE 
International computer software and applications conference 
(COMPSAC), 2009. 

[15] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He and S. Girumala, 
“A peer-to-peer bare PC VoIP application”, Consumer Communications 
& Networking Conference (CCNC), pp. 803-807, Jan 2007. 

[16]  LanTrafficV2 , http://www.zti-telecom.com , accessed  09/20/2011. 

[17] S. Bradner and J. McQuaid, “Benchmarking methodology for network 
interconnect devices”, RFC 2544,  IETF  Jan 2001. 

[18] http_ load, http://acme.com,  accessed  09/20/2011. 

[19] Mgen, http://cs.itd.nrl.navy.mil,  accessed 09/20/2011. 

0

3000

6000

9000

12000

15000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

P
P

S

Transmit Rate (pps)
Bare Linux

0

3000

6000

9000

12000

15000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

P
P

S

Transmit Rate (pps)
Linux Bare


