
TCP’s Retransmission Timer and the Minimum RTO

Alae Loukili, Alexander L. Wijesinha, Ramesh K. Karne, and Anthony K. Tsetse

Department of Computer & Information Sciences

Towson University

Towson, MD 21252, U.S.A.

{aloukili, awijesinha, rkarne, atsetse }@towson.edu

Abstract-We study the performance impact of recently

recommended TCP retransmission timer settings using a bare

PC Web server with no operating system or kernel running in

the machine. We evaluate server performance in a test LAN

with various settings of the alpha and beta constants used for

computing SRTT and RTTVAR in the presence of varying

levels of background traffic generated by conventional systems.

We also study performance with different minimum RTO

settings, and compare the performance of the bare PC Web

server using the recommended timer settings with the

performance of the Apache and IIS Web servers running on

Linux and Windows respectively. We find that 1) no

combinations of alpha and beta, or sampling strategies,

perform consistently better than others under the different

levels of background traffic; 2) lower minimum RTO settings

than the recommended 1-second minimum will work when

there is moderate background traffic, but the 1-second

minimum is best when there are higher levels of congestion;

and 3) using the standard timer settings but not using the TCP

SACK option and congestion control mechanisms degrades

bare server performance for some levels of background traffic.

Keywords: Retransmission timer, TCP, networking, congestion

control

I. INTRODUCTION

The retransmission timer is a key element of TCP. It is
used to set the retransmission timeout (RTO) value that
determines when TCP should retransmit. The RTO needs to
be set before initiating a connection and subsequently
updated based on the smoothed round-trip time (SRTT) and
the round-trip time variation (RTTVAR). The latter values
are computed using round-trip time (RTT) measurements.
The latest IETF recommendation for setting the
retransmission timer given in [1] reduces the initial RTO
setting from 3 seconds to 1 second based on the prevalence
of today’s high-speed networks and data from recent studies.
These studies showed that RTTs of most connections are less
than 1 second, retransmission rates during the handshake are
about 2%, and about 2.5% of connections have an RTT
exceeding 1 second. The IETF recommendations are
designed to protect networks from spurious retransmission
and congestion collapse.

However, TCP is used in a variety of environments, and
by applications that have special needs. Moreover, different
algorithms are used for computing SRTT, RTTVAR and
RTO (or minimum RTO), and for congestion control by
popular operating systems such as Linux and Windows. This
has led to alternative approaches to retransmission that have
been determined to be safe, but that do not conform to the

IETF standard. Clock granularity and the accuracy of RTT
measurements (and their frequency) are also of importance
when implementing the TCP retransmission algorithm.

In this study, we examine the impact of using the
recommended retransmission timer settings in [1]. Our
studies use a bare PC Web server [2] in which the server
application is intertwined with lean implementations of the
necessary network protocols and there is no operating system
or kernel running in the machine. The experiments are
conducted in a small test LAN with several routers. We first
measure bare PC Web server performance with various
settings of the alpha and beta constants used for computing
SRTT and RTTVAR in the IETF algorithm [1], and with
different RTT sampling strategies (frequencies). These
measurements are done in the presence of different levels of
background traffic generated by conventional systems to
create congestion. We then examine the effect on
retransmission of using alternative minimum RTO settings.
Finally, we compare the performance of the bare PC Web
server using the recommended settings in [1] with the
performance of the Apache and IIS Web servers running on
Linux and Windows respectively.

We find that no particular combinations of alpha and
beta, or sampling strategies, perform consistently better than
others under the different levels of background traffic. Also,
much lower minimum RTO settings than the recommended
1-second minimum will work when there is only moderate
background traffic, but the 1-second RTO minimum is best
when there are higher levels of congestion. However, not
using congestion control even with the standard timer
settings degrades performance depending on the level of
background traffic. The remainder of the paper is organized
as follows. In Section II, we present related work. In Section
III, we describe the test network used for experiments. In
Section IV, we give details of the experiments and present
the results. In Section V, we give the conclusion.

II. RELATED WORK

Many studies have examined various aspects of TCP’s
retransmission timer algorithm. In [3], the authors determine
how initial RTO settings (used by various operating system
versions at the time) impact packet loss rate and suggest
changing the initial RTO from 3 seconds to between 500 ms
and 1 second. In [4], the RTO algorithm is enhanced by
making it window-based rather than round-trip-time-based
so that unnecessary retransmissions and unfair resource
allocation could be minimized. In [5], the same authors
argue that a 1-second minimum RTO is only needed

http://towson.edu/

because of spurious retransmissions that are due to clock
granularity and delayed acks. They note that the first
problem is not an issue in modern operating systems, and
then provide a mechanism to extend the minimum RTO to
deal with the second problem. The mechanism is shown by
simulation studies to improve TCP performance in the case
of a wireless link connected to a high-speed backbone.

The Eifel response algorithm allows a TCP sender to
prevent the negative effects of a detected spurious timeout
by adapting the retransmission timer [6]. In [7], high-
resolution timers are used to solve the problem of
throughput collapse in datacenter Ethernets due to TCP
timeouts resulting from synchronized request workloads. In
[8], a large number of real TCP traces are analyzed, and it is
found that RTT values within each connection vary widely.
In [9], a new algorithm F-RTO for recovery after
retransmission timeout is proposed, and it is shown that
unnecessary retransmissions can be avoided without using
TCP options. In contrast to these previous studies, we
implement the RTO algorithm on a bare PC Web server
using the recently recommended TCP timer settings from
[1], and study its performance for various values of alpha
and beta.

III. TEST NETWORK

The test network used for the experiments consisted of
four subnets with clients and servers connected by routers as
shown in Fig. 1. The routers used Fedora 12 Kernel Linux
2.6.31.5-127.fc12.i686 and all network interface cards were
1 Gbps except for a 100 Mbps card on the client side of
router R1 in order to create congestion). The Ethernet
switches were 1 Gbps except for switch S0, which was 100
Mbps. The clients, servers and routers ran on identical Dell
OPTEPLEX GX 520 PCs.

Figure 1. Test network

IV. EXPERIMENTS AND RESULTS

The experiments used background traffic consisting of
10% UDP and 90% TCP at three different levels: 75 Mbps,
100 Mbps and 125 Mbps. The background traffic was
generated as follows: BT client used http-load [10] to
generate HTTP/1.1 traffic by requesting an uncompressed
320-KB page from BT Server (Apache HTTP Server 2.2.16
running Fedora 12 (Constantine) Kernel Linux 2.6.31.5-

127.fc12.i686), while Mgen source used the mgen traffic
generator [11] to generate UDP traffic to the Mgen sink.
Packets were captured using the Wireshark analyzer [12] at
the server side. The traces were used to deduce the values of
throughput and delay when the Web browser (Internet
Explorer 8.0.6001.18702 with Windows XP Professional
2002 SP3) on the client “Client” requested a 320-KB file
from the Web server “Server” (by computing the time
between the “GET” request and the last valid ack sent by the
client). Results using the Firefox v3.6.7 browser with Linux
Fedora 12 Kernel 2.6.31.5-127.fc12.i686 were similar. To
determine the effect of changing the values of alpha and beta,
the bare PC Web server TCP code was modified accordingly.
The measured sample values of RTT were then used to
compute the smoothed round trip time (SRTT), the variance
in round trip time (RTTVAR), and retransmission timeout
(RTO) as follows using the standard algorithm [1]:

RTTVARbetaRTTVARbetaSRTT – RTT

SRTT = (1- alpha)*SRTT + alpha*RTT

RTO = SRTT + max (G, K*RTTVAR)
Here K=4, and G is the clock granularity, which is 250

microseconds for the bare PC. We examined the effect of
changing the values of alpha and beta, and also the effect of
computing the value of RTO using 3 different sampling
strategies: 1) All: where the RTT measurement is based on
the RTTs of all ack packets per window of data; 2) One:
where the RTT measurement is based on the RTT of one ack
packet per window of data; 3) Some: where the RTT
measurement is based on the RTT of some ack packets per
window of data (typically, alternate acks were used). The
alpha and beta pairs whose combinations were used as the
nine weights W1-W9 are shown in Table I. The weight W1
uses the values of alpha and beta from [1]. This weight
together with the sampling strategy “One” (one sample per
RTT) is commonly used in TCP implementations.

A. Throughput and Delay

For each weight W1-W9 and each of the three sampling
strategies “All”, “One”, and “Some” defined above, the
throughput and delay with respect to the 320-KB file were
measured for background traffic levels of 75, 100, and 125
Mbps. The results are shown in Figs. 2-7.

TABLE I. ALPHA AND BETA VALUES USED AS WEIGHTS

 beta

alpha

1/4 3/8 1/8

1/8 W1 W2 W3

3/16 W4 W5 W6

1/16 W7 W8 W9

In Figs. 2 and 3 respectively, the throughput for 75 Mbps
background traffic varies between 8-16 Mbps) and the delay
varies between 40-100 ms. In Figs. 4-7, due to congestion
caused by the background traffic, the highest throughput for
100 and 125 Mbps background traffic was 450 and 375 Kbps
respectively, while the lowest throughput was 50 Kbps.
Delays for these higher levels of background traffic vary
between a few to over 40 ms. The results in general show
that while the often used W1/One combination gives the
maximum throughput only for 100 Mbps background traffic,

it has the minimum delay with both 100 and 125 Mbps
background traffic. However, no particular combination of
weight and sampling strategy is consistently better than the
others. Also, sampling more often does not always give
higher throughput or lower delays.

Figure 2. Throughput at 75 Mbps background traffic

Figure 3. Delay at 75 Mbps background traffic

B. RTO and RTT

To determine the accuracy of the computed RTO value
for the different weights W1-W9, we compare it with the
actual value of RTT in each case. As previously, we use the
three sampling strategies “some” (S), “one” (O), and “all”
(A), and background traffic levels of 75, 100, and 125 Mbps.
The results for these sampling strategies and the three
weights W1, W5, and W9 are shown in Table II (results for
the other combinations were similar). The values in the table
are the percentages of packets for which the RTT is within
the computed RTO for a given weight/sampling strategy
considering the two cases RTO ≤ 1 second and RTO > 1
second respectively. The table also shows the percentage of
packets whose RTT is less than 1 second but exceeds the
computed RTO. Such packets would not be retransmitted if
the minimum RTO setting is 1 second as required by [1].

For 75 Mbps background traffic, all packets had RTO < 1
second and the RTT did not exceed the RTO for a majority
of the packets (83-100%). For this level of background
traffic, the percentage of packets that would need to be
retransmitted if the minimum RTO is not set to 1 second is
highest (17%) with the W1/One combination. For 100 and
125 Mbps background traffic, although between 1-68% of
packets have RTO > 1 second, none of these packets needed
to be retransmitted. For these levels of background traffic,

for packets that have RTO < 1 second, almost all do not need
retransmission even if a minimum RTO setting of 1 second is
not used (regardless of the weight/sampling strategy
combination). For example, with the W1/One combination,
50% of packets have RTO < 1 second and none of the
packets need to be retransmitted.

Figure 4. Throughput at 100 Mbps background traffic

Figure 5. Delay at 100 Mbps background traffic

Figure 6. Throughput at 125 Mbps background traffic

Figure 7. Delay at 125 Mbps background traffic

0

2

4

6

8

10

12

14

16

18

w1 w2 w3 w4 w5 w6 w7 w8 w9

M
b

p
s

Weight

All

Some

 One

0

20

40

60

80

100

120

w1 w2 w3 w4 w5 w6 w7 w8 w9

m
s

Weight

All

Some

One

0

100

200

300

400

500

w1 w2 w3 w4 w5 w6 w7 w8 w9

 K
b

p
s

Weight

All

Some

One

0

10

20

30

40

w1 w2 w3 w4 w5 w6 w7 w8 w9

 s
ec

Weight

All

Some

One

0

50

100

150

200

250

300

350

400

w1 w2 w3 w4 w5 w6 w7 w8 w9

K
b

p
s

Weight

All

Some

One

0

10

20

30

40

50

w1 w2 w3 w4 w5 w6 w7 w8 w9

se
c

Weight

All

Some

One

TABLE II. PERCENTAGE OF PACKETS WITHIN MINIMUM RTO

 RTO ≤ 1 s RTO > 1 s

RTT ≤ RTO RTT > RTO,

RTT < 1 s

RTT < RTO

Mbps Wt. S O A S O A S O A

75 W1 96 83 96 4 17 4 0 0 0

W5 93 93 96 7 7 4 0 0 0

W9 94 100 96 6 0 4 0 0 0

100 W1 72 50 98 0 0 1 28 50 1

W5 86 59 88 0 0 0 14 41 12

W9 75 32 81 0 0 0 25 68 19

125 W1 73 50 62 0 0 0 27 50 38

W5 80 50 82 0 0 0 20 50 18

W9 73 50 90 0 0 0 27 46 10

The results of investigating the minimum RTO setting in

more detail are shown in Figs. 8 and 9. The graphs show the
percentage of packets that would avoid retransmission if the
minimum RTO thresholds were set to 0.25, 0.5, 0.75 and 1
second with 100 and 125 Mbps background traffic (the case
of 75 Mbps is not shown since the RTO was then always less
than 0.25 seconds and the percentage was 100% at all
thresholds). For 100 Mbps background traffic (Fig. 8), using
the current minimum RTO setting of 1 second, close to
100% of the packets avoid retransmission with the W1/All
combination. If a lower minimum RTO setting of 0.5 or 0.75
seconds is used, with the W1/All combination, the
percentage is essentially the same. However, the percentage
drops with the other combinations, and it can be as low as
50% even using a minimum RTO of 1 second with the
W1/One combination. At a higher background traffic level of
125 Mbps (Fig. 9), with the W1/All combination, only 60%
of packets avoid retransmission with a minimum RTO of 1
second, but there is only a small drop in this percentage
using a minimum RTO of 0.75 or 0.5 seconds. With the
W1/One combination, the percentage of packets avoiding
retransmission is 50% of packets using a minimum RTO of 1
second, but only 35% using a minimum RTO of 0.75 or 0.5
seconds.

C. Web Server Performance

To compare the performance of a bare PC Web server
with the standard timer settings in [1] and the Apache and IIS
Web servers, the goodput (i.e., the application throughput
discounting retransmissions) and delay were measured under
background traffic of 75, 100, and 125 Mbps when a pair of
servers are run together i.e., (bare PC, Apache), (Apache,
IIS), and (IIS, bare PC). Windows server 2008 (IIS 7) and
Apache HTTP Server 2.2.16 running Fedora 12
(Constantine) Kernel Linux 2.6.31.5-127.fc12.i686 were
used for the performance comparisons. The bare server used
only one sample measurement per RTT (i.e., the sampling
strategy “One”) in the RTO algorithm. Each experiment was
run 6 times and the average values are shown in Figs. 10-15
(each bar is the average for a given server-there were no
significant differences in the values averaged). In each
figure, the first two bars are for the bare and Apache servers
respectively when they run together, the third and fourth bars
are for the Apache and IIS servers respectively when they

run together, and the fifth and sixth bars are for the IIS and
bare servers respectively when they run together.

Figure 8. Percentage of packets avoiding retransmission at 100 Mbps

Background Traffic

Figure 9. Percentage of packets avoiding retransmission at 125 Mbps

background Traffic

For 75 Mbps of background traffic, both Apache and IIS
perform better than the bare server. For 100 and 125 Mbps
of background traffic, retransmissions occur and the delays
of the bare server are higher than for Apache and IIS, and its
goodput is lower than for IIS. Compared to Apache, the
goodput of the bare server is slightly higher with 125 Mbps
of background traffic, but with 100 Mbps of background
traffic, the goodput is lower. When run together, IIS
performs slightly better than Apache except that its delay for
75 Mbps background traffic is 20 ms more than for Apache.
The performance differences in Apache and IIS possibly
reflect the differences in their congestion control algorithms
and TCP implementations. The lack of congestion control in
the bare server (and its “go-back-n”/no SACK rule) results
in increased delays at 75 Mbps of background traffic and
more retransmissions at higher background traffic levels.

V. CONCLUSION

We studied the impact of changing the values of alpha
and beta in the TCP retransmission algorithm using recently
recommended initial timer settings. Our studies used a bare
PC Web server with no congestion control mechanisms and
no TCP optimizations. We also studied the performance of
the Web server for various values of the minimum
retransmission timeout, and compared the performance of the
bare server with the Apache and IIS Web servers. Our results
show that no values of alpha and beta are better than others,

0

20

40

60

80

100

RTO threshold=1 sec

RTO threshold=0.75 sec

RTO threshold=0.5 sec

RTO threshold=0.25 sec

0

20

40

60

80

100

RTO threshold=1 sec

RTO threshold=0.75 sec

RTO threshold=0.5 sec

RTO threshold=0.25 sec

and standard timer settings with no SACK and no congestion
control degrade performance for some traffic levels.

Figure 10. Web server goodput at 75 Mbps background traffic

Figure 11. Web server delay at 75 Mbps background traffic

Figure 12. Web server goodput at 100 Mbps background traffic

Figure 13. Web server delay at 100 Mbps background traffic

Figure 14. Web server goodput at 125 Mbps background traffic

Figure 15. Web server delay at 125 Mbps background traffic

REFERENCES

[1] V. Paxon, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s
Retransmission Timer,” RFC 6298, Jun. 2011.

[2] L. He , R. K. Karne ,A. Wijesinha , and A. Emdadi, “Design and
Performance of a Bare PC Web Server,” IJCTA, vol. 15, no. 2, pp.
110-112, Jun. 2008.

[3] N. Seddigh and M. Devetsikiotis, “Studies of TCP’s Retransmission
Timeout Mechanism,” IEEE ICC, vol. 6, pp 1834-1840, Jun. 2001.

[4] I. Psaras and V. Tsaoussidis, “Why TCP timers (still) don’t work
well,” Elsevier Computer Networks Journal, COMNET 2007.

[5] I. Psaras and V. Tsaoussidis, “The TCP minimum RTO revisited,” in
Proc. IFIP Networking, Atlanta, GA, May 2007.

[6] A. Gurtov and R. Ludwig, “The Eifel response algorithm for TCP,”
RFC 4015, Feb. 2005.

[7] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen,
G. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-
grained TCP retransmissions for datcenter communication,” in Proc.
ACM SIGCOMM, Barcelona, Spain, Aug. 2009.

[8] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay, “Variability in TCP
round-trip times,” in Proc. ACM SIGCOMM, Miami, FA, Oct. 2003.

[9] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: An Enhanced
Recovery Algorithm for TCP Retransmission Timeouts,” in Proc.
ACM SIGCOMM, Karlsruhe, Germany, Aug. 2003.

[10] http_load, available at http://www.acme.com, accessed: March 13,
2012.

[11] Mgen, available at http://cs.itd.nrl.navy.mil/work/mgen, accessed:
March 12, 2012.

[12] Wireshark, available at http://www.wireshark.org, accessed: March
13, 2012.

0

5

10

15

20

25

M
b

p
s

Web Server

Apache

Bare

Apache

IIS

Bare

IIS

0

20

40

60

80

100

120

140

 m
s

Web Server

Apache

Bare

Apache

IIS

Bare

IIS

0

50

100

150

200

250

300

 K
b

p
s

Web Server

Apache

Bare

Apache

IIS

Bare

IIS

0

5

10

15

20

Apache Bare Apache IIS Bare IIS

 s
ec

Web Server

Apache

Bare

Apache

IIS

Bare

IIS

0

50

100

150

200

250

300

350

 K
b

p
s

Web Server

Apache

Bare

Apache

IIS

Bare

IIS

0

5

10

15

20

25

30

35

40

se
c

Web Server

Apache

Bare

Apache

IIS

Bare

IIS

