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Abstract-We study the performance impact of recently 

recommended TCP retransmission timer settings using a bare 

PC Web server with no operating system or kernel running in 

the machine. We evaluate server performance in a test LAN 

with various settings of the alpha and beta constants used for 

computing SRTT and RTTVAR in the presence of varying 

levels of background traffic generated by conventional systems. 

We also study performance with different minimum RTO 

settings, and compare the performance of the bare PC Web 

server using the recommended timer settings with the 

performance of the Apache and IIS Web servers running on 

Linux and Windows respectively. We find that 1) no 

combinations of alpha and beta, or sampling strategies, 

perform consistently better than others under the different 

levels of background traffic; 2) lower minimum RTO settings 

than the recommended 1-second minimum will work when 

there is moderate background traffic, but the 1-second 

minimum is best when there are higher levels of congestion; 

and 3) using the standard timer settings but not using the TCP 

SACK option and congestion control mechanisms degrades 

bare server performance for some levels of background traffic. 
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I. INTRODUCTION  

The retransmission timer is a key element of TCP. It is 
used to set the retransmission timeout (RTO) value that 
determines when TCP should retransmit. The RTO needs to 
be set before initiating a connection and subsequently 
updated based on the smoothed round-trip time (SRTT) and 
the round-trip time variation (RTTVAR). The latter values 
are computed using round-trip time (RTT) measurements. 
The latest IETF recommendation for setting the 
retransmission timer given in [1] reduces the initial RTO 
setting from 3 seconds to 1 second based on the prevalence 
of today’s high-speed networks and data from recent studies. 
These studies showed that RTTs of most connections are less 
than 1 second, retransmission rates during the handshake are 
about 2%, and about 2.5% of connections have an RTT 
exceeding 1 second. The IETF recommendations are 
designed to protect networks from spurious retransmission 
and congestion collapse.  

However, TCP is used in a variety of environments, and 
by applications that have special needs. Moreover, different 
algorithms are used for computing SRTT, RTTVAR and 
RTO (or minimum RTO), and for congestion control by 
popular operating systems such as Linux and Windows. This 
has led to alternative approaches to retransmission that have 
been determined to be safe, but that do not conform to the 

IETF standard. Clock granularity and the accuracy of RTT 
measurements (and their frequency) are also of importance 
when implementing the TCP retransmission algorithm. 

In this study, we examine the impact of using the 
recommended retransmission timer settings in [1]. Our 
studies use a bare PC Web server [2] in which the server 
application is intertwined with lean implementations of the 
necessary network protocols and there is no operating system 
or kernel running in the machine. The experiments are 
conducted in a small test LAN with several routers. We first 
measure bare PC Web server performance with various 
settings of the alpha and beta constants used for computing 
SRTT and RTTVAR in the IETF algorithm [1], and with 
different RTT sampling strategies (frequencies). These 
measurements are done in the presence of different levels of 
background traffic generated by conventional systems to 
create congestion. We then examine the effect on 
retransmission of using alternative minimum RTO settings. 
Finally, we compare the performance of the bare PC Web 
server using the recommended settings in [1] with the 
performance of the Apache and IIS Web servers running on 
Linux and Windows respectively.  

We find that no particular combinations of alpha and 
beta, or sampling strategies, perform consistently better than 
others under the different levels of background traffic. Also, 
much lower minimum RTO settings than the recommended 
1-second minimum will work when there is only moderate 
background traffic, but the 1-second RTO minimum is best 
when there are higher levels of congestion. However, not 
using congestion control even with the standard timer 
settings degrades performance depending on the level of 
background traffic. The remainder of the paper is organized 
as follows. In Section II, we present related work. In Section 
III, we describe the test network used for experiments. In 
Section IV, we give details of the experiments and present 
the results. In Section V, we give the conclusion.  

II. RELATED WORK 

Many studies have examined various aspects of TCP’s 
retransmission timer algorithm. In [3], the authors determine 
how initial RTO settings (used by various operating system 
versions at the time) impact packet loss rate and suggest 
changing the initial RTO from 3 seconds to between 500 ms 
and 1 second. In [4], the RTO algorithm is enhanced by 
making it window-based rather than round-trip-time-based 
so that unnecessary retransmissions and unfair resource 
allocation could be minimized. In [5], the same authors 
argue that a 1-second minimum RTO is only needed 
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because of spurious retransmissions that are due to clock 
granularity and delayed acks. They note that the first 
problem is not an issue in modern operating systems, and 
then provide a mechanism to extend the minimum RTO to 
deal with the second problem. The mechanism is shown by 
simulation studies to improve TCP performance in the case 
of a wireless link connected to a high-speed backbone.  

The Eifel response algorithm allows a TCP sender to 
prevent the negative effects of a detected spurious timeout 
by adapting the retransmission timer [6]. In [7], high-
resolution timers are used to solve the problem of 
throughput collapse in datacenter Ethernets due to TCP 
timeouts resulting from synchronized request workloads. In 
[8], a large number of real TCP traces are analyzed, and it is 
found that RTT values within each connection vary widely. 
In [9], a new algorithm F-RTO for recovery after 
retransmission timeout is proposed, and it is shown that 
unnecessary retransmissions can be avoided without using 
TCP options. In contrast to these previous studies, we 
implement the RTO algorithm on a bare PC Web server 
using the recently recommended TCP timer settings from 
[1], and study its performance for various values of alpha 
and beta. 

III. TEST NETWORK  

The test network used for the experiments consisted of 
four subnets with clients and servers connected by routers as 
shown in Fig. 1. The routers used Fedora 12 Kernel Linux 
2.6.31.5-127.fc12.i686 and all network interface cards were 
1 Gbps except for a 100 Mbps card on the client side of 
router R1 in order to create congestion). The Ethernet 
switches were 1 Gbps except for switch S0, which was 100 
Mbps. The clients, servers and routers ran on identical Dell 
OPTEPLEX GX 520 PCs.  

 

 

Figure 1.  Test network 

IV. EXPERIMENTS AND RESULTS 

The experiments used background traffic consisting of 
10% UDP and 90% TCP at three different levels: 75 Mbps, 
100 Mbps and 125 Mbps. The background traffic was 
generated as follows: BT client used http-load [10] to 
generate HTTP/1.1 traffic by requesting an uncompressed 
320-KB page from BT Server (Apache HTTP Server 2.2.16 
running Fedora 12 (Constantine) Kernel Linux 2.6.31.5-

127.fc12.i686), while Mgen source used the mgen traffic 
generator [11] to generate UDP traffic to the Mgen sink. 
Packets were captured using the Wireshark analyzer [12] at 
the server side. The traces were used to deduce the values of 
throughput and delay when the Web browser (Internet 
Explorer 8.0.6001.18702 with Windows XP Professional 
2002 SP3) on the client “Client” requested a 320-KB file 
from the Web server “Server” (by computing the time 
between the “GET” request and the last valid ack sent by the 
client). Results using the Firefox v3.6.7 browser with Linux 
Fedora 12 Kernel 2.6.31.5-127.fc12.i686 were similar. To 
determine the effect of changing the values of alpha and beta, 
the bare PC Web server TCP code was modified accordingly. 
The measured sample values of RTT were then used to 
compute the smoothed round trip time (SRTT), the variance 
in round trip time (RTTVAR), and retransmission timeout 
(RTO) as follows using the standard algorithm [1]: 

RTTVARbetaRTTVARbetaSRTT – RTT

SRTT = (1- alpha)*SRTT + alpha*RTT   

RTO = SRTT + max (G, K*RTTVAR) 
Here K=4, and G is the clock granularity, which is 250 

microseconds for the bare PC. We examined the effect of 
changing the values of alpha and beta, and also the effect of 
computing the value of RTO using 3 different sampling 
strategies: 1) All: where the RTT measurement is based on 
the RTTs of all ack packets per window of data; 2) One: 
where the RTT measurement is based on the RTT of one ack 
packet per window of data; 3) Some: where the RTT 
measurement is based on the RTT of some ack packets per 
window of data (typically, alternate acks were used). The 
alpha and beta pairs whose combinations were used as the 
nine weights W1-W9 are shown in Table I. The weight W1 
uses the values of alpha and beta from [1]. This weight 
together with the sampling strategy “One” (one sample per 
RTT) is commonly used in TCP implementations.  

A. Throughput and Delay 

For each weight W1-W9 and each of the three sampling 
strategies “All”, “One”, and “Some” defined above, the 
throughput and delay with respect to the 320-KB file were 
measured for background traffic levels of 75, 100, and 125 
Mbps. The results are shown in Figs. 2-7. 

TABLE I.  ALPHA AND BETA VALUES USED AS WEIGHTS 

           beta 

alpha 

1/4 3/8 1/8 

1/8 W1 W2 W3 

3/16 W4 W5 W6 

1/16 W7 W8 W9 

In Figs. 2 and 3 respectively, the throughput for 75 Mbps 
background traffic varies between 8-16 Mbps) and the delay 
varies between 40-100 ms. In Figs. 4-7, due to congestion 
caused by the background traffic, the highest throughput for 
100 and 125 Mbps background traffic was 450 and 375 Kbps 
respectively, while the lowest throughput was 50 Kbps. 
Delays for these higher levels of background traffic vary 
between a few to over 40 ms. The results in general show 
that while the often used W1/One combination gives the 
maximum throughput only for 100 Mbps background traffic, 



it has the minimum delay with both 100 and 125 Mbps 
background traffic. However, no particular combination of 
weight and sampling strategy is consistently better than the 
others. Also, sampling more often does not always give 
higher throughput or lower delays.   

 

Figure 2.  Throughput at 75 Mbps  background traffic 

 

Figure 3.  Delay at 75 Mbps background traffic 

B. RTO and RTT 

To determine the accuracy of the computed RTO value 
for the different weights W1-W9, we compare it with the 
actual value of RTT in each case. As previously, we use the 
three sampling strategies “some” (S), “one” (O), and “all” 
(A), and background traffic levels of 75, 100, and 125 Mbps. 
The results for these sampling strategies and the three 
weights W1, W5, and W9 are shown in Table II (results for 
the other combinations were similar). The values in the table 
are the percentages of packets for which the RTT is within 
the computed RTO for a given weight/sampling strategy 
considering the two cases RTO ≤ 1 second and RTO > 1 
second respectively. The table also shows the percentage of 
packets whose RTT is less than 1 second but exceeds the 
computed RTO. Such packets would not be retransmitted if 
the minimum RTO setting is 1 second as required by [1]. 

For 75 Mbps background traffic, all packets had RTO < 1 
second and the RTT did not exceed the RTO for a majority 
of the packets (83-100%). For this level of background 
traffic, the percentage of packets that would need to be 
retransmitted if the minimum RTO is not set to 1 second is 
highest (17%) with the W1/One combination. For 100 and 
125 Mbps background traffic, although between 1-68% of 
packets have RTO > 1 second, none of these packets needed 
to be retransmitted. For these levels of background traffic, 

for packets that have RTO < 1 second, almost all do not need 
retransmission even if a minimum RTO setting of 1 second is 
not used (regardless of the weight/sampling strategy 
combination). For example, with the W1/One combination, 
50% of packets have RTO < 1 second and none of the 
packets need to be retransmitted. 

 

Figure 4.  Throughput at 100 Mbps background traffic 

 

Figure 5.  Delay at 100 Mbps background traffic 

 

Figure 6.  Throughput at 125 Mbps background traffic 

 

Figure 7.  Delay at 125 Mbps  background traffic 
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TABLE II.  PERCENTAGE OF PACKETS WITHIN MINIMUM RTO  

 

 

 

 

              RTO ≤ 1 s RTO > 1 s 

RTT ≤ RTO RTT > RTO, 

RTT < 1 s 

RTT < RTO 

Mbps Wt. S O A S O A S O A 

75 W1 96 83 96 4 17 4 0 0 0 

W5 93 93 96 7 7 4 0 0 0 

W9 94 100 96 6 0 4 0 0 0 

100 W1 72 50 98 0 0 1 28 50 1 

W5 86 59 88 0 0 0 14 41 12 

W9 75 32 81 0 0 0 25 68 19 

125 W1 73 50 62 0 0 0 27 50 38 

W5 80 50 82 0 0 0 20 50 18 

W9 73 50 90 0 0 0 27 46 10 

 
The results of investigating the minimum RTO setting in 

more detail are shown in Figs. 8 and 9. The graphs show the 
percentage of packets that would avoid retransmission if the 
minimum RTO thresholds were set to 0.25, 0.5, 0.75 and 1 
second with 100 and 125 Mbps background traffic (the case 
of 75 Mbps is not shown since the RTO was then always less 
than 0.25 seconds and the percentage was 100% at all 
thresholds). For 100 Mbps background traffic (Fig. 8), using 
the current minimum RTO setting of 1 second, close to 
100% of the packets avoid retransmission with the W1/All 
combination. If a lower minimum RTO setting of 0.5 or 0.75 
seconds is used, with the W1/All combination, the 
percentage is essentially the same. However, the percentage 
drops with the other combinations, and it can be as low as 
50% even using a minimum RTO of 1 second with the 
W1/One combination. At a higher background traffic level of 
125 Mbps (Fig. 9), with the W1/All combination, only 60% 
of packets avoid retransmission with a minimum RTO of 1 
second, but there is only a small drop in this percentage 
using a minimum RTO of 0.75 or 0.5 seconds. With the 
W1/One combination, the percentage of packets avoiding 
retransmission is 50% of packets using a minimum RTO of 1 
second, but only 35% using a minimum RTO of 0.75 or 0.5 
seconds. 

C. Web Server Performance   

To compare the performance of a bare PC Web server 
with the standard timer settings in [1] and the Apache and IIS 
Web servers, the goodput (i.e., the application throughput 
discounting retransmissions) and delay were measured under 
background traffic of 75, 100, and 125 Mbps when a pair of 
servers are run together i.e., (bare PC, Apache), (Apache, 
IIS), and (IIS, bare PC). Windows server 2008 (IIS 7) and 
Apache HTTP Server 2.2.16 running Fedora 12 
(Constantine) Kernel Linux 2.6.31.5-127.fc12.i686 were 
used for the performance comparisons. The bare server used 
only one sample measurement per RTT (i.e., the sampling 
strategy “One”) in the RTO algorithm. Each experiment was 
run 6 times and the average values are shown in Figs. 10-15 
(each bar is the average for a given server-there were no 
significant differences in the values averaged). In each 
figure, the first two bars are for the bare and Apache servers 
respectively when they run together, the third and fourth bars 
are for the Apache and IIS servers respectively when they 

run together, and the fifth and sixth bars are for the IIS and 
bare servers respectively when they run together. 

   

Figure 8.  Percentage of packets avoiding retransmission at 100 Mbps 

Background Traffic 

 

Figure 9.  Percentage of packets avoiding retransmission at 125 Mbps 

background Traffic 

For 75 Mbps of background traffic, both Apache and IIS 
perform better than the bare server. For 100 and 125 Mbps 
of background traffic, retransmissions occur and the delays 
of the bare server are higher than for Apache and IIS, and its 
goodput is lower than for IIS. Compared to Apache, the 
goodput of the bare server is slightly higher with 125 Mbps 
of background traffic, but with 100 Mbps of background 
traffic, the goodput is lower. When run together, IIS 
performs slightly better than Apache except that its delay for 
75 Mbps background traffic is 20 ms more than for Apache. 
The performance differences in Apache and IIS possibly 
reflect the differences in their congestion control algorithms 
and TCP implementations. The lack of congestion control in 
the bare server (and its “go-back-n”/no SACK rule) results 
in increased delays at 75 Mbps of background traffic and 
more retransmissions at higher background traffic levels.  

V. CONCLUSION 

We studied the impact of changing the values of alpha 
and beta in the TCP retransmission algorithm using recently 
recommended initial timer settings. Our studies used a bare 
PC Web server with no congestion control mechanisms and 
no TCP optimizations. We also studied the performance of 
the Web server for various values of the minimum 
retransmission timeout, and compared the performance of the 
bare server with the Apache and IIS Web servers. Our results 
show that no values of alpha and beta are better than others, 
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and standard timer settings with no SACK and no congestion 
control degrade performance for some traffic levels.  

 

Figure 10.  Web server goodput at 75 Mbps background traffic 

 

Figure 11.  Web server delay at 75 Mbps background traffic 

 

Figure 12.  Web server goodput at 100 Mbps background traffic 

 

Figure 13.  Web server delay at 100 Mbps background traffic 

 

Figure 14.  Web server goodput at 125 Mbps background traffic 

 

Figure 15.  Web server delay at 125 Mbps background traffic  
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