
A Bare PC TLS Webmail Server

 Patrick Appiah-Kubi Ramesh K. Karne Alexander L. Wijesinha

 Department of Computer Department of Computer Department of Computer

 & Information Sciences & Information Sciences & Information Sciences

 Towson University Towson University Towson University

 Towson, Maryland, USA Towson, Maryland, USA Towson, Maryland, USA

 appiahkubi@towson.edu rkarne@towson.edu awijesinha@towson.edu

Abstract— Bare PC systems have no operating system or

kernel, and can be used for building self-supporting server

applications that perform better than conventional servers.

The bare PC server application contains the necessary network

protocols, does its own memory allocation and task scheduling,

and uses direct interfaces to the hardware. We discuss the

design and implementation of a TLS Webmail server that runs

on a bare PC. Novel design features of the server include

intertwining the TLS, HTTP and TCP protocols to reduce

inter-layer communication overhead, and using a separate TLS

task per connection to improve performance. We also present

initial performance measurements in a LAN environment to

measure the overhead due to TLS, and the possible speed-up

that can be achieved compared to conventional TLS Webmail

servers. The results suggest that customized bare PC servers

could be designed in the future to meet the security and

performance requirements of pervasive computing

environments.

Keywords-TLS; Webmail server; bare PC; operating system;

performance; security

I. INTRODUCTION

Webmail systems are used extensively today due to their
ability to provide anytime anyplace access to email via a
Web browser. The confidentiality and integrity of Webmail
messages are ensured by using TLS [1], which is a general-
purpose protocol designed to secure data transferred over a
TCP connection. For pervasive devices, a mini-browser
running on an optimized stack is typically used to connect to
a TLS-capable exchange server. When necessary, the
browser may connect to a proxy server on the Internet to
download compressed versions of Web pages to save
bandwidth and reduce download time. In such
environments, a Webmail server running a scaled-down
version of TLS that retains its security strengths can be used
as the exchange server.

We describe a lean implementation of TLS that is
integrated within a self-supporting bare machine (or bare
PC) Webmail server application. The application runs
directly over the hardware with no operating system (OS) or
kernel in the machine [2]. The server minimizes both system
and protocol overhead including that of TLS, TCP and
HTTP, and serves trimmed-down Web pages that are suited
for browsers running on low-power client devices with
small screen displays. Our experimental results conducted in
a local environment with conventional browsers indicate
that the server could be used to exchange email secured by
TLS with significantly less overhead than a conventional

OS-based Webmail server. Specifically, we conduct
experiments in a LAN environment to compare the
performance of 1) the bare PC and OS-based TLS Webmail
servers; and 2) the bare PC TLS and non-TLS Webmail
servers in order to determine the overhead due to adding
TLS.

 A conventional server provides its services with the
support of an operating system (OS) or kernel, and a
standard TCP/IP protocol stack. Conventional Webmail
servers typically use TLS via HTTPS [3] to provide security
when sending and receiving email messages. In such
servers, the addition or modification of a TLS module is
relatively straightforward.

In contrast, a self-supporting bare PC server contains
lean versions of the necessary protocols, manages memory,
schedules tasks on the CPU, and directly accesses the
underlying hardware [4]-[7]. The server application runs on
the hardware as a single monolithic executable.
Furthermore, the application layer and transport layer
protocol code have to be intertwined [4], [6], [7] with the
code for the server application. The design and performance
of a bare PC Webmail server are described in [4]. However,
the server does not support TLS. In this paper, we describe
the addition of TLS to an adaptation of the existing bare PC
Webmail server.

Since they have no OS or kernel, bare PC servers are
immune to attacks that target the underlying OS. They also
have the following characteristics that are useful from a
security viewpoint: 1) they are less complex than
conventional servers and have a small code size; 2) there is
no socket interface for applications; and 3) the intertwined
parts of the code and the underlying task structure can be
completely different for different servers.

The rest of this paper is organized as follows. Section 2
describes the architecture of a TLS bare PC Webmail server,
including its design and implementation. Section 3 presents
the performance measurements in a LAN environment.
Section 4 provides a brief overview of related work, and
Section 5 contains the conclusion.

II. SERVER ARCHITECTURE

The bare PC TLS Webmail server architecture is based
on the bare machine computing paradigm [1]. The server is
built by extracting the TLS code from the bare PC Web
server [8] and integrating it with the code for the existing
(non-TLS) Webmail server.

Workshop on Computing, Networking and Communications

978-1-4673-0009-4/12/$26.00 ©2012 IEEE 156

A. Design

Figure 1 compares the respective client/server message
exchanges for non-TLS and TLS Webmail servers with
protocol intertwining. In both cases, a TCP handshake is
done as usual for connection establishment. In the case of
the non-TLS Web server, the client next sends HTTP GET
and POST commands to be processed. A TLS server
requires an additional TLS handshake for negotiating
security parameters and setting up a master key. The TLS
module is responsible for this handshake and for
encryption/decryption of subsequent messages including the
HTTP GET and POST commands. Processing on a TLS
server involves several phases [1]: the TCP handshake
phase; the TLS handshake phase; the data phase during
which encrypted and authenticated HTTP data and alert
(TLS close-notify) messages are sent; and the TCP
connection closing phase.

As shown in Figure 2, the TCP, TLS and HTTP
protocols are intertwined within the Webmail server
application. The CPU tasks and task scheduler are also an
integral part of bare PC server design. All bare PC systems
have a Main task that runs whenever other tasks are not
running, and a Rcv task that handles incoming packets [4],
[6], [7]. The bare PC Webmail server also has a separate
TLS task that handles TLS processing as well as the HTTP
POST and GET processing. Use of a single TLS task per
connection also simplifies processing in case HTTP
GET/POST commands come in over a long period of time
when the HTTP KEEP_ALIVE option is used. The
application manages and schedules the TLS tasks enabling
the server to process requests concurrently. Each message
request and its state information are stored in a TCP Control
Block (TCB) table. In addition, parameters used by re-
entrant code are also stored in this table. The simultaneous
sharing of resources is avoided by allocating resources
independently for each request and maintaining the
necessary state information in the TCB table.

 Figure 1. Non-TLS/TLS Webmail messages

 Figure 2. TLS/TCP/HTTP protocol intertwining

Figure 3. Task Interactions

The TCB information is also used in task scheduling,

using a programmer-designed task schedule. A task

executes as a single thread of execution, thus eliminating the

need for a centralized scheduler. Whenever a TLS or HTTP

task needs to wait for an event, it is suspended until the

relevant event occurs. A TLS task is initially created when

the TCP SYN segment is received. After the TLS handshake

is complete, client GET/POST requests and associated data

are decrypted or encrypted under the control of the Rcv and

TLS tasks. These events and the associated task interactions

are shown in Figure 3. For a POST command, the encrypted

HTTP POST data arrives in one or more TLS fragments.

The TLS CONTENT_LENGTH is used to check whether

all fragments have arrived so that decryption can be

performed. After decryption, the HTTP content length in the

HTTP header is used to determine if all the HTTP data has

arrived. If the HTTP data is fragmented, the assemble flag is

157

set and the server waits for the remaining packets. Figure 4

illustrates the logic for handling TLS and HTTP fragments.

In the bare PC Webmail server, all memory required by

encryption or hash algorithms is pre-allocated at compile-

time, and only RSA key exchange, AES/CBC cipher and

SHA MAC are supported. The RSA certificates and keys

are pre-generated outside the server (on Linux), converted

from ASCII into Hex and transferred into the server’s

memory. The user interface is simplified by designing static

PHP pages that are pre-parsed and indexed for efficient

processing.

Figure 4. Handling TLS and HTTP fragments

B. Implementation

The self-contained bare PC TLS Webmail server
application is saved to a bootable USB flash drive. The USB
includes the boot program, startup menu, application
executable, and the persistent file system (used for user
profiles, emails, and attachments). This USB content is
generated by a tool (designed and run on MS-Windows) that
creates the bootable bare PC server application. The tool,
which generates the boot load sector and copies the
executable and associated files to the USB, consists of 500
lines of C++ code.

The server application is developed using a standard
MS-Windows environment, Visual C++, and the MASM
Assembler. However, the application does not use any OS-
related libraries or system calls. Instead, it has direct
hardware interfaces designed for bare PC computing [9],
most of which are implemented in assembly language using
software interrupts. The size of this assembly code is
approximately 2000 lines. The direct hardware interfaces
include display, keyboard, timers, task management, and
real/protected mode switching. The 3COM 905CX NIC
driver code is written in C, except for approximately 1400

lines of assembly code. Similarly, the USB driver is written
in C except for approximately 140 lines of assembly code.

The C++ program for the TLS Webmail server
application consists of 58,284 lines of code including
19,485 lines of comments, and 29,380 executable
statements. The size of the TLS module is 15,645 lines. The
single monolithic executable occupies 512 sectors (389
KB).

The server application was functionally tested by using
the Firefox and Internet Explorer browsers. Packets sent by
the client and the server were captured using Wireshark.
These packets were then analyzed and their contents were
validated against the packet contents of a conventional
server to ensure correctness of the server implementation.

The bare PC TLS Webmail server and other bare PC

servers do not use a local disk (they only require detachable

mass storage). The server application directly communicates

with the hardware (in this case an X86-based CPU). This

approach can also be used to build pervasive devices,

gateways, routers, or sensors that host a small efficient bare

machine TLS Webmail server.

III. PERFORMANCE

We first conducted experiments to compare the
performance of the bare PC Webmail server with OS-based
Webmail servers. Then we compared the performance of the
bare PC non-TLS and TLS Webmail servers to determine the
overhead due to TLS.

A. Experimental Setup

For the experiments, a 100-Mbps Ethernet test LAN
with servers and a client running on ordinary Dell Optiplex
GX520 PCs (3.2GHz Intel Pentium 4 Processor with 1GB
RAM) was set up. In addition to the TLS and non-TLS bare
PC Webmail servers, the OS-based TLS Webmail servers
were Atmail [10] on Linux, and Icewarp [11] on Windows
XP. The client was a Firefox browser on Windows XP.

B. Results

Figures 5 and 6 respectively show the processing time
for a single Get and Post (Application Data) request sent to
the bare PC and Atmail servers (processing times for the
Windows server are omitted since they were much larger).
In Figure 5, the processing time for the Atmail server spikes
between the client’s Application data (GET) request and the
server’s ACK. The processing time for the bare PC
Webmail server does not spike and is approximately linear.
In Figure 6, the processing time for the POST request is
shown. The processing time for the Atmail server now
spikes between server’s Application Data (302 found) and
ACK response, but that for the bare PC Webmail server
shows only a small increase.

Figure 7 shows the total time (in milliseconds) required
when composing an email message with message sizes

158

varying from 1KB to 16 KB. The processing time for the
bare PC Webmail server is small and approximately the
same for all message sizes. In contrast, the processing times
for the Atmail (Linux) and Icewarp (Windows) servers are
larger with a maximum for 6KB messages.

Figure 8 shows the total processing time when reading
email messages with message sizes varying from 1KB to
16KB. The processing time in this case includes the time to
retrieve a message from the user inbox and display it on the
screen. The processing time for the bare PC Webmail server
never exceeds 50 ms, whereas those for the OS-based
servers can exceed 200 ms. Figure 9 shows the total time
each server spent to process an inbox request that involves
10 email messages. The bare PC Webmail server processes
the request in a total time of 42 milliseconds; this is
approximately 7 times faster than Icewarp, and
approximately 6 times faster than Atmail.

Figure 5. GET request

Figure 6. POST request

Figure 7. Compose

Figure 10 shows the total processing time when composing

email messages. TLS increases the processing time by at

least 5 ms for most message sizes and doubles the

processing time for message sizes that are 10 KB or larger.

More studies are needed to explain why the processing time

for the non-TLS server is slightly larger for 6-KB messages.

Figure 8. Message retrieval

Figure 9. Inbox request for 10 email messages

Figure 10. Compose

Figure 11. Message retrieval

Figure 11 shows the processing time for message retrieval.

There is at least a three-fold increase in processing time due

to TLS for most message sizes. Figure 12 shows the

159

processing times when sending email messages with an

attachment. The increase in processing time due to TLS is

smaller for message sizes that are 8 KB or larger. Figure 13

shows that the processing time with TLS when retrieving

email messages with an attachment is always larger.

Figure 12. Sending attachments

Figure 13. Retrieving attachments

IV. RELATED WORK

Many Webmail servers use HTTPS/TLS to protect email
messages in transit. There are alternate approaches to email
security. S/MIME [12] provides encryption, authentication,
message integrity and non-repudiation for MIME messages
exchanged between users (i.e., end-to-end). The design and
implementation of a secure email system that provides
encryption and signing, and additional features such as
elimination of spam and prevention of harmful attachments
is described in [13]. The implementation of a secure
Webmail system that uses CallerID for access is discussed
in [14], and the specification of a Web-based system for
secure transmission of email messages is given in [15].

V. CONCLUSION

We described the implementation of a TLS bare PC
Webmail server and compared its performance in a LAN
environment with Linux and Windows servers. Although
the bare PC server outperforms the OS-based servers, the
TLS protocol overhead on all systems is found to be non-
negligible. The performance advantages of the bare PC
server are due to the absence of an OS, the minimization of

context switching overhead, and the ability to intertwine
lean versions of the necessary protocols. These results
indicate that bare PC server applications could be designed
in the future to meet the security requirements as well as the
bandwidth, power and performance limitations of pervasive
client devices.

REFERENCES

[1] T. Dierks, and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2”, RFC 5246, August 2008.

[2] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed, “DOSC:
Dispersed Operating System Computing”, OOPSLA ’05, 20th Annual
ACM Conference on Object Oriented Programming, Systems,
Languages, and Applications, Onward Track, ACM, San Diego, CA,
October 2005, pp. 55-62.

[3] D. Schatzmann, W. Muhlbauer, T. Spyropoulos, and X.
Dimitropoulus, “Digging into HTTPS: flow-based classification of
Webmail traffic”, Proceedings of the 10th Annual Conference on
Internet Measurement (IMC), 2010, pp. 322-327.

[4] P. Appiah-Kubi, R. K. Karne, and A. L. Wijesinha, “The Design and
Performance of a bare PC Webmail Server”, 12th IEEE International
Symposium of Advances on High Performance Computing and
Networking (AHPCN) 2010, pp. 521-526.

[5] G. Ford, R. Karne, A. L. Wijesinha, and P. Appiah-Kubi, The
Performance of a Bare Machine Email Server”, 21st International
Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2009, pp. 143-150.

[6] L. He, R. Karne, and A. Wijesinha, “The Design and Performance of
a Bare PC Web Server”, International Journal of Computers and
Their Applications, vol. 15, June 2008, pp. 100 - 112.

[7] G. Ford, R. K. Karne, A. L. Wijesinha, and P. Appiah-Kubi, “The
Design and Implementation of a Bare PC Email Server”, 33rd Annual
IEEE International Computer Software and Applications Conference
(COMPSAC), 2009, pp. 480-485.

[8] A. Emdadi, R. K. Karne, and A. L. Wijesinha, “Implementing the
TLS Protocol on a Bare PC”, 2nd International Conference on
Computer Research and Development (ICCRD), May 2010, pp. 293-
297.

[9] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to run C++
Applications on a bare PC”, SNPD 2005, Proceedings of SNPD 2005,
6th ACIS International Conference, IEEE, May 2005, pp. 50-55.

[10] Atmail-Linux Webmail Server, http://atmail.com/

[11] IceWarp Mail Server, http://www.icewarp.com/

[12] B. Ramsdell and S. Turner, “Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.2 Message Specification”, RFC
5751, January 2010.

[13] A. Ghafoor, S. Muftic, and G. Schmolzer, “CryptoNET: Design and
implementation of the Secure Email System”, Proceedings of the 1st
International Workshop on Security and Communication Networks
(IWSCN), 2009, pp. 1 – 6.

[14] A. A. Tomar, S. Chaudhari, J. Patil, and A. Rawat, “Implementation
and Security Analysis of a CallerId Augmented 2FA Setup for Secure
Web-mail Access”, Proceedings of the 2010 IEEE International
Conference on Advances in Communication Network and Computing
(CNC), 2010, pp. 346-348.

[15] S. Kaushik, D. Wijesekera, and P. Amman, “BPEL Orchestration of
Secure Webmail”, Proceedings of the 3rd ACM workshop on Secure
Web Services (SWS), 2006, pp. 85–94..

160

