
The Design and Performance of a bare PC Webmail Server

Patrick Appiah-Kubi, Ramesh K. Karne, and Alexander L. Wijesinha
Department of Computer & Information Sciences

Towson University
Towson, MD 21252, U.S.A.

{pappiahkubi, rkarne, awijesinha}@towson.edu

Abstract—We describe a Webmail server that runs on a bare
PC without an operating system (OS) or kernel, and give
details of its architecture, design, and implementation. We
also present the results of experiments conducted in a test
LAN environment to compare performance of the bare PC
Webmail server with conventional Webmail servers Atmail
and Mailtraq running on Linux and Windows respectively.
Performance is evaluated by measuring the processing time
for login requests; inbox requests with a varying number of
emails; and composing or retrieving email messages and
sending attachments of various sizes. We also measure the
throughput for various sizes; and, under stress conditions,
the processing and response times with a varying number of
connections, and the total and average processing times for
the POST command with a varying number of users. The
results show that the performance of the bare PC Webmail
server is significantly better than that of the OS-based
servers. The bare PC Webmail server is an alternative to
conventional Webmail systems, and its architecture and
design features could be used as a basis for developing
future high-performance systems.

Keywords-bare machine computing; bare PC; application
object; Webmail server; operating systems

I. INTRODUCTION
Webmail allows users to access their email through a

Web browser. While many servers capable of handling
Webmail exist, they typically require a conventional
operating system (OS) or kernel for support. We describe
a self-contained bare PC Webmail server that runs
directly on the hardware without using any OS. The
server, which is integrated with a PHP parser tool, is
shown to outperform conventional Webmail servers
Atmail and Mailtraq running on Linux and Windows
respectively. The server is also not vulnerable to attacks
targeting an underlying OS.

We provide details of the server architecture, design,
and implementation, and include the results of
experiments comparing its performance with that of the
OS-based servers. The server architecture is based on
threading techniques, delay/resume lists, and task stack
mechanisms to provide efficient memory utilization and
process control. The bare PC Webmail server application
contains its own data execution knowledge and control,
and does not require any other software support to run.
Currently, the bare PC Webmail server runs on Intel

Pentium 4 (or above) based PCs and only requires
common general-purpose hardware including USB-based
bootable devices, network interface cards, and USB-based
persistent storage.

II. RELATED WORK
Many approaches have been developed to improve

application performance by reducing OS overhead,
bypassing the OS, or using similar techniques. These
include Exokernel [1], Microkernel [2], Nano-kernel [3],
OS-Kit [4], bare-metal Linux [5], IO-Lite [6], and
sandboxing [7]. All of these approaches require some form
of an OS or kernel.

In contrast, the bare machine computing (BMC)
approach, also known as the dispersed operating system
computing (DOSC) paradigm [8], is application-centric
with no OS, and no centralized resource manager or
controller running in the machine. BMC enables
applications to directly communicate with the hardware
[9]. BMC applications, frequently referred to as bare PC
applications, are encapsulated in a single monolithic
executable or application object (AO) [10] (stored on a
portable storage medium such as a USB flash drive),
which is capable of bootstrap loading and of providing its
own resource management with no dependence on any
external libraries or programs. Several bare PC
applications have been built including a VoIP softphone
[11], an Email server [12, 13], and Web servers with and
without TLS [14, 15]. These applications have been shown
to outperform their conventional counterparts.

The numerous Webmail systems in existence today
include Webmail servers, email servers with Webmail
interfaces, or packages installed on Web servers that
enable access to email servers (Webmail clients). Atmail
[16], MailTraq [17], Axigen [18], and Squirrelmail [19]
are just a few examples of such Webmail systems. Several
design and implementation issues relevant to improving
the performance of the Open Webmail system are
discussed in [20]. The bare PC Webmail server, whose
architecture and design is based on the BMC approach,
differs from the above and similar conventional OS-based
Webmail servers and Webmail systems.

III. ARCHITECTURE
Fig. 1 illustrates the architecture of the bare PC

Webmail server. For ease of reference, numeric labels are
assigned to figure components. The server is initiated on a

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.116

521

bare machine by a boot program (1) read from a USB-
bootable device. The initial sector contains a bootstrap
loader that loads the menu program (2) followed by the
AO. The AO starts by initializing various data structures,
parameters, tasks, and objects, and control is then passed
to the Main Task (3).

Figure 1. Bare PC Webmail server architecture.

The basic bare PC data structures used by the Main
Task include a Delayed List (8), Resume List (9) and a
Multiplexor mechanism (4). The latter switches between
the Receive (RCV) Task (15) and tasks in the Resume List
(HTTP-GET or POST), and selects the running task (5),
which can be suspended (6) and returned to the Delayed
List (8) when it is not running. The Main Task, which runs
when the system is idle, or when switching between tasks,
checks for delayed tasks (7), and places them in the
Resume List. When a response arrives for a task in the
Delayed List, a Resume () function (22) brings the tasks in
the Delayed List into the Resume List.

The TCP Control Block/Table (TCB, 13) is used to
store relevant information derived from the TCP, IP and
Ethernet headers (14). To communicate directly with the
host Network Interface Card (NIC, 17), a bare PC NIC
driver was written (16). Two components were created
within the bare PC Webmail server application to handle
all Webmail functions: an HTTP POST Object (20) to
send emails from clients to the server, and an HTTP GET
Object (19) to deliver resident emails and files to clients.

At initialization, a task pool of HTTP GET (12) and
HTTP POST (11) objects are created along with their
associated TCB table entries for use by the server
application. When a client request arrives, a GET or POST
task is placed in the Resume Task List (9), and an active

status flag is set within its associated TCB entry. The TCB
entry contains all of the unique data attributes associated
with the object, and its executable state information. When
the task is complete (21), it is returned to its appropriate
task stack (10) so that it can be reused later. The active
flag in the associated TCB entry along with associated data
fields are then reset. The “RCV task (15)” receives packets
and processes them in a single thread of execution without
any interruptions or process swapping until the status is
updated in the TCB. The HTTP GET or POST tasks work
in a similar manner. Other than the Main task, there are
only the RCV task and HTTP GET/POST tasks making
task scheduling simple. The scheduling mechanism is first-
come/first-serve (FCFS) except for Suspend/Resume.

IV. DESIGN
The user interface for the bare PC Webmail server is

text-based, which enables a few configuration parameters
to be specified at startup. The bare PC Webmail server
integrates adaptations of bare PC Web and email servers
with the PHP parser tool into a single AO. Flags are stored
in memory to determine the type of request (Webmail or
regular HTTP) based on the data header. Client-based PHP
scripts were also designed for the bare PC Webmail server.
Fig. 2 shows the PHP client-server interface design for the
Webmail server. The user first requests a Login page and
logs into the server. Next, a Mail page is displayed
allowing the user to compose mail, check their Inbox and
read messages, or logout.

Figure 2. Client-Server interface design.

During the design of the bare PC Webmail server, each
GET and POST command was implemented using State
Transition Diagrams as in Fig. 1 (18). Each state models
HTTP and TCP protocol state transitions corresponding to

522

the messages exchanged by client and server. The client
sets up a TCP connection and sends either an HTTP GET
or POST request. The application, HTTP, and TCP
protocols are intertwined in the underlying
implementation. In case of a GET, the server responds
with the data that may be contained in several messages.
For POST, the client sends data to the server. The server’s
200 OK HTTP message terminates the data transfer, and
the TCP connection is closed as usual.

The lean PHP-parser built into the Webmail server
parses the fields in the GET or POST data received and
relays the data contents to the email component of the
server. Unique field names in the form input that represent
FROM, TO, SUBJECT, ATTACHMENT and
MSGBODY were specified in the PHP script files to aid in
parsing the received data to extract the appropriate
commands for email storage and retrieval. Certain
pointers/flags are kept in memory for efficiency. For
example, pointers are specified for b_inbox.php,
b_attach.php and b_readmsg.php files enabling them to be
parsed once and dynamically modified to insert the
messages.

Email storage and retrieval are based on special PHP
session keys assigned automatically to each user at login
(for reuse in subsequent requests) and dynamically stored
in a session table using the User ID, Session Flag, and
Session String generated by using random number
generators. To retrieve an Inbox message from email
storage, the PHP session variables are parsed when the
Inbox request arrives. This enables the system to detect the
appropriate User ID, which facilitates message retrieval. If
another user attempts a login while a previous user is still
active, a different PHP session key is assigned to that user
so that concurrent user connections can be correctly
handled by the server. The server was also designed to
handle large messages by extracting the content-length and
matching it to the total byte count of messages received for
multiple POST data continuations.

V. IMPLEMENTATION
The bare PC Webmail application does not use any

OS-related libraries or system calls. However, the
application itself is developed using a standard MS-
Windows environment and written in Visual C++ (without
any *.h files), and the MASM Assembler. Most of the
direct hardware interfaces are implemented in C/assembly
language using software interrupts. The size of the
assembly code is approximately 1,800 lines. These direct
hardware interfaces include: display, keyboard, timers,
task management, NIC, and real/protected mode
switching. The 3COM 905CX NIC driver code is
approximately 1400 lines of assembly code, with the rest
of the code written in C. Similarly, the USB driver uses
approximately 133 lines of assembly code, with the rest of
the code written in C.

The code implementing the Webmail server
architecture depicted in Fig. 1 is written in C++ in an
object-oriented fashion. The size of the software is
approximately 35,243 lines of code including 11,000 lines

of comments, and 14,000 executable statements. This
yields a single monolithic executable AO consisting of 792
sectors of code (405,504 bytes), which is placed on the
USB. It includes the boot program, startup menu, AO
executable, and the persistent file system (used for user
profiles, emails, and attachments). The content on the USB
is generated by a tool (designed and run on MS-Windows)
that creates the bootable bare PC application for
deployment with the boot load sector, and copies the
executable and associated files to the USB. The tool
consists of 469 lines of C++ code.

VI. PERFORMANCE MEASUREMENTS

A. Experimental Setup
The experiments to compare performance of the bare

PC Webmail server with the Atmail and Mailtraq Webmail
servers running on Linux and Windows respectively were
conducted in a dedicated Ethernet test LAN using four
Dell Optiplex GX520 PCs. Each PC had an Intel Pentium
4, 3.2GHz Processor, 1GB RAM and a 3Com EtherLink
XL 10/100 NIC card. The computer serving as the client
had Internet Explorer and a Wireshark network analyzer
tool running on Windows. The remaining computers ran
the bare PC, Linux, and Windows Webmail servers. All
unnecessary services, processes, and programs on the OS-
based systems were disabled.

B. Results
Figs. 3 and 4 show respective processing times for the

GET and POST login request commands. The client/server
TCP connection is closed after each GET request, whereas
it is kept open for multiple POST commands. It can be
seen that the TCP connection times with GET are
negligible for all servers, and also that the bare and Linux
servers respond (i.e. ACK) to the GET request in a
reasonable amount of time (0.153 and 0.361 milliseconds
respectively). However, the Windows server takes 115
milliseconds. The time from GET to first data is
respectively 0.258, 183, and 85 milliseconds for the bare,
Windows, and Linux servers. The bare server responds
with little delay because of its efficient task design and
protocol intertwining (RCV and GET each have a single
thread of execution). For POST, the dominant time is
between the arrival of POST data and server’s response
(i.e. 302 found). The respective timings are 0.613, 329 and
223 milliseconds for the bare, Windows and Linux servers.
The bare server’s low timing for the POST command is
due to the POST task responding to the request in a single
thread of execution without interruption and process
switching

Fig. 5 shows the email message processing time
reported by Wireshark for a single compose request,
whose message size is varied from 1000 bytes to 120,000
bytes. The bare server performs well for message sizes up
to 60,000 bytes, but its processing time increases
gradually thereafter. The USB file I/O for Webmail
requests is contributing to most of the processing time in

523

the bare server (the other servers store files on the hard
disk).

Fig. 6 compares the processing times for an inbox
request. The number of emails in the inbox varied from 1
to 10 while the email size remained constant. As seen in
the figure, the bare Webmail server processes the inbox
request faster than the other servers; increasing the
number of emails has very little effect on its processing
time.

Fig. 7 compares the processing times with varying
message sizes for email message retrieval. In all cases, the
bare Webmail server clearly outperforms the other servers,
again as a result of its efficient task design and protocol
intertwining. For larger amounts of transmitted data (i.e.
60,000 bytes or more), the GET task will be suspended for
longer amounts of time while waiting for ACKs from the
client. This results in the higher processing times seen in
the figure for sizes exceeding 60,000 bytes.

The performance when sending MIME-Encoded
attachment messages is compared in Fig. 8, with varying
message sizes from 1000 to 120,000 bytes. The bare
server again performs better than the OS-based servers.
The dramatic increase in processing time for message size
after 20,000 bytes is caused by the write operation in the
USB. Each USB write operation is limited to
approximately 20,000 bytes of data; thus, it requires
multiple write operation commands for large amounts of
data. The processing times for the other Webmail servers
(although larger) do not vary much with increasing
message size since they store files on the hard disk. Fig. 9
shows that the bare server has higher throughput than the
other servers for all sizes of messages as expected.

 The HTTPERF tool was used to measure the
performance of the servers under stress by varying the
number of concurrent connections from 100 to 2000 at a
rate of 1000 connections/s. Fig. 10 shows the CPU time at
the client, and it is lowest for the bare server since it sends
the data fastest to the client. Fig. 11 compares the total
processing time versus the number of connections for the
Webmail servers, and Fig. 12 shows the corresponding
response times. The bare server has lower processing and
response times, and is more stable compared to the other
servers. Fig. 11 shows a spike in processing times between
400 and 600 connections for the Linux server, and it also
shows the degradation of the Windows server as the
number of connections increases (Windows server
performance is omitted in Fig. 12 due to instability).
Additionally, the Webstress tool was used to measure the
performance under stress for POST with a varying number
of users. Figs. 13 and 14 show respectively the total (all
requests) and average (per request) processing time, which
are negligible for the bare server but higher for the others.

VII. CONCLUSION
In this paper, we presented the architecture, design,

implementation, and performance of a bare PC Webmail
server. The server architecture and design is based on the

BMC approach in which AOs run on the hardware with no
OS and no centralized resource manager or controller of
any kind. In this server, only the RCV task and HTTP
GET/POST tasks compete for the CPU, which simplifies
task scheduling. Experiments in a dedicated test LAN
using several common Webmail transactions, including
some under stress conditions, show that the bare PC
Webmail server performs significantly better than
conventional Webmail servers running on Windows and
Linux. The novel architecture and design features of the
bare PC Webmail server could be adapted to build high-
performance servers for other applications based on the
BMC approach.

REFERENCES
[1] D. R. Engler and M.F. Kaashoek, “Exterminate all operating

system abstractions,” Fifth Workshop on Hot Topics in Operating
Systems, USENIX, Orcas Island, WA, May 1995, p. 78.

[2] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullman,
“Interface and execution models in the Fluke Kernel,”
Proceedings of the Third Symposium on Operating Systems
Design and Implementation, USENIX Technical Program, New
Orleans, LA, February 1999, pp. 101-115.

[3] “Tiny OS,” Tiny OS Open Technology Alliance, University of
California, Berkeley, CA, 2004, http://www.tinyos.net/

[4] “The OS Kit Project,” School of Computing, University of Utah,
Salt Lake, UT, June 2002, http://www.cs.utah.edu/flux/oskit

[5] T. Venton, M. Miller, R. Kalla, and A. Blanchard, “A Linux-based
tool for hardware bring up, Linux development, and
manufacturing,” IBM Systems J., Vol. 44 (2), IBM, NY, 2005, pp.
319-330.

[6] V. S. Pai, P. Druschel, and Zwaenepoel. “IO-Lite: A Unified I/O
Buffering and Caching System,” ACM Transactions on Computer
Systems, Vol.18 (1), ACM, February 2000, pp. 37-66.

[7] B. Ford, and R. Cox, Vx32: “Lightweight User-level Sandboxing
on the x86”, USENIX Annual Technical Conference, USENIX,
Boston, MA, June 2008.

[8] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed, “DOSC:
Dispersed Operating System Computing”, OOPSLA ’05, 20th
Annual ACM Conference on Object Oriented Programming,
Systems, Languages, and Applications, Onward Track, ACM, San
Diego, CA, October 2005, pp. 55-62.

[9] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to run C++
Applications on a bare PC”, SNPD 2005, Proceedings of SNPD
2005, 6th ACIS International Conference, IEEE, May 2005, pp. 50-
55.

[10] R. K. Karne, “Application-oriented Object Architecture: A
Revolutionary Approach,” 6th International Conference, HPC Asia
2002, Centre for Development of Advanced Computing,
Bangalore, Karnataka, India, December 2002.

[11] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S.
Girumala, “A Peer-to-Peer bare PC VoIP Application,”
Proceedings of the IEEE Consumer and Communications and
Networking Conference (CCNC), IEEE Press, Las Vegas, NV,
2007, pp. 803-807.

[12] G. Ford, R. Karne, A. L. Wijesinha, and P. Appiah-Kubi, The
Design and Implementation of a Bare PC Email Server, 33rd
Annual IEEE International Computer Software and Applications
Conference (COMPSAC), 2009.

[13] G. Ford, R. Karne, A. L. Wijesinha, and P. Appaiah-Kubi, The
Performance of a Bare Machine Email Server, 21st International
Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2009.

524

[14] A. Emdadi, R. K. Karne, and A. L. Wijesinha, “Implementing the
TLS Protocol on a Bare PC,” 2nd International Conference on
Computer Research and Development (ICCRD), May 2010.

[15] L. He, R. Karne, and A. Wijesinha, "The Design and Performance
of a Bare PC Web Server", International Journal of Computers and
Their Applications, vol. 15, June 2008, pp. 100 - 112.

[16] Atmail-Linux Email Server, http://atmail.com/linux-email-server/

[17] Mailtraq email server-the complete email server,
http://www.mailtraq.com/

[18] Mail Server for Linux & Windows | Axigen,
http://www.axigen.com/

[19] SquirrelMail-Webmail for Nuts!, http://squirrelmail.org/
[20] C. Tung and S. Tsai, “Tuning Webmail Performance-The Design

and Implementation of Open Webmail,” National Cheng Kung
University, www.openwebmail.org

Figure 3. Processing time: login request (GET).

Figure 4. Processing time: login request (POST).

Figure 5. Processing time: compose (varying message sizes).

Figure 6. Processing time: inbox request (varying number of emails).

Figure 7. Processing time: email retrieval (varying message size).

Figure 8. Processing time: email attachment (varying message size).

525

Figure 9. Throughput:

Figure 10. CPU processing time: client (varying number of connections)

Figure 11. Processing time: GET (varying number of connections).

Figure 12. Response time: GET (varying number of connections).

Figure 13. Total processing time: POST (varying number of users).

Figure 14. Average processing time: POST (varying number of users).

526

