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Abstract—HTTP request splitting is a new concept
where the TCP connection and data transfer phases are
dynamically split between servers without using a
central dispatcher or load balancer. Splitting is
completely transparent to the client and provides
security due to the inaccessibility and invisibility of the
data servers. We study the performance of mini Web
server clusters with request splitting. With partial
delegation in which some requests are split, throughput
is better, and response times are only marginally less
than for an equivalent non-split system. For example
with partial delegation, for a four-node cluster with a
single connection server and three data servers serving
64 KB files, and for a three-node cluster with two
connection servers and a single data server serving 4 KB
files, the respective throughput improvements over non-
split systems are 10% and 22%, with only a marginal
increase in response time. In practice, the throughput
improvement percentages will be higher and response
time gaps will be lower since we ignore the overhead of a
dispatcher or load balancer in non-split systems.
Although these experiments used bare PC Web servers
without an operating system/kernel for ease of
implementation, splitting and clustering may also be
implemented on conventional systems.

Keywords -Splitting HTTP Requests, Performance, Cluster
Computing, Web Servers, Bare Machine Computing.

I.  INTRODUCTION

Load balancing is frequently used to enable Web servers
to dynamically share the workload. For load balancing, a
wide variety of clustering server techniques [20, 21, 22] are
employed. Most load balancing systems used in practice
require a central control system such as a load balancing
switch or dispatcher [20]. Load balancing can be
implemented at various layers in the protocol stack [19, 20].
This paper considers a new approach to load balancing that
involves splitting HTTP requests among a set of servers,
where one or more connection servers (CSs) handle TCP
connections and may delegate a fraction (or all) requests to
one or more data servers (DSs) that serve the data [23]. For
example, the data transfer of a large file could be assigned to
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a DS and the data transfer of a small file could be handled by
the CS itself.

One advantage of splitting is that splitting systems are
completely autonomous and do not require a central control
system such as dispatcher or load balancer. Another
advantage is that no client involvement is necessary as in
migratory or M-TCP [13]. In [23], splitting using a single
CS and a DS was shown to improve performance compared
to non-split systems. Since the DSs are completely
anonymous and invisible (they use the IP address of the
delegating CS), it would be harder for attackers to access
them. In particular, communication between DSs and clients
is only one-way, and DSs can be configured to only respond
to inter-server packets from an authenticated CS. We study
the performance of three different configurations of Web
server clusters based on HTTP splitting by measuring the
throughput (in requests/sec), and the connection and
response times at the client.

In real world applications, some servers may be close to
data sources, and some servers may be close to clients.
Splitting a client’s HTTP request and the underlying TCP
connection in this manner allows servers to dynamically
balance the workload. We have tested the splitting concept
in a LAN that consists of multiple subnets connected by
routers. In HTTP splitting, clients can be located anywhere
on the Internet. However, there are security and other issues
that arise when deploying mini clusters in an Internet where
a CS and a DS are on different networks [23].

The remainder of the paper is organized as follows.
Section II presents related work; Section III describes
splitting and the different cluster configurations used in this
study; Section IV presents results of experiments; Section V
discusses impacts of splitting; and Section VI contains the
conclusion.

II. RELATED WORK

We implemented HTTP request splitting on a bare PC
with no kernel or OS running on the machine. Bare PC
applications use the Bare Machine Computing (BMC) or
dispersed OS computing paradigm [7], wherein self-
supporting applications run on a bare PC. That is, there is no
operating system (OS) or centralized kernel running in the
machine. Instead, the application is written in C++ and runs
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as an application object (AO) [9] by using its own interfaces
to the hardware [8] and device drivers. While the BMC
concept resembles approaches that reduce OS overhead
and/or use lean kernels such as Exokernel [3, 4], IO-Lite
[12], Palacio [10], Libra [1], factored OS [15], bare-metal
Linux [14], and TinyOS [18], there are significant
differences such as the lack of a centralized code that
manages system resources and the absence of a standard
TCP/IP protocol stack. In essence, the AO itself manages
the CPU and memory, and contains lean versions of the
necessary protocols. Protocol intertwining is a form of
cross-layer design. Further details on bare PC applications
and bare machine computing (BMC) can be found in [5, 6].
Splitting an HTTP request by splitting the underlying
TCP connection 1is different from migrating TCP
connections, processes or Web sessions; splicing TCP
connections; or masking failures in TCP-based servers. For

example, in migratory TCP (M-TCP) [13], a TCP
connection 1is migrated between servers with client
involvement; in process migration [11], an executing

process is transferred between machines; in proxy-based
session handoff [2], a proxy is used to migrate Web sessions
in a mobile environment; in TCP splicing [19], two separate
TCP connections are established for each request; and in
fault-tolerant TCP (FT-TCP) [16], a TCP connection
continues after a failure enabling a replicated service to
survive. Per our knowledge, no work on splitting
connections at a protocol level has been done before.
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Figure 1. Split architecture

III. CLUSTER CONFIGURATIONS

Figure 1 illustrates generic request splitting [23] and
shows the messages exchanged by the intertwined HTTP
and TCP protocols. Connection establishment and
termination are performed by one or more connection
servers (CSs), and data transfer is done by one more data
servers (DSs). When a request is split, the client sends the
request to a CS, the CS sends an inter-server packet to a DS,
and the DS sends the data packets to the client. Inter-server
packets may also be sent during the data transfer phase to
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update the DS if retransmissions are needed. With partial
delegation, the CS delegates a fraction of its requests to
DSs. With full delegation, the CS delegates all its requests
to DSs. The design and implementation details of protocol
splitting are provided in [23].

We consider mini Web server clusters consisting of two
or more servers with protocol splitting. We then study
cluster performance by measuring the throughput and
connection and response times of three different server
configurations with a varying number of CSs and DSs.

Configuration 1 in Fig. 2a shows full delegation with one
CS, one DS, and a set of clients sending requests to the CS.
The DS and CS have different IP addresses, but the DS
sends data to a client using the IP address of the CS.

Configuration 2 in Fig. 2b shows a single CS with two or
more DSs in the system with partial or full delegation. In
partial delegation mode, clients designated as non-split
request clients (NSRCs) send requests to the CS, and these
requests are processed completely by the CS as usual. The
connections between the NSRCs and the CSs are shown as
dotted lines. With full delegation, clients designated as split-
request clients (SRCs) make requests to the CS, and these
requests are delegated to DSs. For full delegation, there are
no NSRCs in the system. When requests are delegated to
DSs, we assume that they are equally distributed among the
DSs in round-robin fashion. It is also possible to employ
other distribution strategies.

BRC's: Split Request Clients
NSRCe: Non-split Request
CHents

Figure 2a. Split architecture configuration 1

Configuration 3 in Fig. 2c shows two CSs and one DS
with both SRCs and NSRCs. For this configuration, we used
small file sizes to avoid overloading the single DS.
Although we have not done so, multiple DSs could be added
as in Configuration 3.

Iv.

A. Experimental Setup

The experimental setup involved a prototype server
cluster consisting of Dell Optiplex GX260 PCs with Intel
Pentium 4, 2.8 GHz Processors, IGB RAM, and an Intel 1G
NIC on the motherboard. All systems were connected to a
Linksys 16 port 1 Gbps Ethernet switch. Linux clients were
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used to run the http load stress tool [17], and in addition,
bare PC Web clients capable of generating 5700
requests/sec was used to increase the workload beyond the
http _load limit of 1000 concurrent HTTP requests/sec per
client. The split server cluster was also tested with Internet
Explorer browsers running on Windows and Firefox
browsers running on Linux.

SRCs: Split Request Clients
NSRCa: Non-split Request
Clients

Figure 2b. Split architecture configuration 2

BERCs: Bplit Request Clients
NSRs: Non-split R enquest
Cllents

Figure 2c. Split architecture configuration 3
B. Configuration 1 (1 CS, 1 DS, full delegation)

In [23], the performance of HTTP splitting with
Configuration 1 was evaluated using various file sizes up to
32 KB. Here, we study the performance of Configuration 1
by varying the file size up to 128 KB and measuring the
throughput in requests/sec. Fig. 3 shows the results of these
experiments. It can be seen that the performance of this
configuration is worse than that of a two server non-split
system for all file sizes. This is because the DS is
overloaded resulting in performance degradation. However,
the CS is underutilized since it is only handling connection
establishment and termination. For a two server non-split
system, we show the theoretical maximum performance
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(throughput) as being double that of a single (non-split)
system, which was determined experimentally to be 6000
requests/sec. In practice, this theoretical limit for non-split
systems will not be attained due to the overhead of load
balancers and dispatchers.
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Figure 3. Throughput with increasing file sizes
(Configuration 1)

Fig. 4 shows the CPU utilization for the CS and DS in
Configuration 1. The DS’s CPU utilization for 64 KB files
is close to the maximum, indicating that this configuration
cannot handle more than 1500 requests/sec. To get further
insight into the performance limitations in this case, we
determined the impact of connection and response time at
the client due to increasing the request rate. The results are
shown in Fig. 5. The response time degrades as the number
of requests increases starting at 1300 requests/sec and is
largest at 1500 requests/sec as expected. These results
suggest that performance may be improved by adding more
DSs and utilizing the remaining capacity of the CS.
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Figure 4. CPU utilization with increasing file sizes
(Configuration 1)
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Figure 5. Connection and response times
(Configuration 1, file size 64KB)

C. Configuration 2 (1 CS, 1-3 DS, full delegation)
Fig. 6 shows the DS throughput for this configuration by
varying the number of DSs with full delegation for 64 KB
files. Adding more DSs improves the throughput as seen in
the figure. With one DS (i.e. a two-server cluster), 1500
requests/sec can be handled versus the theoretical capacity
of 2000 requests/sec for two non-split servers ignoring
dispatcher or a load balancer overhead (about 75% of the
theoretical non-split performance). With two DSs, the
throughput increases to 2500 requests/sec (about 83.3% of
the theoretical non-split performance). With three DSs, the
maximum throughput is 3700 requests/sec compared to the
theoretical limit of 4000 requests/sec for a non-split system
(about 92.5% of the theoretical non-split performance).

Fig. 7 shows connection and response times for
Configuration 2 with 64 KB files. Although the response
time for a single DS is poor, the average response and
connection times improve significantly when the number of
DSs is increased. A single (non-split) server has connection
and response times of 1.62 ms and 2.38 ms respectively,
compared to 365 ps and 922 ps respectively for a split
system with three DSs and one CS (i.e., connection and
response times are improved by factors of 4.4 and 2.6
respectively).
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Figure 6. DS throughput (Configuration 2, file size 64KB)
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Figure 7. Connection and response times
(Configuration 2, file size 64KB)

Fig. 8 shows the CPU utilization in Configuration 2 for

the CS and DSs with 64 KB files. The DS utilization drops
as expected due to load sharing, while the CS utilization
increases due to the increased request rate. However, the CS
still has unused capacity to support additional requests.
The preceding experiments show that the performance of a
split system with a single CS and three DSs is close to the
theoretical limit of a four-server non-split system with
respect to both throughput, as well as connection and
response times. In addition, the CS is still underutilized.

D. Configuration 2 (1 CS, 1-3 DS, partial delegation)

Configuration 2 with partial delegation and additional
clients whose requests are not split (i.e., NSRCs) allows
more load to be added in order to efficiently utilize the
remaining capacity of the CS. The requests from NSRCs are
completely processed by the CS, while the requests from
SRCs are split. In this system, we have used 64KB files for
requests.

Fig. 9 compares the throughput for split servers with full
and partial delegation. The throughput of the split system
with partial delegation is more than the theoretical limit for
a non-split system due to fully utilizing the capacity of the
CS. For a split system with a single CS and a single DS for
64 KB files, partial delegation improves the throughput by
25%. However, this performance gain does not scale up
when more DSs are added since the CS is now close to
capacity. For example, a split system with 3 DSs improves
the throughput only by about 10%. These measurements
indicate that a mini-cluster can only have a limited number
of DSs if the system is to be self-contained (i.e., without
using an external load balancer).

Fig. 10 compares the throughput for split servers with full
and partial delegation by varying the file size. The
maximum throughput and a performance improvement of
25% are attained for 64 KB files with partial delegation.
For 100 KB and 128 KB files, the performance
improvements due to splitting are 17.7% and 12.5%
respectively with partial delegation. Fig. 11 shows
connection and response times with partial delegation for 64



KB files. As with full delegation, response time with partial
delegation is poor with only a single DS. However, the
response time improves dramatically for split systems with
two or three DSs and partial delegation.
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Figure 8. CPU Utilization
(Configuration 2, file size 64KB)
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Figure 9. Throughput with full/partial delegation
(Configuration 2, file size 64KB)
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Figure 10. Throughput with full/partial delegation for
varying file sizes (Configuration 2)
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Figure 11. Connection and response times
(Configuration 2, file size 64KB)

E. Configuration 3 (2 CS, 1 DS, partial delegation)

As before, requests are generated by a set of SRCs and
NSRC:s. For this configuration, 4 KB files were used since
larger file sizes will overload the single DS. Figure 12
shows the throughput for three servers with full and partial
delegation. Configuration 3 achieves a 6.5% throughput
improvement over three non-split servers with full
delegation; with partial delegation, it achieves a 22%
improvement in throughput compared to three non-split
Servers.

Fig. 13 shows the connection and response times for
Configuration 3. As expected, response time is poor since
the single DS gets saturated with the high request rate that
be supported with two CSs. With partial delegation,
response times improve significantly as the unused CS
capacity is used to handle requests from the NSRCs without
delegation. While the connection and response times using
Configuration 3 are worse than for non-split servers, this
disadvantage should be weighed against the increased
throughput, cost, and security benefits of using a split
system. Also, non-split servers will incur a reduction in
response and connection times due to the overhead of using
a dispatcher or load balancer.
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Figure 12. Throughput with full/partial delegation
(Configuration 3, file size 4KB)
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Figure 13. Connection times and response times with
full/partial delegation (Configuration 3, file size 4KB)

V. IMPACTS OF SPLITTING

Splitting is a general approach that can be applied in
principle to any application protocol that uses TCP (it can
also be applied to protocols other than TCP to split the
functionality of a protocol across machines or processors).
In particular, splitting the HTTP protocol has many impacts
in the area of load balancing. We discuss some of these
impacts below.

e Split protocol configurations can be used to achieve
better response and connection times, while providing
scalable performance. Splitting also eliminates the need
for (and overhead/cost associated with) external load
balancers such as a dispatcher or a special switch.

e  Split protocol Configuration 2 (with one CS, one DS)
and partial delegation achieves 25% more performance
than two homogeneous servers working independently.
This performance gain can be utilized to increase server
capacity while reducing the number of servers needed
in a cluster.

e  Split server architectures could be used to distribute the
load based on file sizes, proximity to file locations, or
security considerations.

e The results obtained in this paper (using specific
machines and workloads) indicate that mini-cluster
sizes are in the single digits. More research is needed to
validate this hypothesis for other traffic loads.
However, if we assume that mini-clusters should
contain a very small number of nodes, they would be
easier to maintain and manage (compared to larger
clusters). Using mini-clusters, it is possible to build
large clusters by simply increasing the number of mini-
clusters.

e Splitting protocols is a new approach to designing
server clusters for load balancing. We have
demonstrated ~ splitting and  built  mini-cluster
configurations using bare PC servers. However, the
general technique of splitting also applies to OS-based
clusters provided additional OS overhead can be kept to
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a minimum (and that undue developer effort is not
needed to tweak the kernel to implement splitting).

e When protocol splitting uses two servers (CS and DS) it
dramatically simplifies the logic and code in each
server (each server only handles part of the TCP and
HTTP protocols unlike a conventional Web server that
does both protocols completely). Thus, the servers are
less complex and hence have inherently more reliability
(i.e., are less likely to fail).

e Splitting can also be used to separate the “connection”
and “data” parts of any protocol (for example, any
connection-oriented protocol like TCP). In general,
connection servers can simply perform connections and
data servers can provide data. It can also be used to split
the functionality of any application-layer protocol (or
application) so that different parts of the processing
needed by it are done on different machines or
processors. Thus, a variety of servers or Web
applications can be split in this manner. This approach
will spawn new ways of doing computing on the Web.

The configurations studied and the results obtained in this
paper can be viewed as a first step to validate the
applicability of splitting as a general concept. In future, it
would be of interest to investigate its applicability to other
protocols and applications.

VI. CONCLUSION

We studied the performance of mini Web server clusters
with HTTP request splitting, which does not require a
central load balancer or dispatcher, and is completely
transparent to the client. Throughput as well as connection
and response times with full and partial delegation of
requests were measured for a variety of file sizes. A split
system with one CS and three DSs, and full or partial
delegation, can be used to achieve response times,
connection times and throughput close to, or better than, the
theoretical limit of non-split systems. For example, this
configuration with partial delegation achieves a 10%
throughput increase for 64 KB files compared to four non-
split servers and response times that are only slightly less.
The same configuration with full delegation improves
response times for 64 KB files by a factor of 2.6 over the
equivalent non-split system, while achieving 92.5% of its
theoretical throughput. For a split system with two CSs and
one DS and partial delegation, a 22% improvement in
throughput over three non-split servers is obtained for 4 KB
files with response times that are close to those of a non-
split system.

We also discussed the impacts of splitting. When
evaluating the tradeoffs of splitting versus non-splitting, it is
necessary to consider the overhead and cost of load
balancers and dispatchers, which will result in less
throughput and worse response times than the theoretical
optimum values we have used for non-split systems. The
experimental results appear to indicate that scalable Web



server clusters can be built using one or more split server
systems, each consisting of 3-4 servers. The performance of
split servers depends on the requested file sizes, and it is
beneficial to handle small file sizes at the CS and larger files
with partial delegation to DSs. It would be useful to study
performance of split server systems in which resource files
of different sizes are allocated to different servers to
optimize performance. More studies are also needed to
evaluate the security benefits of split server clusters, and
their scalability and performance with a variety of
workloads. While these experiments used bare PC Web
servers with no OS or kernel for ease of implementation,
HTTP requests splitting can also be implemented in
principle on conventional systems with an OS.
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