
Mini Web Server Clusters for HTTP Request Splitting

 Bharat S. Rawal Ramesh K. Karne Alexander L. Wijesinha
 Department of Computer and Department of Computer and Department of Computer and
 Information Sciences Information Sciences Information Sciences
 Towson University Towson University Towson University
 Towson, Maryland, USA Towson, Maryland, USA Towson, Maryland, USA
 brawal@towson.edu rkarne@towson.edu awijesinha@towson.edu

Abstract—HTTP request splitting is a new concept
where the TCP connection and data transfer phases are
dynamically split between servers without using a
central dispatcher or load balancer. Splitting is
completely transparent to the client and provides
security due to the inaccessibility and invisibility of the
data servers. We study the performance of mini Web
server clusters with request splitting. With partial
delegation in which some requests are split, throughput
is better, and response times are only marginally less
than for an equivalent non-split system. For example
with partial delegation, for a four-node cluster with a
single connection server and three data servers serving
64 KB files, and for a three-node cluster with two
connection servers and a single data server serving 4 KB
files, the respective throughput improvements over non-
split systems are 10% and 22%, with only a marginal
increase in response time. In practice, the throughput
improvement percentages will be higher and response
time gaps will be lower since we ignore the overhead of a
dispatcher or load balancer in non-split systems.
Although these experiments used bare PC Web servers
without an operating system/kernel for ease of
implementation, splitting and clustering may also be
implemented on conventional systems.

Keywords -Splitting HTTP Requests, Performance, Cluster
Computing, Web Servers, Bare Machine Computing.

I. INTRODUCTION
Load balancing is frequently used to enable Web servers

to dynamically share the workload. For load balancing, a
wide variety of clustering server techniques [20, 21, 22] are
employed. Most load balancing systems used in practice
require a central control system such as a load balancing
switch or dispatcher [20]. Load balancing can be
implemented at various layers in the protocol stack [19, 20].
This paper considers a new approach to load balancing that
involves splitting HTTP requests among a set of servers,
where one or more connection servers (CSs) handle TCP
connections and may delegate a fraction (or all) requests to
one or more data servers (DSs) that serve the data [23]. For
example, the data transfer of a large file could be assigned to

a DS and the data transfer of a small file could be handled by
the CS itself.
 One advantage of splitting is that splitting systems are
completely autonomous and do not require a central control
system such as dispatcher or load balancer. Another
advantage is that no client involvement is necessary as in
migratory or M-TCP [13]. In [23], splitting using a single
CS and a DS was shown to improve performance compared
to non-split systems. Since the DSs are completely
anonymous and invisible (they use the IP address of the
delegating CS), it would be harder for attackers to access
them. In particular, communication between DSs and clients
is only one-way, and DSs can be configured to only respond
to inter-server packets from an authenticated CS. We study
the performance of three different configurations of Web
server clusters based on HTTP splitting by measuring the
throughput (in requests/sec), and the connection and
response times at the client.
 In real world applications, some servers may be close to
data sources, and some servers may be close to clients.
Splitting a client’s HTTP request and the underlying TCP
connection in this manner allows servers to dynamically
balance the workload. We have tested the splitting concept
in a LAN that consists of multiple subnets connected by
routers. In HTTP splitting, clients can be located anywhere
on the Internet. However, there are security and other issues
that arise when deploying mini clusters in an Internet where
a CS and a DS are on different networks [23].
 The remainder of the paper is organized as follows.
Section II presents related work; Section III describes
splitting and the different cluster configurations used in this
study; Section IV presents results of experiments; Section V
discusses impacts of splitting; and Section VI contains the
conclusion.

II. RELATED WORK
 We implemented HTTP request splitting on a bare PC
with no kernel or OS running on the machine. Bare PC
applications use the Bare Machine Computing (BMC) or
dispersed OS computing paradigm [7], wherein self-
supporting applications run on a bare PC. That is, there is no
operating system (OS) or centralized kernel running in the
machine. Instead, the application is written in C++ and runs

2011 IEEE International Conference on High Performance Computing and Communications

978-0-7695-4538-7/11 $26.00 © 2011 IEEE

DOI 10.1109/HPCC.2011.22

94

as an application object (AO) [9] by using i
to the hardware [8] and device drivers. W
concept resembles approaches that reduc
and/or use lean kernels such as Exokerne
[12], Palacio [10], Libra [1], factored OS
Linux [14], and TinyOS [18], there
differences such as the lack of a centra
manages system resources and the absenc
TCP/IP protocol stack. In essence, the AO
the CPU and memory, and contains lean
necessary protocols. Protocol intertwinin
cross-layer design. Further details on bare
and bare machine computing (BMC) can be
 Splitting an HTTP request by splitting
TCP connection is different from
connections, processes or Web sessions
connections; or masking failures in TCP-ba
example, in migratory TCP (M-TCP)
connection is migrated between serve
involvement; in process migration [11]
process is transferred between machines;
session handoff [2], a proxy is used to migra
in a mobile environment; in TCP splicing [
TCP connections are established for each
fault-tolerant TCP (FT-TCP) [16], a T
continues after a failure enabling a repli
survive. Per our knowledge, no wor
connections at a protocol level has been don

Figure 1. Split architecture

III. CLUSTER CONFIGURAT
 Figure 1 illustrates generic request sp
shows the messages exchanged by the in
and TCP protocols. Connection esta
termination are performed by one or m
servers (CSs), and data transfer is done by
servers (DSs). When a request is split, the
request to a CS, the CS sends an inter-serve
and the DS sends the data packets to the cl
packets may also be sent during the data t

ts own interfaces
While the BMC
ce OS overhead
el [3, 4], IO-Lite

[15], bare-metal
are significant

alized code that
ce of a standard
O itself manages

n versions of the
ng is a form of

 PC applications
e found in [5, 6].
g the underlying
migrating TCP

s; splicing TCP
ased servers. For
 [13], a TCP
ers with client
], an executing
 in proxy-based
ate Web sessions
19], two separate

h request; and in
TCP connection
icated service to
rk on splitting
ne before.

e

TIONS
plitting [23] and
ntertwined HTTP
ablishment and
more connection
y one more data

e client sends the
er packet to a DS,
lient. Inter-server
transfer phase to

update the DS if retransmissions a
delegation, the CS delegates a fra
DSs. With full delegation, the CS
to DSs. The design and implement
splitting are provided in [23].
 We consider mini Web server c
or more servers with protocol sp
cluster performance by measurin
connection and response times o
configurations with a varying numb
 Configuration 1 in Fig. 2a shows
CS, one DS, and a set of clients sen
The DS and CS have different IP
sends data to a client using the IP ad
 Configuration 2 in Fig. 2b shows
more DSs in the system with part
partial delegation mode, clients
request clients (NSRCs) send reque
requests are processed completely
connections between the NSRCs an
dotted lines. With full delegation, cl
request clients (SRCs) make reque
requests are delegated to DSs. For
no NSRCs in the system. When r
DSs, we assume that they are equal
DSs in round-robin fashion. It is
other distribution strategies.

Figure 2a. Split architecture

 Configuration 3 in Fig. 2c show
with both SRCs and NSRCs. For th
small file sizes to avoid overl
Although we have not done so, mul
as in Configuration 3.

IV. EXPERIMENTA

 A. Experimental Setup
 The experimental setup involv
cluster consisting of Dell Optiplex
Pentium 4, 2.8GHz Processors, 1GB
NIC on the motherboard. All syste
Linksys 16 port 1 Gbps Ethernet sw

are needed. With partial
action of its requests to
delegates all its requests
tation details of protocol

lusters consisting of two
plitting. We then study
ng the throughput and
of three different server
ber of CSs and DSs.
s full delegation with one
nding requests to the CS.
P addresses, but the DS
ddress of the CS.
s a single CS with two or
ial or full delegation. In
designated as non-split
ests to the CS, and these
by the CS as usual. The
nd the CSs are shown as
lients designated as split-

ests to the CS, and these
full delegation, there are

requests are delegated to
lly distributed among the
also possible to employ

e configuration 1

ws two CSs and one DS
is configuration, we used
oading the single DS.
ltiple DSs could be added

AL RESULTS

ved a prototype server
x GX260 PCs with Intel
B RAM, and an Intel 1G
ems were connected to a
witch. Linux clients were

95

used to run the http_load stress tool [17],
bare PC Web clients capable of g
requests/sec was used to increase the work
http_load limit of 1000 concurrent HTTP
client. The split server cluster was also tes
Explorer browsers running on Window
browsers running on Linux.

Figure 2b. Split architecture configu

Figure 2c. Split architecture configu

B. Configuration 1 (1 CS, 1 DS, full delegat

 In [23], the performance of HTTP
Configuration 1 was evaluated using variou
32 KB. Here, we study the performance of
by varying the file size up to 128 KB an
throughput in requests/sec. Fig. 3 shows th
experiments. It can be seen that the perf
configuration is worse than that of a two
system for all file sizes. This is beca
overloaded resulting in performance degrad
the CS is underutilized since it is only han
establishment and termination. For a two
system, we show the theoretical maximu

and in addition,
generating 5700
kload beyond the

requests/sec per
sted with Internet
ws and Firefox

uration 2

uration 3

tion)

P splitting with
us file sizes up to
f Configuration 1
nd measuring the
e results of these
formance of this

server non-split
ause the DS is
dation. However,

ndling connection
 server non-split
um performance

(throughput) as being double that
system, which was determined exp
requests/sec. In practice, this theor
systems will not be attained due
balancers and dispatchers.

Figure 3. Throughput with in

(Configuration
 Fig. 4 shows the CPU utilizatio
Configuration 1. The DS’s CPU ut
is close to the maximum, indicatin
cannot handle more than 1500 req
insight into the performance limit
determined the impact of connecti
the client due to increasing the req
shown in Fig. 5. The response time
of requests increases starting at 1
largest at 1500 requests/sec as
suggest that performance may be im
DSs and utilizing the remaining cap

Figure 4. CPU utilization with

(Configuration

t of a single (non-split)
perimentally to be 6000
retical limit for non-split
to the overhead of load

ncreasing file sizes
n 1)

on for the CS and DS in
tilization for 64 KB files
ng that this configuration
quests/sec. To get further
tations in this case, we
on and response time at

quest rate. The results are
e degrades as the number
1300 requests/sec and is
expected. These results
mproved by adding more
pacity of the CS.

increasing file sizes
n 1)

96

Figure 5. Connection and respons
(Configuration 1, file size 64K

C. Configuration 2 (1 CS, 1-3 DS, full deleg

 Fig. 6 shows the DS throughput for this
varying the number of DSs with full deleg
files. Adding more DSs improves the throu
the figure. With one DS (i.e. a two-serve
requests/sec can be handled versus the the
of 2000 requests/sec for two non-split
dispatcher or a load balancer overhead (ab
theoretical non-split performance). With
throughput increases to 2500 requests/sec
the theoretical non-split performance). Wit
maximum throughput is 3700 requests/sec
theoretical limit of 4000 requests/sec for a
(about 92.5% of the theoretical non-split per
 Fig. 7 shows connection and resp
Configuration 2 with 64 KB files. Althou
time for a single DS is poor, the averag
connection times improve significantly whe
DSs is increased. A single (non-split) serve
and response times of 1.62 ms and 2.38
compared to 365 µs and 922 µs respect
system with three DSs and one CS (i.e.,
response times are improved by factors
respectively).

Figure 6. DS throughput (Configuration 2,

se times
KB)

gation)

configuration by
gation for 64 KB
ughput as seen in
er cluster), 1500
eoretical capacity
servers ignoring
bout 75% of the

h two DSs, the
(about 83.3% of

th three DSs, the
compared to the
non-split system
rformance).
onse times for

ugh the response
ge response and
en the number of
er has connection
ms respectively,

tively for a split
 connection and
of 4.4 and 2.6

file size 64KB)

Figure 7. Connection and
 (Configuration 2, file

 Fig. 8 shows the CPU utilization
the CS and DSs with 64 KB files.
as expected due to load sharing,
increases due to the increased reque
still has unused capacity to support
The preceding experiments show th
split system with a single CS and t
theoretical limit of a four-server
respect to both throughput, as w
response times. In addition, the CS

 D. Configuration 2 (1 CS, 1-3 DS,

 Configuration 2 with partial de
clients whose requests are not split (
more load to be added in order
remaining capacity of the CS. The r
completely processed by the CS,
SRCs are split. In this system, we h
requests.
 Fig. 9 compares the throughput f
and partial delegation. The throug
with partial delegation is more than
a non-split system due to fully util
CS. For a split system with a single
64 KB files, partial delegation imp
25%. However, this performance
when more DSs are added since
capacity. For example, a split syste
the throughput only by about 10%
indicate that a mini-cluster can onl
of DSs if the system is to be self
using an external load balancer).
 Fig. 10 compares the throughput
and partial delegation by varyi
maximum throughput and a perfo
25% are attained for 64 KB files
For 100 KB and 128 KB
improvements due to splitting
respectively with partial delega
connection and response times with

response times
size 64KB)

n in Configuration 2 for
The DS utilization drops
while the CS utilization
est rate. However, the CS
additional requests.
hat the performance of a
three DSs is close to the
r non-split system with
well as connection and
is still underutilized.

partial delegation)

elegation and additional
(i.e., NSRCs) allows
to efficiently utilize the
requests from NSRCs are
while the requests from
have used 64KB files for

for split servers with full
hput of the split system
n the theoretical limit for
lizing the capacity of the
e CS and a single DS for
proves the throughput by

gain does not scale up
the CS is now close to

em with 3 DSs improves
%. These measurements
y have a limited number
f-contained (i.e., without

for split servers with full
ing the file size. The
rmance improvement of
with partial delegation.

files, the performance
are 17.7% and 12.5%
ation. Fig. 11 shows

h partial delegation for 64

97

KB files. As with full delegation, response
delegation is poor with only a single DS
response time improves dramatically for sp
two or three DSs and partial delegation.

Figure 8. CPU Utilization

(Configuration 2, file size 64K

Figure 9. Throughput with full/partial
(Configuration 2, file size 64K

Figure 10. Throughput with full/partial d

varying file sizes (Configuratio

time with partial
S. However, the
plit systems with

n
KB)

l delegation
KB)

delegation for
on 2)

Figure 11. Connection and

(Configuration 2, file

E. Configuration 3 (2 CS, 1 DS, par

 As before, requests are generate
NSRCs. For this configuration, 4 K
larger file sizes will overload the
shows the throughput for three serv
delegation. Configuration 3 achie
improvement over three non-sp
delegation; with partial delegatio
improvement in throughput comp
servers.
 Fig. 13 shows the connection
Configuration 3. As expected, resp
the single DS gets saturated with t
be supported with two CSs. W
response times improve significa
capacity is used to handle requests
delegation. While the connection a
Configuration 3 are worse than fo
disadvantage should be weighed
throughput, cost, and security be
system. Also, non-split servers w
response and connection times due
a dispatcher or load balancer.

Figure 12. Throughput with fu
(Configuration 3, file

d response times
size 64KB)

rtial delegation)

ed by a set of SRCs and
KB files were used since
e single DS. Figure 12
vers with full and partial
eves a 6.5% throughput
plit servers with full
on, it achieves a 22%
pared to three non-split

and response times for
ponse time is poor since
the high request rate that
With partial delegation,
ntly as the unused CS
from the NSRCs without

and response times using
or non-split servers, this
d against the increased
enefits of using a split

will incur a reduction in
to the overhead of using

ull/partial delegation
 size 4KB)

98

Figure 13. Connection times and respon
full/partial delegation (Configuration 3, f

V. IMPACTS OF SPLITTI
 Splitting is a general approach that ca
principle to any application protocol that u
also be applied to protocols other than T
functionality of a protocol across machine
In particular, splitting the HTTP protocol h
in the area of load balancing. We discus
impacts below.
• Split protocol configurations can be

better response and connection times,
scalable performance. Splitting also eli
for (and overhead/cost associated wit
balancers such as a dispatcher or a spec

• Split protocol Configuration 2 (with o
and partial delegation achieves 25% m
than two homogeneous servers workin
This performance gain can be utilized t
capacity while reducing the number o
in a cluster.

• Split server architectures could be used
load based on file sizes, proximity to
security considerations.

• The results obtained in this paper
machines and workloads) indicate t
sizes are in the single digits. More rese
validate this hypothesis for other
However, if we assume that mini
contain a very small number of nodes
easier to maintain and manage (com
clusters). Using mini-clusters, it is p
large clusters by simply increasing the
clusters.

• Splitting protocols is a new approa
server clusters for load balanci
demonstrated splitting and bui
configurations using bare PC servers
general technique of splitting also app
clusters provided additional OS overhe

nse times with
file size 4KB)

ING
an be applied in
uses TCP (it can
TCP to split the
es or processors).
has many impacts
ss some of these

used to achieve
while providing

iminates the need
th) external load
cial switch.
one CS, one DS)

more performance
ng independently.
to increase server
of servers needed

d to distribute the
file locations, or

(using specific
that mini-cluster
earch is needed to
r traffic loads.
i-clusters should
s, they would be
mpared to larger
possible to build

number of mini-

ach to designing
ing. We have
lt mini-cluster
s. However, the

plies to OS-based
ad can be kept to

a minimum (and that undue
needed to tweak the kernel to im

• When protocol splitting uses tw
dramatically simplifies the lo
server (each server only hand
HTTP protocols unlike a conv
does both protocols completely
less complex and hence have in
(i.e., are less likely to fail).

• Splitting can also be used to s
and “data” parts of any prot
connection-oriented protocol
connection servers can simply
data servers can provide data. I
the functionality of any applic
application) so that different
needed by it are done on
processors. Thus, a variety
applications can be split in thi
will spawn new ways of doing

 The configurations studied and th
paper can be viewed as a firs
applicability of splitting as a gene
would be of interest to investigate
protocols and applications.

VI. CONCLU
 We studied the performance of m
with HTTP request splitting, wh
central load balancer or dispatch
transparent to the client. Throughp
and response times with full an
requests were measured for a vari
system with one CS and three D
delegation, can be used to ac
connection times and throughput cl
theoretical limit of non-split system
configuration with partial deleg
throughput increase for 64 KB file
split servers and response times th
The same configuration with fu
response times for 64 KB files by
equivalent non-split system, while
theoretical throughput. For a split s
one DS and partial delegation, a
throughput over three non-split serv
files with response times that are
split system.
 We also discussed the impac
evaluating the tradeoffs of splitting
necessary to consider the overh
balancers and dispatchers, whic
throughput and worse response tim
optimum values we have used for
experimental results appear to ind

developer effort is not
mplement splitting).

wo servers (CS and DS) it
ogic and code in each
les part of the TCP and
entional Web server that
y). Thus, the servers are
nherently more reliability

eparate the “connection”
tocol (for example, any
like TCP). In general,
perform connections and
t can also be used to split
cation-layer protocol (or
parts of the processing
different machines or

y of servers or Web
s manner. This approach
computing on the Web.
he results obtained in this
st step to validate the
ral concept. In future, it
its applicability to other

USION
mini Web server clusters

hich does not require a
her, and is completely

put as well as connection
nd partial delegation of
ety of file sizes. A split

DSs, and full or partial
chieve response times,
ose to, or better than, the

ms. For example, this
ation achieves a 10%

es compared to four non-
hat are only slightly less.
ull delegation improves

a factor of 2.6 over the
e achieving 92.5% of its
system with two CSs and
a 22% improvement in
vers is obtained for 4 KB
close to those of a non-

cts of splitting. When
versus non-splitting, it is

head and cost of load
ch will result in less
mes than the theoretical
r non-split systems. The
dicate that scalable Web

99

server clusters can be built using one or more split server
systems, each consisting of 3-4 servers. The performance of
split servers depends on the requested file sizes, and it is
beneficial to handle small file sizes at the CS and larger files
with partial delegation to DSs. It would be useful to study
performance of split server systems in which resource files
of different sizes are allocated to different servers to
optimize performance. More studies are also needed to
evaluate the security benefits of split server clusters, and
their scalability and performance with a variety of
workloads. While these experiments used bare PC Web
servers with no OS or kernel for ease of implementation,
HTTP requests splitting can also be implemented in
principle on conventional systems with an OS.

REFERENCES

[1] G. Ammons, J. Appayoo, M. Butrico, D. Silva, D. Grove, K.
Kawachiva, O. Krieger, B. Rosenburg, E. Hensbergen, R.W.
isniewski, “Libra: A Library Operating System for a JVM in a
Virtualized Execution Environment,” VEE ’07: Proceedings
of the 3rd International Conference on Virtual Execution
Environments, June 2007.

[2] G. Canfora, G. Di Santo, G. Venturi, E. Zimeo and M.V.Zito,
“Migrating web application sessions in mobile computing,”
Proceedings of the 14th International Conference on the
World Wide Web, 2005, pp. 1166-1167.

[3] D. R. Engler and M.F. Kaashoek, “Exterminate all operating
system abstractions,” Fifth Workshop on Hot Topics in
operating Systems, USENIX, Orcas Island, WA, May 1995,
p. 78.

[4] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceno,
R. Hunt and T. Pinckney, “Fast and flexible application-
level networking on exokernel system,” ACM Transactions
on Computer Systems (TOCS), Volume 20, Issue 1, pp. 49 –
83, February, 2002.

[5] L. He, R. K. Karne, and A. L. Wijesinha, “The Design and
Performance of a Bare PC Web Server,” International Journal
of Computers and Their Applications, IJCA, Vol. 15, No. 2,
June 2008, pp. 100-112.

[6] L. He, R.K. Karne, A.L Wijesinha, and A. Emdadi, “A Study
of Bare PC Web Server Performance for Workloads with
Dynamic and Static Content,” The 11th IEEE International
Conference on High Performance Computing and
Communications (HPCC-09), Seoul, Korea, June 2009, pp.
494-499.

[7] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “DOSC:
Dispersed Operating System Computing,” OOPSLA ’05, 20th

 Annual ACM Conference on Object Oriented
Programming,Systems, Languages, and Applications, Onward
Track, ACM,San Diego, CA, October 2005, pp. 55-61.

[8] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to run
C++ Applications on a bare PC,” SNPD 2005, Proceedings of

NPD 2005, 6th ACIS International Conference, IEEE, May
2005, pp. 50-55.

[9] R. K. Karne, “Application-oriented Object Architecture: A
Revolutionary Approach,” 6th International Conference, HPC
Asia 2002 (Poster), Centre for Development of Advanced
Computing, Bangalore, Karnataka, India, December 2002.

[10] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P.
Bridges, A. Gocke, S. Jaconette, M. Levenhagen, R.
Brightwell, “Palacios and Kitten: New High Performance
Operating Systems for Scalable Virtualized and Native
Supercomputing,” Proceedings of the 24th IEEE International
Parallel and Distributed Processing Symposium (IPDPS
2010), April, 2010.

[11] D.S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler and S.
Zhou. “Process Migration,” ACM Computing Surveys, Vol.
32, Issue 3, September 2000, pp. 241-299.

[12] V. S. Pai, P. Druschel, and Zwaenepoel. “IO-Lite: A Unified
I/O Buffering and Caching System,” ACM Transactions on
Computer Systems, Vol.18 (1), ACM, Feb. 2000, pp. 37-66.

[13] K. Sultan, D. Srinivasan, D. Iyer and L. lftod. “Migratory
TCP: Highly Available Internet Services using Connection
Migration,” Proceedings of the 22nd International Conference
on Distributed Computing Systems, July 2002.

[14] T. Venton, M. Miller, R. Kalla, and A. Blanchard, “A Linux-
based tool for hardware bring up, Linux development, and
manufacturing,” IBM Systems J., Vol. 44 (2), IBM, NY, 2005,
pp. 319-330.

[15] D. Wentzlaff and A. Agarwal, “Factored operating systems
(fos): the case for a scalable operating system for multicores,”
ACM SIGOPS Operating Systems Review, Volume 43, Issue
2, pp. 76-85, April 2009.

[16] D. Zagorodnov, K. Marzullo, L. Alvisi and T.C. Bressourd,
“Practical and low overhead masking of failures of TCP-
based servers,” ACM Transactions on Computer Systems,
Volume 27, Issue 2, Article 4, May 2009.

[17] http://www.acme.com/software/http_load.
[18] http://www.tinyos.net/.
[19] A. Cohen, S. Rangarajan, and H. Slye, “On the performance

of TCP splicing for URL-Aware redirection,” Proceedings of
USITS’99, The 2nd USENIX Symposium on Internet
Technologies & Systems, October 1999.

[20] Y. Jiao and W. Wang, “Design and implementation of load
balancing of a distributed-system-based Web server,” 3rd
International Symposium on Electronic Commerce and
Security (ISECS), pp. 337-342, July 2010.

[21] Ciardo, G., A. Riska and E. Smirni. EquiLoad: A Load
Balancing Policy for Clustered Web Servers". Performance
Evaluation, 46(2-3):101-124, 2001.

[22]i Sujit Vaidya and Kenneth J.Chritensen , “A Single System
 Image Server Cluster using Duplicated MAC and IP
 Addresses,” Proceedings of the 26th Annual IEEE conference
 on Local Computer Network (LCN’01)
[23] B. Rawal, R. Karne, and A. L. Wijesinha. Splitting HTTP

Requests on Two Servers, The Third International Conference
 on Communication Systems and Networks: COMPSNETS

2011, January 2011, Bangalore, India.

100

