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Abstract—HTTP request splitting is a new concept 
where the TCP connection and data transfer phases are 
dynamically split between servers without using a 
central dispatcher or load balancer. Splitting is 
completely transparent to the client and provides 
security due to the inaccessibility and invisibility of the 
data servers. We study the performance of mini Web 
server clusters with request splitting. With partial 
delegation in which some requests are split, throughput 
is better, and response times are only marginally less 
than for an equivalent non-split system. For example 
with partial delegation, for a four-node cluster with a 
single connection server and three data servers serving 
64 KB files, and for a three-node cluster with two 
connection servers and a single data server serving 4 KB 
files, the respective throughput improvements over non-
split systems are 10% and 22%, with only a marginal 
increase in response time. In practice, the throughput 
improvement percentages will be higher and response 
time gaps will be lower since we ignore the overhead of a 
dispatcher or load balancer in non-split systems. 
Although these experiments used bare PC Web servers 
without an operating system/kernel for ease of 
implementation, splitting and clustering may also be 
implemented on conventional systems. 
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I. INTRODUCTION 
Load balancing is frequently used to enable Web servers 

to dynamically share the workload. For load balancing, a 
wide variety of clustering server techniques [20, 21, 22] are 
employed. Most load balancing systems used in practice 
require a central control system such as a load balancing 
switch or dispatcher [20]. Load balancing can be 
implemented at various layers in the protocol stack [19, 20].  
This paper considers a new approach to load balancing that 
involves splitting HTTP requests among a set of servers, 
where one or more connection servers (CSs) handle TCP 
connections and may delegate a fraction (or all) requests to 
one or more data servers (DSs) that serve the data [23]. For 
example, the data transfer of a large file could be assigned to 

a DS and the data transfer of a small file could be handled by 
the CS itself.  
    One advantage of splitting is that splitting systems are 
completely autonomous and do not require a central control 
system such as dispatcher or load balancer. Another 
advantage is that no client involvement is necessary as in 
migratory or M-TCP [13]. In [23], splitting using a single 
CS and a DS was shown to improve performance compared 
to non-split systems. Since the DSs are completely 
anonymous and invisible (they use the IP address of the 
delegating CS), it would be harder for attackers to access 
them. In particular, communication between DSs and clients 
is only one-way, and DSs can be configured to only respond 
to inter-server packets from an authenticated CS. We study 
the performance of three different configurations of Web 
server clusters based on HTTP splitting by measuring the 
throughput (in requests/sec), and the connection and 
response times at the client.  
    In real world applications, some servers may be close to 
data sources, and some servers may be close to clients. 
Splitting a client’s HTTP request and the underlying TCP 
connection in this manner allows servers to dynamically 
balance the workload. We have tested the splitting concept 
in a LAN that consists of multiple subnets connected by 
routers. In HTTP splitting, clients can be located anywhere 
on the Internet. However, there are security and other issues 
that arise when deploying mini clusters in an Internet where 
a CS and a DS are on different networks [23].  
    The remainder of the paper is organized as follows. 
Section II presents related work; Section III describes 
splitting and the different cluster configurations used in this 
study; Section IV presents results of experiments; Section V 
discusses impacts of splitting; and Section VI contains the 
conclusion.  

II. RELATED WORK 
   We implemented HTTP request splitting on a bare PC 
with no kernel or OS running on the machine. Bare PC 
applications use the Bare Machine Computing (BMC) or 
dispersed OS computing paradigm [7], wherein self-
supporting applications run on a bare PC. That is, there is no 
operating system (OS) or centralized kernel running in the 
machine. Instead, the application is written in C++ and runs 
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as an application object (AO) [9] by using i
to the hardware [8] and device drivers. W
concept resembles approaches that reduc
and/or use lean kernels such as Exokerne
[12], Palacio [10], Libra [1], factored OS 
Linux [14], and TinyOS [18], there 
differences such as the lack of a centra
manages system resources and the absenc
TCP/IP protocol stack. In essence, the AO
the CPU and memory, and contains lean
necessary protocols. Protocol intertwinin
cross-layer design. Further details on bare 
and bare machine computing (BMC) can be
    Splitting an HTTP request by splitting
TCP connection is different from 
connections, processes or Web sessions
connections; or masking failures in TCP-ba
example, in migratory TCP (M-TCP) 
connection is migrated between serve
involvement; in process migration [11]
process is transferred between machines;
session handoff [2], a proxy is used to migra
in a mobile environment; in TCP splicing [
TCP connections are established for each
fault-tolerant TCP (FT-TCP) [16], a T
continues after a failure enabling a repli
survive. Per our knowledge, no wor
connections at a protocol level has been don

Figure 1. Split architecture
 

III. CLUSTER CONFIGURAT
     Figure 1 illustrates generic request sp
shows the messages exchanged by the in
and TCP protocols. Connection esta
termination are performed by one or m
servers (CSs), and data transfer is done by
servers (DSs). When a request is split, the
request to a CS, the CS sends an inter-serve
and the DS sends the data packets to the cl
packets may also be sent during the data t

ts own interfaces 
While the BMC 
ce OS overhead 
el [3, 4], IO-Lite 

[15], bare-metal 
are significant 

alized code that 
ce of a standard 
O itself manages 

n versions of the 
ng is a form of 

 PC applications 
e found in [5, 6].    
g the underlying 
migrating TCP 

s; splicing TCP 
ased servers. For 
 [13], a TCP 
ers with client 
], an executing 
 in proxy-based 
ate Web sessions 
19], two separate 

h request; and in 
TCP connection 
icated service to 
rk on splitting 
ne before. 

 
e 

TIONS 
plitting [23] and 
ntertwined HTTP 
ablishment and 
more connection 
y one more data 

e client sends the 
er packet to a DS, 
lient. Inter-server 
transfer phase to 

update the DS if retransmissions a
delegation, the CS delegates a fra
DSs. With full delegation, the CS 
to DSs. The design and implement
splitting are provided in [23].   
    We consider mini Web server c
or more servers with protocol sp
cluster performance by measurin
connection and response times o
configurations with a varying numb
    Configuration 1 in Fig. 2a shows
CS, one DS, and a set of clients sen
The DS and CS have different IP
sends data to a client using the IP ad
    Configuration 2 in Fig. 2b shows
more DSs in the system with part
partial delegation mode, clients 
request clients (NSRCs) send reque
requests are processed completely 
connections between the NSRCs an
dotted lines. With full delegation, cl
request clients (SRCs) make reque
requests are delegated to DSs. For 
no NSRCs in the system. When r
DSs, we assume that they are equal
DSs in round-robin fashion. It is 
other distribution strategies. 
 

 
Figure 2a. Split architecture
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used to run the http_load stress tool [17], 
bare PC Web clients capable of g
requests/sec was used to increase the work
http_load limit of 1000 concurrent HTTP 
client. The split server cluster was also tes
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Figure 5.   Connection and respons
(Configuration 1, file size 64K

 
C. Configuration 2 (1 CS, 1-3 DS, full deleg
 
    Fig. 6 shows the DS throughput for this 
varying the number of DSs with full deleg
files. Adding more DSs improves the throu
the figure. With one DS (i.e. a two-serve
requests/sec can be handled versus the the
of 2000 requests/sec for two non-split 
dispatcher or a load balancer overhead (ab
theoretical non-split performance). With
throughput increases to 2500 requests/sec 
the theoretical non-split performance). Wit
maximum throughput is 3700 requests/sec 
theoretical limit of 4000 requests/sec for a 
(about 92.5% of the theoretical non-split per
     Fig. 7 shows connection and resp
Configuration 2 with 64 KB files. Althou
time for a single DS is poor, the averag
connection times improve significantly whe
DSs is increased. A single (non-split) serve
and response times of 1.62 ms and 2.38 
compared to 365 µs and 922 µs respect
system with three DSs and one CS (i.e.,
response times are improved by factors 
respectively). 

 
Figure 6. DS throughput (Configuration 2, 

 

 
se times  
KB) 

gation) 

configuration by 
gation for 64 KB 
ughput as seen in 
er cluster), 1500 
eoretical capacity 
servers ignoring 
bout 75% of the 

h two DSs, the 
(about 83.3% of 

th three DSs, the 
compared to the 
non-split system 
rformance). 
onse times for 

ugh the response 
ge response and 
en the number of 
er has connection 
ms respectively, 

tively for a split 
 connection and 
of 4.4 and 2.6 

 

file size 64KB) 

Figure 7. Connection and 
 (Configuration 2, file 

 
    Fig. 8 shows the CPU utilization
the CS and DSs with 64 KB files. 
as expected due to load sharing, 
increases due to the increased reque
still has unused capacity to support 
The preceding experiments show th
split system with a single CS and t
theoretical limit of a four-server
respect to both throughput, as w
response times. In addition, the CS 
   
  D. Configuration 2 (1 CS, 1-3 DS, 
 
    Configuration 2 with partial de
clients whose requests are not split (
more load to be added in order 
remaining capacity of the CS. The r
completely processed by the CS, 
SRCs are split. In this system, we h
requests.  
    Fig. 9 compares the throughput f
and partial delegation. The throug
with partial delegation is more than
a non-split system due to fully util
CS. For a split system with a single
64 KB files, partial delegation imp
25%. However, this performance 
when more DSs are added since 
capacity. For example, a split syste
the throughput only by about 10%
indicate that a mini-cluster can onl
of DSs if the system is to be self
using an external load balancer).   
    Fig. 10 compares the throughput 
and partial delegation by varyi
maximum throughput and a perfo
25% are attained for 64 KB files 
For 100 KB and 128 KB 
improvements due to splitting 
respectively with partial delega
connection and response times with

 
response times 
size 64KB) 

n in Configuration 2 for 
The DS utilization drops 
while the CS utilization 
est rate. However, the CS 
additional requests.  
hat the performance of a 
three DSs is close to the 
r non-split system with 
well as connection and 
is still underutilized.  

partial delegation) 

elegation and additional 
(i.e., NSRCs) allows 
to efficiently utilize the 
requests from NSRCs are 
while the requests from 
have used 64KB files for 

for split servers with full 
hput of the split system 
n the theoretical limit for 
lizing the capacity of the 
e CS and a single DS for 
proves the throughput by 

gain does not scale up 
the CS is now close to 

em with 3 DSs improves 
%. These measurements 
y have a limited number 
f-contained (i.e., without 

for split servers with full 
ing the file size. The 
rmance improvement of 
with partial delegation.  

files, the performance 
are 17.7% and 12.5% 
ation. Fig. 11 shows 

h partial delegation for 64 

97



KB files. As with full delegation, response 
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Figure 13. Connection times and respon
full/partial delegation (Configuration 3, f
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server clusters can be built using one or more split server 
systems, each consisting of 3-4 servers. The performance of 
split servers depends on the requested file sizes, and it is 
beneficial to handle small file sizes at the CS and larger files 
with partial delegation to DSs. It would be useful to study 
performance of split server systems in which resource files 
of different sizes are allocated to different servers to 
optimize performance. More studies are also needed to 
evaluate the security benefits of split server clusters, and 
their scalability and performance with a variety of 
workloads. While these experiments used bare PC Web 
servers with no OS or kernel for ease of implementation, 
HTTP requests splitting can also be implemented in 
principle on conventional systems with an OS. 
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