
 

A Study of Bare PC SIP Server Performance 

A. Alexander, A. L. Wijesinha, and R. Karne 
Department of Computer & Information Sciences 

Towson University 
Towson, MD 21252 

USA 
 
 

Abstract—In bare computing, applications run directly on an 
ordinary PC without using an operating system (OS). Advantages 
of bare PC computing include elimination of overhead due to the 
OS, and immunity against attacks targeting OS vulnerabilities. 
We evaluate the performance of a bare PC SIP server by 
determining its throughput and latency in a dedicated test 
network using the open source SIPp workload generator to 
generate requests for registration (register, register update, and 
register logout operations), proxying (invite and invite-not-found 
operations) and redirection (invite redirect operation) with and 
without authentication. We also report internal timings for the 
server. The performance of the server is then compared with the 
OpenSER and Brekeke SIP servers running on Linux and 
Windows respectively. Our results show that the bare PC SIP 
server has low cost for internal SIP-related operations, higher 
throughput than the Windows server, and higher or equal 
throughput than the Linux server except in the case of 
redirection. Its latency is more than that of an OS-based server 
only in the case of invite with authentication and invite-not-found 
without authentication.  

Keywords—SIP server, application object, bare PC, bare 
computing, performance. 

I.  INTRODUCTION 
In a bare PC, applications run directly over the hardware of 

an ordinary PC such as a desktop or laptop without using any 
operating system (OS). Previous studies [1], [2] have shown 
that bare PC email servers and Web servers can significantly 
outperform their counterparts running on conventional OS-
based systems. Bare PC applications can also be deployed in 
secure environments since they are immune to attacks that 
target specific OS vulnerabilities. Although many studies have 
investigated the design and performance of network and 
security protocols [3] in a bare PC, including those used for 
peer-to-peer communication among bare VoIP clients [4], none 
has included the Session Initiation Protocol (SIP). SIP has since 
become the most frequently used protocol today for initiating 
VoIP calls and for media session support with a variety of other 
applications including video streaming, instant messaging, 
gaming and IPTV.  

In this paper, we evaluate the performance of a bare PC SIP 
server and compare it with two commonly used OS-based SIP 
servers: OpenSER (now OpenSIPS) running on Linux and 
Brekeke running on Windows. All studies are conducted using 
identical ordinary (non-server) machines.   

SIP servers play an important role in supporting audio or 
multimedia sessions. For example, OpenSER uses SIP to 

provide voice, video, instant messaging, and presence services. 
In general, SIP servers locate and register clients, provide 
proxy services for forwarding SIP messages, or redirect SIP 
requests to other servers. An optimized SIP server can thus 
help improve the overall performance of audio or video 
applications although it is typically not directly involved in the 
actual transmission of audio or video. The throughput and 
latency of the SIP server when responding to requests from SIP 
user agent clients and other SIP servers are often used as 
measures in evaluating its performance.  

We use the popular open source SIP workload generator 
SIPp to evaluate the performance of the bare PC SIP server by 
measuring its throughput and latency for registration, proxying, 
and redirection, with and without authentication, for increasing 
workloads. We then evaluate the performance of the OS-based 
(Linux and Windows) servers for the same workloads when 
running on compatible hardware. Our results show that the bare 
PC SIP server has higher or equal throughput to the Linux 
server and higher throughput than the Windows server, except 
in case of redirection, when its throughput is less than that of 
the Linux server. The latency performance of the bare PC 
server is also shown in general to be better than or equal to that 
of Linux server and better than that of the Windows server 
except for invite with authentication and invite-not-found 
without authentication. Our contributions in this paper include: 
1) results characterizing the performance of a bare PC SIP 
server running on an ordinary desktop; 2) internal timings for 
SIP-related operations on a bare PC SIP server; and 3) detailed 
comparisons of the throughput and latency for a bare PC SIP 
server, Linux OpenSER, and Windows Brekeke servers 
running on identical machines.  

The rest of this paper is organized as follows. In Section II, 
we describe the bare PC SIP server and relevant optimizations. 
In Section III, we briefly summarize related work. In Section 
IV, we give details of the experimental setup and discuss the 
results of the performance study. In Section V, we present the 
conclusion. 

II. BARE PC SIP SERVER OVERVIEW 
Any bare PC application, including the bare PC SIP server, 

is encapsulated in an application object (AO) [5]. Since there is 
no OS, minimal code for the application to run on the PC 
hardware is contained in the AO. This means that the AO 
contains the code for the bootable self-executing application 
itself, any required network interface drivers, handlers for 
protocols used by the application, and memory and task 
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management algorithms including modules to facilitate 
concurrency, scheduling, and security. Real memory is used 
since there is no hard disk, and unlike in a conventional OS-
based protocol stack, application code is intertwined with 
protocol code to eliminate redundancy and improve efficiency 
as described for the case of a bare PC email server in [6]. 

The bare PC SIP server AO implements a lean version of 
SIP that provides essential functionality only. Additional 
features such as those needed to support load balancing and 
media stream security are not included. Although a bare PC 
SIP server that can operate over TCP or UDP has been 
implemented, this paper only considers SIP over UDP since the 
majority of SIP servers employed in practice use UDP.  

A received UDP packet containing a SIP message is placed 
in the Ethernet buffer, where the bare PC SIP application can 
directly access it i.e., there is no distinction between real mode 
and user mode (or kernel-level operations) since there is no OS. 
The Ethernet handler processes the packet, determines that the 
packet is for IP, and the IP handler in turn processes the packet 
and invokes the UDP handler, which verifies the UDP 
checksum (if this feature is enabled) and the port number. In 
case of the SIP server, the port number is 5060 and the packet 
is processed by the SIP server application. If a response needs 
to be sent, the SIP application, the UDP, IP and Ethernet 
handlers are invoked in order to add the respective headers 
before the packet is transmitted by the network interface 
hardware. In a bare PC, data copying is minimized since 
headers are added to a single copy of the message. 

At a minimum, only two CPU tasks are required by the SIP 
server AO: a receive (Rcv) task that processes a received 
packet all the way from its arrival in the Ethernet buffer until 
completion, and a Main task that runs whenever a Rcv task 
completes (and also when the system is booted or the system is 
idle). For example, for a register message, the Rcv task itself 
could manage the lookup and update operations and send the 
response to the client. However, a separate SIP task could be 
used for each request when concurrent processing of requests is 
needed. In case of the invite message for example, a new SIP 
task could be used to handle the request since there may be a 
delay in contacting the peer (callee) and receiving the response. 
In general, since a typical workload involves a mix of requests 
for different services, bare PC SIP server performance would 
be improved by the concurrent handling of requests. In the bare 
PC SIP server and in other bare PC applications, a CPU task is 
allowed to run to completion unless it is “suspended” due to 
waiting for an event such as a response. As soon as the event 
occurs, the task is “resumed” so that it can be executed. This 
simple task scheduling algorithm and the disabling of timer 
interrupts on a bare PC reduces the context switching overhead 
of an OS and enables the CPU to be utilized with maximum 
efficiency on behalf of an application.  

III. RELATED WORK 
There are many commercial and open source servers 

implementing SIP and its companion protocol SDP. While a 
SIP server usually runs over UDP and in some cases over TCP, 
the use of SCTP as a transport protocol for SIP has also been 
studied [7]. An early study on SIP server performance [8] 

found that the overhead on a Java SIP server due to security 
mechanisms such as authentication and TLS was negligible. 
However, the study in [9], which measured throughput and 
latency in a dedicated gigabit Ethernet for stateless and stateful 
proxies over UDP and TCP, showed that authentication, TCP, 
or the operation/server configuration can significantly change 
SIP server performance. Their experiments were conducted 
using a 3.06 GHz server class machine, and only the 
performance of a single SIP server (OpenSER on Linux) was 
evaluated. In [10], SIP server performance for several stateful 
SIP proxies over UDP was evaluated. The authors concluded 
that the overhead due to string processing operations and 
memory management could consume significant processing 
time and that performance varied considerably depending on 
the proxy. Recent work on SIP servers has dealt with 
performance under overload conditions [11], scalability issues 
[12], [13], load balancing [14], and the impact of transport 
protocols on performance [15]. The main difference between 
previous studies and this paper is that we study the 
performance of a bare PC SIP server and compare it with the 
performance of two OS-based SIP servers using ordinary 
desktop (non-server) machines. Also, in addition to evaluating 
performance for the usual register, invite, and redirect 
operations, we also evaluate SIP server performance with the 
register update, register logout, and invite-not-found operations 
likely to be encountered in practice. We only consider SIP over 
UDP with stateless proxying, which is the most common 
configuration when setting up VoIP calls.   

IV. RESULTS 
In this section, we present the results obtained from our 

experiments. We compare throughput and latency for the bare 
PC and OS-based SIP servers using register, register update, 
register logout, invite, invite-not-found, and redirect operations. 

A. Experimental Set Up 
The test network consists of a 100 Mbps Ethernet to which 

each SIP server and the client machines running SIPp are 
connected. In addition to the bare PC SIP server, the details of 
the systems and software used is as follows: OS-based SIP 
servers: OpenSer SIP Server ver 1.3.2 –notls (Linux) OpenSer 
(KAMILIO/OpenSIPS) and Brekeke SIP Server ver 2.1.6.6 
(Windows) utilizing the Jakarta Web Server and Java platform; 
machines: Dell GX260’s with Intel Pentium 4 (2.4 GHz), 1.0 
GB of RAM and 3COM Ethernet 10/100 PCI network cards; 
OSs: Microsoft Windows XP Professional ver. 2002 Service 
Pack 2 and Linux Ubuntu 8.04 Kernel 2.6.24-16; workload 
generator: SIPp.  

For register updates, the SIP Server searches its user 
database for a match and then updates the corresponding user’s 
location data and registration expiration time; and in the 
register logout operation, it removes the user from the database. 
The invite operation requires the server to lookup the callee's 
contact details in its database, forward the request to the callee, 
and send the response back to the caller. The invite-not-found 
operation is similar to invite except that the callee is not found 
in the database. For redirect, the server receives an invite 
message, but instead of forwarding the response to the callee, it 
forwards a temporarily moved message back to the caller.  
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Figure 1.  Throughput for register without authentication 

 

 
 

 

Figure 2.  Throughput for invite without authentication 

 

 

 

Figure 3.  Throughput for register with authentication 

For the register, register update, and register logout 
operations, latency measures the delay at the user agent 
between sending the register message and receiving the “200 
OK” message. Latency for the invite operation measures the 
sum of two delays: the time between the invite message and 
“200 OK” messages; and the time between the “bye” and “200 
OK” messages. Each of these operations was also tested with 
authentication enabled, which adds processing overhead due to 
verifying the MD5 hash, and extra message overhead due to the  
“unauthorized” message for registration and “407 proxy 
authentication” message for invite (and their responses). 
Latency for registration with authentication measures the sum 
of two delays: the time between the register request and the 
“unauthorized message”; and the time between the new register  
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Figure 4.  Throughput for invite with authentication 

message with authentication credentials and the “200 OK” 
message. Latency for invite with authentication measures the 
sum of three delays: the time between the invite and “407 
proxy authentication” messages; the time between the “invite 
with authentication” message and the “200 OK” messages; and 
the time between the “bye” and “200 OK” messages. For 
invite-not-found and redirect operations, the latency is similarly 
measured using the “404 not found” and “302 moved 
temporarily” messages. 

We measured the throughput and latency of a server 
associated with each SIP call flow. The latency for a given 
operation is computed by adding the respective delays between 
sending the relevant messages to the server and receiving their 
responses as described above. The throughput is the number of 
calls per second successfully handled with respect to the 
offered load, which is the number of calls per second that are 
generated and sent to the server. The peak throughput is the 
highest throughput achieved under overload while the server 
remains stable (and produces consistent results). To conduct 
the experiments, the servers were configured to operate in three 
configuration modes with and without authentication: registrar, 
proxy, and redirector. In addition, internal timings were 
measured by inserting timing points within the bare SIP server. 
Each SIP server was pre-loaded with 10,000 unique SIP 
username and password pairs. The call flows for register, 
invite-not-found, and redirect were run for a maximum of 
10000 unique users, measuring the performance of each call 
flow with rates varying from 10 to 1000 calls/sec. The invite 

test call flows were run for a maximum of 5000 users with rates 
varying from 50 to 100 calls/sec. Each experiment was 
repeated a minimum of three times to ensure that the results 
were consistent. 

B. Throughput 
The throughput for the register and invite operations 

respectively without authentication is shown in Figs. 1 and 2. It 
can be seen that the peak throughput of the bare PC SIP server 
is always higher than that of the OS-based servers except in the 
case of invite redirect. The peak throughput of the bare PC 
server typically exceeds that of the Linux server by 50-125 
calls/sec depending on the operation, although it is only 10 
calls/sec more for invite and 150 calls/sec less than that of the 
Linux server for invite redirect. For example, the bare PC SIP 
server has a peak throughput of 700 calls/sec for register 
operations (without authentication), which is better than the 
peak throughput of Linux (650 calls/sec); the Windows server 
has a much lower peak throughput (around 200 calls/sec).  

The peak throughput performance of the bare PC SIP server 
should be better than that of the OS-based servers, due to its 
simple design and the elimination of OS overhead. However, 
this performance advantage may be reduced or lost in certain 
cases due to inefficient algorithms or the lack of concurrency. 
The latter situation arises with the invite operation. The peak 
throughput of the bare PC server is only marginally higher than 
Linux in this case, but introducing a separate SIP task to handle 
an invite operation will improve performance. The apparent 
drop in performance of the bare PC server for invite redirect is 
due to a significant improvement in the performance of the 
Linux server in this case. Implementing Linux’s search 
algorithm on the bare PC SIP server should improve its 
performance. A more efficient search algorithm should also 
improve the performance for the invite-not-found operation.  
The peak throughput of a given server does not vary much 
across the three register operations since the work performed in 
each case is essentially the same. The increase in the peak 
throughput of the Windows server for register update compared 
to that for the other two register operations is possibly due to 
caching.  

The results in Figs. 3 and 4 show that peak throughput of all 
servers is reduced as expected for both register and invite 
operations when authentication is added. This reduction in 
performance is due to the extra message overhead noted 
previously, and the overhead of computing and verifying the 
additional information needed for authentication with a 
message digest [8]. The negative impact of authentication on 
performance was also noted in [9]. There are no throughput 
values for the Windows server for invite-not-found with 
authentication since its message flow in this case could not be 
compared with that of the other two servers. It is evident that 
the peak throughput of the bare PC server with authentication 
shows a greater reduction versus its peak throughput without 
authentication compared to the OS-based servers. Adapting the 
approach used for authentication by Linux for the bare PC 
server could improve its performance. 
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Figure 5.  Latency for register with and without authentication 

 

 

 

Figure 6.  Latency for invite with and without authentication 

C. Latency 
Figs. 5 and 6 compares the latencies for bare PC and OS-

based SIP servers for the register and invite operations 
respectively with and without authentication. In most cases, the 
bare PC server performs better than the OS-based servers. As 
seen in the figure, the highest percentage of latencies for the 
bare PC server are usually in the 0-30 ms range, and it rarely 
has latencies that exceed 150 ms. The invite operation is an 
exception and latency performance in this case could be 
improved by enabling concurrency in the server as noted 
earlier. For all register operations and invite redirect with 
authentication, the latency performance of the bare PC and 
Linux servers is the same. Further studies are needed to 
determine if the approach used to implement authentication in 
the Linux server will improve the latency performance of the 
bare PC server in these cases. 

 

Figure 7.  Internal timings for the bare PC SIP server 

D. Internal Timings 
Fig. 7 compares average values of internal timings for the 

bare PC SIP server collected during the register operation 
under maximum load conditions. It is seen that FindUser, 
which searches for a given user, and ParseSIPHeaders, which 
processes the SIP header are the most expensive operations, 
although the former is twice as expensive as the latter. The 
least expensive operation is AddUser, which simply adds the 
information for a new user, and thus takes an insignificant 
amount of time as would be expected. The AuthenticateUser 
and FormatSIPResponse operations have approximately the 
same cost, which is about half that of ParseSIPHeaders. We 
conducted tests on the OpenSER server using OProfile 0.9.5 
[16], which showed that the timings for the AddUser and 
ParseSIPHeaders operations exceed the corresponding timings 
on the bare PC by factors of 4 and 7 respectively. 

396



E. Analysis 
Further insight into the results on throughput may be 

obtained by considering sustainable throughput, which is 
defined as the maximum rate of calls for which the processed 
call rate matches the offered call rate. Sustainable throughput 
reflects the extent to which a server can cope with the offered 
load, and it can be determined from the preceding Figs. 1-4. 
For example, the sustainable throughput of the bare PC server 
for the register, register update, and register logout operations 
without authentication is respectively 400, 600, and 700 
calls/sec (the peak throughput for all three register operations 
without authentication is 700 calls/sec). It can be seen that the 
sustainable throughput of the bare PC server exceeds that of the 
Linux server for all operations without authentication except 
for invite-not-found when it is the same. In contrast, the 
sustainable throughput for the two servers for all operations 
with authentication is the same (or differs by a small amount). 
As noted earlier, in the case of peak throughput with and 
without authentication, the bare PC server’s values are higher 
than those for the Linux server except for invite redirect. Thus, 
both sustainable and peak throughput values should be used to 
estimate server capacity with and without authentication. 

The latency performance shown in the preceding Figs. 5 
and 6 may be better understood by computing a latency 
coefficient p1*w1+p2*w2+p3*w3+p4*w4+p5*w5-p6, where p1, … 
, p6 are the latency percentages of the groups 0-30 ms, … , 121-
150 ms, and  > 150 ms respectively; and w1, … , w5 are the 
weights of the first 5 groups with 0<=wi<=1 and w1+…+w5=1. 
The last term with a negative sign reflects the undesirability of 
latencies > 150 ms. The weights w1, … , w5 can be assigned 
based on the relative importance of the lower latency groups. 
For example, suppose we assign w1=0.55, w2=0.445, w3=0.004, 
w4=0.0007, and w5=0.0003. Then the latency coefficients for 
register logout without authentication for the bare PC, Linux, 
and Windows servers are 0.496, 0.185, and -0.7. These values 
show that the latency performance of the bare PC server in this 
case is much better than that of the Linux server, whereas the 
performance of the Windows server is far worse than both of 
them. It can also be verified that the latency coefficient of the 
bare PC server is greater than or equal to that of the Linux  
server except in the case of invite with authentication and 
invite-not-found without authentication. As noted above, 
concurrency and use of a more efficient search algorithm may 
help to improve bare PC server performance in these cases. 

V. CONCLUSION 
We studied the performance of a bare PC SIP server by 

measuring its throughput and latency for registration, proxying, 
and redirection with and without authentication. We also 
obtained internal timings for the server and compared its 
performance with the OpenSER server running on Linux and 
the Brekeke server running on Windows. The results show that 
the bare PC server has better performance than the Windows 
server and better or equal performance to the Linux server in 
most cases. The exceptions are throughput performance for the 
invite redirect operation, and latency performance for the invite 
operation with authentication and the invite-not-found 
operation without authentication, for which the Linux server is 
better. It is expected that the performance of the bare PC server 

can be improved in the latter cases by enabling concurrent 
processing and using more efficient algorithms. The bare PC 
SIP server implementation can also be modified based on 
internal timings to reduce the cost of the most expensive 
operations. Our results serve as a baseline to assess the minimal 
overhead associated with basic SIP server operations for both 
OS-based and bare PC servers, and to help improve the 
performance of bare PC SIP servers. These results also indicate 
the feasibility of deploying bare PC SIP servers in secure 
environments where OS-based vulnerabilities are a concern.  
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