

A Study of Bare PC SIP Server Performance

A. Alexander, A. L. Wijesinha, and R. Karne
Department of Computer & Information Sciences

Towson University
Towson, MD 21252

USA

Abstract—In bare computing, applications run directly on an
ordinary PC without using an operating system (OS). Advantages
of bare PC computing include elimination of overhead due to the
OS, and immunity against attacks targeting OS vulnerabilities.
We evaluate the performance of a bare PC SIP server by
determining its throughput and latency in a dedicated test
network using the open source SIPp workload generator to
generate requests for registration (register, register update, and
register logout operations), proxying (invite and invite-not-found
operations) and redirection (invite redirect operation) with and
without authentication. We also report internal timings for the
server. The performance of the server is then compared with the
OpenSER and Brekeke SIP servers running on Linux and
Windows respectively. Our results show that the bare PC SIP
server has low cost for internal SIP-related operations, higher
throughput than the Windows server, and higher or equal
throughput than the Linux server except in the case of
redirection. Its latency is more than that of an OS-based server
only in the case of invite with authentication and invite-not-found
without authentication.

Keywords—SIP server, application object, bare PC, bare
computing, performance.

I. INTRODUCTION
In a bare PC, applications run directly over the hardware of

an ordinary PC such as a desktop or laptop without using any
operating system (OS). Previous studies [1], [2] have shown
that bare PC email servers and Web servers can significantly
outperform their counterparts running on conventional OS-
based systems. Bare PC applications can also be deployed in
secure environments since they are immune to attacks that
target specific OS vulnerabilities. Although many studies have
investigated the design and performance of network and
security protocols [3] in a bare PC, including those used for
peer-to-peer communication among bare VoIP clients [4], none
has included the Session Initiation Protocol (SIP). SIP has since
become the most frequently used protocol today for initiating
VoIP calls and for media session support with a variety of other
applications including video streaming, instant messaging,
gaming and IPTV.

In this paper, we evaluate the performance of a bare PC SIP
server and compare it with two commonly used OS-based SIP
servers: OpenSER (now OpenSIPS) running on Linux and
Brekeke running on Windows. All studies are conducted using
identical ordinary (non-server) machines.

SIP servers play an important role in supporting audio or
multimedia sessions. For example, OpenSER uses SIP to

provide voice, video, instant messaging, and presence services.
In general, SIP servers locate and register clients, provide
proxy services for forwarding SIP messages, or redirect SIP
requests to other servers. An optimized SIP server can thus
help improve the overall performance of audio or video
applications although it is typically not directly involved in the
actual transmission of audio or video. The throughput and
latency of the SIP server when responding to requests from SIP
user agent clients and other SIP servers are often used as
measures in evaluating its performance.

We use the popular open source SIP workload generator
SIPp to evaluate the performance of the bare PC SIP server by
measuring its throughput and latency for registration, proxying,
and redirection, with and without authentication, for increasing
workloads. We then evaluate the performance of the OS-based
(Linux and Windows) servers for the same workloads when
running on compatible hardware. Our results show that the bare
PC SIP server has higher or equal throughput to the Linux
server and higher throughput than the Windows server, except
in case of redirection, when its throughput is less than that of
the Linux server. The latency performance of the bare PC
server is also shown in general to be better than or equal to that
of Linux server and better than that of the Windows server
except for invite with authentication and invite-not-found
without authentication. Our contributions in this paper include:
1) results characterizing the performance of a bare PC SIP
server running on an ordinary desktop; 2) internal timings for
SIP-related operations on a bare PC SIP server; and 3) detailed
comparisons of the throughput and latency for a bare PC SIP
server, Linux OpenSER, and Windows Brekeke servers
running on identical machines.

The rest of this paper is organized as follows. In Section II,
we describe the bare PC SIP server and relevant optimizations.
In Section III, we briefly summarize related work. In Section
IV, we give details of the experimental setup and discuss the
results of the performance study. In Section V, we present the
conclusion.

II. BARE PC SIP SERVER OVERVIEW
Any bare PC application, including the bare PC SIP server,

is encapsulated in an application object (AO) [5]. Since there is
no OS, minimal code for the application to run on the PC
hardware is contained in the AO. This means that the AO
contains the code for the bootable self-executing application
itself, any required network interface drivers, handlers for
protocols used by the application, and memory and task

2010 Fifth International Conference on Systems and Networks Communications

978-0-7695-4145-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSNC.2010.68

392

management algorithms including modules to facilitate
concurrency, scheduling, and security. Real memory is used
since there is no hard disk, and unlike in a conventional OS-
based protocol stack, application code is intertwined with
protocol code to eliminate redundancy and improve efficiency
as described for the case of a bare PC email server in [6].

The bare PC SIP server AO implements a lean version of
SIP that provides essential functionality only. Additional
features such as those needed to support load balancing and
media stream security are not included. Although a bare PC
SIP server that can operate over TCP or UDP has been
implemented, this paper only considers SIP over UDP since the
majority of SIP servers employed in practice use UDP.

A received UDP packet containing a SIP message is placed
in the Ethernet buffer, where the bare PC SIP application can
directly access it i.e., there is no distinction between real mode
and user mode (or kernel-level operations) since there is no OS.
The Ethernet handler processes the packet, determines that the
packet is for IP, and the IP handler in turn processes the packet
and invokes the UDP handler, which verifies the UDP
checksum (if this feature is enabled) and the port number. In
case of the SIP server, the port number is 5060 and the packet
is processed by the SIP server application. If a response needs
to be sent, the SIP application, the UDP, IP and Ethernet
handlers are invoked in order to add the respective headers
before the packet is transmitted by the network interface
hardware. In a bare PC, data copying is minimized since
headers are added to a single copy of the message.

At a minimum, only two CPU tasks are required by the SIP
server AO: a receive (Rcv) task that processes a received
packet all the way from its arrival in the Ethernet buffer until
completion, and a Main task that runs whenever a Rcv task
completes (and also when the system is booted or the system is
idle). For example, for a register message, the Rcv task itself
could manage the lookup and update operations and send the
response to the client. However, a separate SIP task could be
used for each request when concurrent processing of requests is
needed. In case of the invite message for example, a new SIP
task could be used to handle the request since there may be a
delay in contacting the peer (callee) and receiving the response.
In general, since a typical workload involves a mix of requests
for different services, bare PC SIP server performance would
be improved by the concurrent handling of requests. In the bare
PC SIP server and in other bare PC applications, a CPU task is
allowed to run to completion unless it is “suspended” due to
waiting for an event such as a response. As soon as the event
occurs, the task is “resumed” so that it can be executed. This
simple task scheduling algorithm and the disabling of timer
interrupts on a bare PC reduces the context switching overhead
of an OS and enables the CPU to be utilized with maximum
efficiency on behalf of an application.

III. RELATED WORK
There are many commercial and open source servers

implementing SIP and its companion protocol SDP. While a
SIP server usually runs over UDP and in some cases over TCP,
the use of SCTP as a transport protocol for SIP has also been
studied [7]. An early study on SIP server performance [8]

found that the overhead on a Java SIP server due to security
mechanisms such as authentication and TLS was negligible.
However, the study in [9], which measured throughput and
latency in a dedicated gigabit Ethernet for stateless and stateful
proxies over UDP and TCP, showed that authentication, TCP,
or the operation/server configuration can significantly change
SIP server performance. Their experiments were conducted
using a 3.06 GHz server class machine, and only the
performance of a single SIP server (OpenSER on Linux) was
evaluated. In [10], SIP server performance for several stateful
SIP proxies over UDP was evaluated. The authors concluded
that the overhead due to string processing operations and
memory management could consume significant processing
time and that performance varied considerably depending on
the proxy. Recent work on SIP servers has dealt with
performance under overload conditions [11], scalability issues
[12], [13], load balancing [14], and the impact of transport
protocols on performance [15]. The main difference between
previous studies and this paper is that we study the
performance of a bare PC SIP server and compare it with the
performance of two OS-based SIP servers using ordinary
desktop (non-server) machines. Also, in addition to evaluating
performance for the usual register, invite, and redirect
operations, we also evaluate SIP server performance with the
register update, register logout, and invite-not-found operations
likely to be encountered in practice. We only consider SIP over
UDP with stateless proxying, which is the most common
configuration when setting up VoIP calls.

IV. RESULTS
In this section, we present the results obtained from our

experiments. We compare throughput and latency for the bare
PC and OS-based SIP servers using register, register update,
register logout, invite, invite-not-found, and redirect operations.

A. Experimental Set Up
The test network consists of a 100 Mbps Ethernet to which

each SIP server and the client machines running SIPp are
connected. In addition to the bare PC SIP server, the details of
the systems and software used is as follows: OS-based SIP
servers: OpenSer SIP Server ver 1.3.2 –notls (Linux) OpenSer
(KAMILIO/OpenSIPS) and Brekeke SIP Server ver 2.1.6.6
(Windows) utilizing the Jakarta Web Server and Java platform;
machines: Dell GX260’s with Intel Pentium 4 (2.4 GHz), 1.0
GB of RAM and 3COM Ethernet 10/100 PCI network cards;
OSs: Microsoft Windows XP Professional ver. 2002 Service
Pack 2 and Linux Ubuntu 8.04 Kernel 2.6.24-16; workload
generator: SIPp.

For register updates, the SIP Server searches its user
database for a match and then updates the corresponding user’s
location data and registration expiration time; and in the
register logout operation, it removes the user from the database.
The invite operation requires the server to lookup the callee's
contact details in its database, forward the request to the callee,
and send the response back to the caller. The invite-not-found
operation is similar to invite except that the callee is not found
in the database. For redirect, the server receives an invite
message, but instead of forwarding the response to the callee, it
forwards a temporarily moved message back to the caller.

393

Figure 1. Throughput for register without authentication

Figure 2. Throughput for invite without authentication

Figure 3. Throughput for register with authentication

For the register, register update, and register logout
operations, latency measures the delay at the user agent
between sending the register message and receiving the “200
OK” message. Latency for the invite operation measures the
sum of two delays: the time between the invite message and
“200 OK” messages; and the time between the “bye” and “200
OK” messages. Each of these operations was also tested with
authentication enabled, which adds processing overhead due to
verifying the MD5 hash, and extra message overhead due to the
“unauthorized” message for registration and “407 proxy
authentication” message for invite (and their responses).
Latency for registration with authentication measures the sum
of two delays: the time between the register request and the
“unauthorized message”; and the time between the new register

394

Figure 4. Throughput for invite with authentication

message with authentication credentials and the “200 OK”
message. Latency for invite with authentication measures the
sum of three delays: the time between the invite and “407
proxy authentication” messages; the time between the “invite
with authentication” message and the “200 OK” messages; and
the time between the “bye” and “200 OK” messages. For
invite-not-found and redirect operations, the latency is similarly
measured using the “404 not found” and “302 moved
temporarily” messages.

We measured the throughput and latency of a server
associated with each SIP call flow. The latency for a given
operation is computed by adding the respective delays between
sending the relevant messages to the server and receiving their
responses as described above. The throughput is the number of
calls per second successfully handled with respect to the
offered load, which is the number of calls per second that are
generated and sent to the server. The peak throughput is the
highest throughput achieved under overload while the server
remains stable (and produces consistent results). To conduct
the experiments, the servers were configured to operate in three
configuration modes with and without authentication: registrar,
proxy, and redirector. In addition, internal timings were
measured by inserting timing points within the bare SIP server.
Each SIP server was pre-loaded with 10,000 unique SIP
username and password pairs. The call flows for register,
invite-not-found, and redirect were run for a maximum of
10000 unique users, measuring the performance of each call
flow with rates varying from 10 to 1000 calls/sec. The invite

test call flows were run for a maximum of 5000 users with rates
varying from 50 to 100 calls/sec. Each experiment was
repeated a minimum of three times to ensure that the results
were consistent.

B. Throughput
The throughput for the register and invite operations

respectively without authentication is shown in Figs. 1 and 2. It
can be seen that the peak throughput of the bare PC SIP server
is always higher than that of the OS-based servers except in the
case of invite redirect. The peak throughput of the bare PC
server typically exceeds that of the Linux server by 50-125
calls/sec depending on the operation, although it is only 10
calls/sec more for invite and 150 calls/sec less than that of the
Linux server for invite redirect. For example, the bare PC SIP
server has a peak throughput of 700 calls/sec for register
operations (without authentication), which is better than the
peak throughput of Linux (650 calls/sec); the Windows server
has a much lower peak throughput (around 200 calls/sec).

The peak throughput performance of the bare PC SIP server
should be better than that of the OS-based servers, due to its
simple design and the elimination of OS overhead. However,
this performance advantage may be reduced or lost in certain
cases due to inefficient algorithms or the lack of concurrency.
The latter situation arises with the invite operation. The peak
throughput of the bare PC server is only marginally higher than
Linux in this case, but introducing a separate SIP task to handle
an invite operation will improve performance. The apparent
drop in performance of the bare PC server for invite redirect is
due to a significant improvement in the performance of the
Linux server in this case. Implementing Linux’s search
algorithm on the bare PC SIP server should improve its
performance. A more efficient search algorithm should also
improve the performance for the invite-not-found operation.
The peak throughput of a given server does not vary much
across the three register operations since the work performed in
each case is essentially the same. The increase in the peak
throughput of the Windows server for register update compared
to that for the other two register operations is possibly due to
caching.

The results in Figs. 3 and 4 show that peak throughput of all
servers is reduced as expected for both register and invite
operations when authentication is added. This reduction in
performance is due to the extra message overhead noted
previously, and the overhead of computing and verifying the
additional information needed for authentication with a
message digest [8]. The negative impact of authentication on
performance was also noted in [9]. There are no throughput
values for the Windows server for invite-not-found with
authentication since its message flow in this case could not be
compared with that of the other two servers. It is evident that
the peak throughput of the bare PC server with authentication
shows a greater reduction versus its peak throughput without
authentication compared to the OS-based servers. Adapting the
approach used for authentication by Linux for the bare PC
server could improve its performance.

395

Figure 5. Latency for register with and without authentication

Figure 6. Latency for invite with and without authentication

C. Latency
Figs. 5 and 6 compares the latencies for bare PC and OS-

based SIP servers for the register and invite operations
respectively with and without authentication. In most cases, the
bare PC server performs better than the OS-based servers. As
seen in the figure, the highest percentage of latencies for the
bare PC server are usually in the 0-30 ms range, and it rarely
has latencies that exceed 150 ms. The invite operation is an
exception and latency performance in this case could be
improved by enabling concurrency in the server as noted
earlier. For all register operations and invite redirect with
authentication, the latency performance of the bare PC and
Linux servers is the same. Further studies are needed to
determine if the approach used to implement authentication in
the Linux server will improve the latency performance of the
bare PC server in these cases.

Figure 7. Internal timings for the bare PC SIP server

D. Internal Timings
Fig. 7 compares average values of internal timings for the

bare PC SIP server collected during the register operation
under maximum load conditions. It is seen that FindUser,
which searches for a given user, and ParseSIPHeaders, which
processes the SIP header are the most expensive operations,
although the former is twice as expensive as the latter. The
least expensive operation is AddUser, which simply adds the
information for a new user, and thus takes an insignificant
amount of time as would be expected. The AuthenticateUser
and FormatSIPResponse operations have approximately the
same cost, which is about half that of ParseSIPHeaders. We
conducted tests on the OpenSER server using OProfile 0.9.5
[16], which showed that the timings for the AddUser and
ParseSIPHeaders operations exceed the corresponding timings
on the bare PC by factors of 4 and 7 respectively.

396

E. Analysis
Further insight into the results on throughput may be

obtained by considering sustainable throughput, which is
defined as the maximum rate of calls for which the processed
call rate matches the offered call rate. Sustainable throughput
reflects the extent to which a server can cope with the offered
load, and it can be determined from the preceding Figs. 1-4.
For example, the sustainable throughput of the bare PC server
for the register, register update, and register logout operations
without authentication is respectively 400, 600, and 700
calls/sec (the peak throughput for all three register operations
without authentication is 700 calls/sec). It can be seen that the
sustainable throughput of the bare PC server exceeds that of the
Linux server for all operations without authentication except
for invite-not-found when it is the same. In contrast, the
sustainable throughput for the two servers for all operations
with authentication is the same (or differs by a small amount).
As noted earlier, in the case of peak throughput with and
without authentication, the bare PC server’s values are higher
than those for the Linux server except for invite redirect. Thus,
both sustainable and peak throughput values should be used to
estimate server capacity with and without authentication.

The latency performance shown in the preceding Figs. 5
and 6 may be better understood by computing a latency
coefficient p1*w1+p2*w2+p3*w3+p4*w4+p5*w5-p6, where p1, …
, p6 are the latency percentages of the groups 0-30 ms, … , 121-
150 ms, and > 150 ms respectively; and w1, … , w5 are the
weights of the first 5 groups with 0<=wi<=1 and w1+…+w5=1.
The last term with a negative sign reflects the undesirability of
latencies > 150 ms. The weights w1, … , w5 can be assigned
based on the relative importance of the lower latency groups.
For example, suppose we assign w1=0.55, w2=0.445, w3=0.004,
w4=0.0007, and w5=0.0003. Then the latency coefficients for
register logout without authentication for the bare PC, Linux,
and Windows servers are 0.496, 0.185, and -0.7. These values
show that the latency performance of the bare PC server in this
case is much better than that of the Linux server, whereas the
performance of the Windows server is far worse than both of
them. It can also be verified that the latency coefficient of the
bare PC server is greater than or equal to that of the Linux
server except in the case of invite with authentication and
invite-not-found without authentication. As noted above,
concurrency and use of a more efficient search algorithm may
help to improve bare PC server performance in these cases.

V. CONCLUSION
We studied the performance of a bare PC SIP server by

measuring its throughput and latency for registration, proxying,
and redirection with and without authentication. We also
obtained internal timings for the server and compared its
performance with the OpenSER server running on Linux and
the Brekeke server running on Windows. The results show that
the bare PC server has better performance than the Windows
server and better or equal performance to the Linux server in
most cases. The exceptions are throughput performance for the
invite redirect operation, and latency performance for the invite
operation with authentication and the invite-not-found
operation without authentication, for which the Linux server is
better. It is expected that the performance of the bare PC server

can be improved in the latter cases by enabling concurrent
processing and using more efficient algorithms. The bare PC
SIP server implementation can also be modified based on
internal timings to reduce the cost of the most expensive
operations. Our results serve as a baseline to assess the minimal
overhead associated with basic SIP server operations for both
OS-based and bare PC servers, and to help improve the
performance of bare PC SIP servers. These results also indicate
the feasibility of deploying bare PC SIP servers in secure
environments where OS-based vulnerabilities are a concern.

REFERENCES

[1] G. Ford, R. Karne, A. L. Wijesinha, and P. Appaiah-Kubi, The
Performance of a Bare Machine Email Server, 21st International
Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2009.

[2] L. He, R. Karne, and A. Wijesinha, "The Design and Performance of a
Bare PC Web Server", International Journal of Computers and Their
Applications, vol. 15, pp. 100 - 112, June 2008.

[3] A. L. Alexander, A. L. Wijesinha, and R. Karne, "An Evaluation of
Secure Real-Time Transport Protocol (SRTP) Performance for VoIP,"
Third International Conference on Network and System Security (NSS),
pp. 95-101, 2009.

[4] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S. Girumala,
“A Peer-to-Peer bare PC VoIP Application,” Proceedings of the IEEE
Consumer and Communications and Networking Conference (CCNC),
pp. 803-807, IEEE Press, Las Vegas, NV, 2007.

[5] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed, “DOSC:
Dispersed Operating System Computing”, OOPSLA ’05, 20th Annual
ACM Conference on Object Oriented Programming, Systems,
Languages, and Applications, Onward Track, ACM, San Diego, CA,
October 2005, pp. 55-62.

[6] G. Ford, R. Karne, A. L. Wijesinha, and P. Appiah-Kubi, The Design
and Implementation of a Bare PC Email Server, with G. Ford et. al, 33rd
Annual IEEE International Computer Software and Applications
Conference (COMPSAC), 2009.

[7] K. Ono and H. Schulzrinne, The Impact of SCTP on SIP Server
Scalability and Performance, GLOBECOM, pp. 1421-1425, 2008.

[8] S. Salsano, L. Veltri, and D. Papalilo, SIP security issues: The SIP
authentication procedure and its processing load, IEEE Network, pp. 38-
44, 2002.

[9] E. M. Nahum, J. M. Tracey, and C. P. Wright, Evaluating SIP server
performance, in: 17th International Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV),
Urbana-Champaign, Illinois, June 2007.

[10] M. Cortes, J. R. Ensor, and J. O. Esteban, On SIP Performance. Bell
Labs Technical Journal, 9(3), pp. 155-173, 2004.

[11] C. Shen, H. Schulzrinne, and E. M. Nahum, Session Initiation Protocol
(SIP) Server Overload Control: Design and Evaluation, IPTComm, pp.
149-173, 2008.

[12] V. A. Balasubramaniyan, A. Acharya, M. Ahamad, M. Srivatsa, I.
Dacosta, and C. P. Wright, SERvartuka: Dynamic Distribution of State
to Improve SIP Server Scalability, ICDCS, pp. 562-572, IEEE Computer
Society, 2008.

[13] K. Ono and H. Schulzrinne, One Server Per City: Using TCP for Very
Large SIP Servers, IPTComm, pp. 133-148, 2008.

[14] H. Jiang, A. Iyengar, E. M. Nahum, W. Segmuller, A. Tantawi, and C. P.
Wright, Load Balancing for SIP Server Clusters, INFOCOM 2009.

[15] K. K. Ram, I. C. Fedeli, A. L. Cox, and S. Rixner, Explaining the Impact
of Network Transport Protocols on SIP Proxy Performance, ISPASS, pp.
75-84, 2008.

[16] Oprofile-A System Profiler for Linux, July 31, 2009. [Online].
Available: http://oprofile.sourceforge.net/news/. Accessed: May 28,
2010.

397

