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Abstract—We consider IPsec as a means to provide security for a 
bare (OS-less) PC in a networked environment. We first present 
the underlying bare computing architecture that includes IPsec 
components. We then describe our design and implementation of 
IPsec with ESP and IKEv2 support for a bare PC. Bare PC 
optimizations that provide higher efficiency include application 
and protocol intertwining, and minimization of inter-layer 
communication and data copying. We also evaluate IPsec 
performance on a bare PC and compare it with a similar Linux 
system. Our experimental results indicate that 1) the cost of ESP 
processing is approximately 6% more for incoming versus 
outgoing packets; 2) an approximately linear relationship 
between ESP processing time and packet size exists for both 
tunnel and transport modes; 3) ICMP and HTTP response times 
with IPsec are less on a bare PC than on a Linux system. 

Keywords-IPsec; network security; bare machine computing; 
bare PC; application object; performance 

I.  INTRODUCTION 
In bare machine computing [1], an application executes 

directly on the hardware without an Operating System (OS) or 
hard disk. The software is designed as an Application Object 
(AO) [2] whose executable code resides on a portable bootable 
device such as a USB memory stick. There are two main 
characteristics of bare machine computing that make it 
preferable to a conventional OS-based system in special cases. 
First, the absence of an OS and the streamlined design of an 
AO result in reduced overhead, which is useful for building 
low-cost high-performance systems. Second, security can be 
improved since attacks targeting OS vulnerabilities are 
eliminated and the smaller simpler AO code is easier to analyze 
and secure. This is useful for certain security applications 
where an OS is not needed and in fact may introduce hidden 
loopholes. Bare PC applications include Web servers [3], email 
servers [4], and VoIP clients [5]. 

Despite the inherent security advantages of bare computing, 
it is also necessary to protect AOs against typical security risks 
that are present in networked environments. IPsec, which is 
commonly used in VPNs to provide confidentiality and data 
integrity for IP traffic, is convenient for providing IP-level 
security for bare applications and enabling secure 
communication with conventional systems.  

In this paper, we consider the design and implementation of 
IPsec on a bare PC and evaluate its performance. We also 
provide some performance comparison with applications that 

run on Linux. Due to the novel characteristics of bare machine 
computing and its unique architecture, the design and 
implementation of IPsec for an AO is different from a 
conventional implementation of IPsec in an OS-based system.  

IPsec can be efficiently implemented on a bare PC by using 
optimizations not easily achieved in conventional systems. 
Examples are intertwining the application with network 
protocols within an AO, minimizing the cost of inter-layer 
communication, and eliminating data copying between 
application and network buffers.   

The main contributions of this research are: 1) an 
implementation of IPsec for a bare (OS-less) PC; 2) 
experimental results related to the cost of IPsec processing on a 
bare PC; and 3) experimental results related to the increase in 
response time of applications when IPsec is present for a bare 
PC and for a conventional OS-based (Linux) PC. These results 
can serve as a baseline for designing future versions of IPsec 
for high-performance or high-security applications and security 
gateways running on bare machines.      

The rest of this paper is organized as follows. In Section II, 
we provide a brief overview of bare machine computing, IPsec, 
and the Internet Key Exchange version 2.0 (IKEv2) protocol. 
We also review related work. In Section III, we describe the 
bare PC architecture relevant to IPsec. We introduce our design 
and implementation of IPsec on a bare PC in Section IV. In 
Section V, we present experimental results. Section VI contains 
the conclusion. 

II. BACKGROUND 

A. Bare Machine Computing 
In bare machine computing, an AO, encapsulating one or 

more applications, contains only the minimal functionality 
required to run directly on the hardware without using an OS. 
In contrast to a conventional system where the OS manages 
computer resources on behalf of applications, bare machine 
computing uses direct interfaces, to the hardware, that allow 
the applications to optimize CPU and memory usage. In 
particular, the AO manages task scheduling, concurrency, and 
memory. While an OS performs functions to support a broad 
variety of applications, an AO is designed to serve the needs of 
a particular server or client application (or at most a few related 
applications). Thus, overheads associated with OS services are 
eliminated or minimized in bare machine computing. 



The boot code for a bare PC application loads the self-
contained AO into memory and initiates its execution. An AO 
uses a special bare machine API to the hardware [6] and 
includes its own device drivers, for example, to manage 
network or audio hardware interfaces, if needed by the 
application. Since there is no OS, code for a conventional 
application cannot be directly ported to a bare computer in 
view of system calls i.e., bare computing applications differ 
considerably from their OS-based counterparts.  

In an OS-based system, the TCP/IP network protocol stack 
is viewed as a part of the OS, and conventional applications 
access network protocols via a socket interface that provides 
general operations needed for communication. In bare machine 
computing, an AO intertwines an application with the 
necessary protocols enabling optimizations with respect to task 
scheduling, data copying, and inter-layer communication. For 
example, communication between IPsec, IP, and UDP 
protocols in an AO is more efficient than in an OS-based 
system. 

B. IPsec 
IPsec [7] is a standard for protecting IP traffic and it has 

been widely used in implementing Virtual Private Networks 
(VPNs). However, any application running over IP may 
seamlessly benefit from IPsec’s security services. IPsec defines 
two protocols: Authentication Header (AH) [8] and 
Encapsulating Security Payload (ESP) [9]. Most practical uses 
of IPsec are based on ESP, which provides data confidentiality, 
and optionally, data-origin authentication and data-integrity 
verification. It may also be used for replay-attack protection 
and traffic flow confidentiality. Communicating peers use ESP 
headers and ESP trailers that are placed inside IP datagrams to 
communicate ESP information. 

IPsec supports two modes, transport and tunnel. In transport 
mode, IPsec protects upper layer protocol packets. In this 
mode, the endpoints of the IPsec connection are also the 
endpoints of communication. In tunnel mode (used in VPNs), 
an IP datagram is prefixed with an extra IP header and the 
entire IP datagram is protected. In this mode, one (or both 
endpoints) of an IPsec connection is usually a security gateway 
or router that implements IPsec. Therefore, in tunnel mode, 
these endpoints may or may not be the endpoints of 
communication. 

In addition to ESP (or AH), the cryptographic algorithms, 
and a key management component, IPsec requires a Security 
Policy Database (SPD) and a Security Association Database 
(SAD). These databases define the security services that are 
afforded to network traffic, the IPsec connections between the 
two endpoints, and associated information for processing IP 
datagrams. The current bare PC implementation of IPsec 
includes minimal functionality for SPD and SAD, since it is 
only designed to support existing bare PC applications. 
However, it can be extended to support more complex IPsec 
requirements such as those for security gateways and VPNs. 

C. The Internet Key Exchange Version 2.0 (IKEv2) 
The key management component of IPsec used for 

managing Security Associations (SAs) is implemented via IKE, 

which exists in two versions IKEv1 [10] and IKEv2 [11]. 
Although many VPNs and OSs still support IKEv1, it has 
several shortcomings that are addressed in IKEv2. IPsec on a 
bare PC only supports IKEv2. 

Using IKEv2, an initiator and a responder may exchange 
four IKE messages to establish SAs for an IPsec connection. 
The pair of IKE-SA-AUTH messages that follow the initial 
pair of IKE-SA-INIT messages are cryptographically protected. 
IKEv2 messages contain one or more payloads. For example, 
the IKE-SA-INIT messages shown in Fig. 1 contain Security 
Association (SA), Key Exchange (KE), and Nonce (N) 
payloads. 

 

 

 

 

 

Figure 1.  A sample IKEv2 message exchange to establish IKE SAs 

IPsec endpoints perform a Diffie-Hellman (DH) exchange 
via IKE-SA-INIT messages to securely establish a shared 
secret, which is then used by a Pseudo-Random Function 
(PRF) to generate the required keys for cryptographic 
algorithms that are used by ESP and AH. The PRF and the 
cryptographic algorithms are negotiated using SA payloads. 
The exchange of IKE-SA-INIT and IKE-SA-AUTH messages 
results in the creation of four SAs: a pair of SAs for IKE traffic, 
and a pair of SAs (CHILD-SAs) for protecting IP traffic in 
each direction between initiator and responder. 

D. Related Work 
IPsec has been the subject of numerous studies. In [12], 

IPsec was implemented on several OSs including Linux and 
OpenBSD using lightweight kernel-user space communication, 
improved lookup speed and packet processing, and 
minimization of routing table lookups. The implementations 
used triple DES for encryption. Performance measurements 
including ICMP response times, and TCP/UDP throughput for 
various packet sizes were also provided. Early work such as 
[13] focused on the impact of hardware acceleration on 
performance by measuring throughput and transfer time. In 
[14], QoS support was added to an IPsec implementation on 
Linux. In [15], IPsec overhead with respect to ESP and AH was 
measured. In [16], ESP and IKEv1 performance was evaluated 
in a single client setting using MD5 for MAC calculations, and 
it was found that IKE overhead exceeded ESP overhead by a 
factor of 3. In [17], performance of IKEv1 with multiple clients 
was studied and caching techniques were shown to 
significantly reduce its overhead. It was also noted that IPsec 
ESP overhead significantly degraded HTTP performance of a 
VPN server in a multi-client environment compared to a native 
TCP/IP implementation.  

In [18], a study of IPsec performance using ESP and AH in 
tunnel and transport mode determined that IPsec processing 
time increases linearly with packet size and that StrongS/WAN 
[19] performs better than native IPsec with Linux 2.6.9 for 



large packets but the opposite is true for small packets. The 
authors indicated that integration of native IPsec with the 
kernel may have been the reason for its improved performance 
for small packets. This study included ESP with AES-128 
encryption (no authentication) and AH with SHA-1. 

Our study of IPsec differs from the preceding studies in that 
we consider the design and implementation of IPsec on a bare 
(OS-less) machine and evaluate its performance. We consider 
IKEv2 for key exchange and ESP with data confidentiality, 
data origin authentication, data integrity, and replay services. 

III. ARCHITECTURE 
The bare PC architecture to support a typical AO that 

includes IPsec is shown in Fig. 2. The block titled “IPsec 
Boundary” contains components that relate to IPsec processing. 
The architecture is flexible i.e., depending on the encapsulating 
AO and the context in which IPsec is applied, some elements 
of this architecture can be eliminated or new elements can be 
added. For example, an IPsec gateway may not include a TCP 
object unless it needs a Web interface for administrative 
purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Bare PC architecture with IPsec components 

A. Tasks 
When a bare PC is booted, the Main task starts. This task 

runs whenever no other task is running, and it can activate 
other tasks as needed. For example, the Main task starts the 
Receive task and a series of tasks for other services.  

The Task Scheduler (TS) is a multiplexor mechanism that 
switches between the Main, the Receive, and other tasks in the 
Active Tasks Circular List (ATCL). It selects a single task for 
execution, giving higher priority to the Receive and Main tasks. 
A task runs as a single thread of execution until it requires an 
event to continue, in which case it is suspended or delayed. The 
tasks in the ATCL are eligible for execution if 1) their wait 
time elapses; or 2) a resume event occurs. Selection of an 
active task is done in a FIFO manner.  

Each task pool is associated with a service (function) that 
an AO offers. When a service request arrives, an entry from the 
appropriate task pool is assigned to the request i.e., an available 
task is activated. The activated task is handled by a 
corresponding task handler, which provides the logic that an 
executing task follows until it is completed and returned to the 
corresponding task pool. For example, when a new IPsec 
connection request arrives, a task from the handshake task pool 
is assigned to it. This task follows the execution logic in the 
Handshake Task Handler (HTH) until the connection is 
established or timed out. 

B. Transition Control Block Table 
The Transition Control Block (TCB) table is a data 

structure that maintains task-related information. An array of 
fixed (but configurable) size is used to implement the TCB 
table. Each element of this array represents a task that is in one 
of the three states: idle, pending execution, or executing. Two 
circular lists (not shown in Fig. 2) that correspond to the first 
two states provide pointers to elements of the TCB table. This 
design offers fast access to retrieve tasks. 
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C. Upload and Download Pointer  Descriptors 
The Upload Pointer Descriptor (UPD) and Download 

Pointer Descriptor (DPD) are buffers that store incoming and 
outgoing network frames, respectively. They are implemented 
as circular lists. The device driver for the NIC stores the 
incoming frames in the UPD and retrieves outgoing frames 
from the DPD for transmission on the link. 

When an Ethernet frame arrives on the link, the Receive 
task handles it by requesting a new TCB table entry or updating 
an existing one. This entry is then forwarded to the Ethernet 
object and packet processing follows the usual path through 
upper layers except that information may also be conveniently 
exchanged between layers if needed. Such processing may 
result in the activation of more tasks according to the type of 
the packet and its processing needs. Throughout the lifetime of 
the packet, the incoming frame stays in the UPD while it is 
being processed so that the frame is easily accessible to any 
upper layer protocols. The Receive task frees up the UPD entry 
when packet processing has been completed. Outgoing frames 
are processed in a similar manner except that they follow a 
downward path through the upper layers. 

D. Network and Security Services 
The Ethernet, IP, TCP, and UDP objects provide customary 

network-related services. If the bare PC were a router/security 
gateway/firewall, the IP object would include additional 
functionality, and if NAT were also used, it would manage a 



NAT table and make the necessary changes to packet headers. 
IPsec interacts with IP when handling ESP packets and with 
UDP during the key exchange phase. The key exchange is 
handled by the HTH. In a bare PC, this communication is very 
efficient since all protocols can communicate directly with 
IPsec as needed.  

The Cryptographic Library (CL) provides cryptographic 
operations. It includes encryption (and decryption) algorithms 
and hash functions. 

E. Memory Management 
The Dynamic Memory Manager object allows an AO to 

directly manage program memory. It provides primitive 
services for dynamic memory allocation and also provides 
usage statistics. A buffer in RAM is assigned to each service 
(or application) that the AO provides. For example, if the AO 
includes Web server and IPsec services, one chunk of memory 
is allocated to each service by specifying a base memory 
address and a length. A memory allocation method is called to 
dynamically allocate memory to a program variable. Memory 
de-allocation is also explicitly requested in a similar manner. 
Memory allocation is based on a heuristic algorithm that 
combines the best-fit and first-fit algorithms for memory 
allocation and dynamically expands and shrinks unused 
memory blocks to minimize memory fragmentation. 

IV. DESIGN AND IMPLEMENTATION 
The design of IPsec for a bare PC is based on the preceding 

bare machine architecture and thus differs from a conventional 
OS-based design. In particular, it does not rely on any OS-
based concepts, for example, kernel and user modes, or OS 
functions. An AO is self-sufficient and it handles the necessary 
task scheduling, memory management, and concurrency 
control. 

A. Objects 
The IPsec implementation on a bare PC supports: 1) set up 

and management of SAs; 2) IKEv2; 3) data protection using 
ESP; 4) transport and tunnel modes; 5) data confidentiality 
service using AES-CBC-128; 6) data integrity verification 
services using HMAC-SHA1-96; 7) key expansion function 
based on HMAC-SHA1; 8) authentication service using Pre-
Shared Keys (PSKs); and 9) replay attack protection.  

The main objects that support IPsec are: 1) IPsec; 2) 
Handshake; 3) BigInt; 4) SHA1; 5) HMAC-SHA1; and 6) 
AES. The last four objects are provided by the CL. Fig. 2 
shows the IPsec-related objects in bold.  

The IPsec object provides all IPsec-related operations 
including parsing and constructing IKE messages, generating 
key material, and processing ESP packets. Specific examples 
are methods to respectively: parse an incoming IKE-SA-INIT 
message; construct a response to an IKE-SA-INIT message; 
generate keys for cryptographic algorithms; verify authenticity 
of an incoming ESP packet; and construct an ESP packet. This 
object also includes a method that analyzes an incoming IKE-
SA message, initializes an SA, and requests activation of a 
handshake task.  

The handshake object contains the code for the HTH that 
implements the handshake logic for establishing SAs. The 
handshake object relies on the IPsec object for message 
processing.  

The BigInt object provides arithmetic functions for working 
with big integers. For example, this object provides a method 
for modular exponentiation of two big integers. Using a given 
key, the HMAC-SHA-1 produces a 20-byte Message 
Authentication Code (MAC) based on a SHA-1 hash value 
produced by the SHA-1 object. The AES object provides 
encryption and decryption services based on the AES 
algorithm. 

B. IKE-SA Management 
The HTH implements a state machine, shown in Fig. 3, 

which handles two scenarios (one for an initiator i and one for a 
responder r), when establishing an IPsec connection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  State transition diagram for HTH 

Upon arrival of a UDP packet that contains an IKE-SA 
message, the UDP object forwards the message to the IPsec 
object, which performs the following operations to process the 
message: 

1. For an IKE-SA-INIT message 

a. requests a new TCB table entry (activate a 
handshake task), 

b. requests creation of a new buffer for a new SA,  

c. updates the requested TCB table entry, 

d. and, starts the corresponding handshake task.  

2. For other IKE-SA messages 

a. requests a lookup for an existing TCB table entry, 

b. updates the entry to resume the task, 



c. and, resumes the corresponding handshake task. 

In the bare PC IPsec implementation, outgoing messages 
are directly manipulated in the DPD. For example, in response 
to the initiator’s IKE-SA-INIT message, the responder’s HTH 
acquires a pointer to the buffer (a DPD entry) by sending a 
request to the Ethernet object. This pointer is passed to the 
IPsec object which constructs a response and passes the pointer 
and the length of the message to the UDP object. The latter 
adds a UDP header to the message and sends the updated 
pointer to the IP object. Similarly, the IP object adds an IP 
header to the UDP packet in the buffer, adjusts the pointer, and 
calls the Ethernet object for further processing. 

C. ESP Packets Processing 
The bare PC IPsec implementation uses the ESP protocol to 

protect data packets. IPsec protection is enabled by setting a 
global flag, ACTIVE_IPSEC. Fig. 4 shows the inter-layer 
communication for processing data packets. 

Incoming ESP packets are encapsulated in IP datagrams. 
The IP object recognizes such datagrams by inspecting the 
protocol ID field in the datagram’s header and removing the IP 
header from the datagram before forwarding the encapsulated 
ESP packet to the IPsec object. To process an incoming ESP 
packet, the IPsec object: 

1. determines the security parameters of the packet by 
performing an SA lookup, 

2. ensures that the packet has not been replayed, 

3. checks packet integrity, 

4. decrypts the packet and verifies success, 

5. and, removes the ESP-related data and passes the 
encapsulated plaintext content directly to the object 
corresponding to the Next Protocol field in the ESP 
packet. 

If any of the above operations fails, the packet is dropped. 

For outgoing packets, when IPsec is enabled, the IP, TCP, 
UDP, or ICMP object forwards the packet directly to the IPsec 
object for processing. To process an outgoing packet the IPsec 
object: 

1. determines if the packet is subject to IPsec protection 

2. performs the following operations when an SA exists: 

a. pads the packet (if needed), 
b. adds the ESP header to the packet, 
c. encrypts the packet, 
d. adds the ESP trailer to the packet, 
e. and, if the SA is for tunnel mode, adds an inner 

IP header to the packet; 

3. and, passes the packet to the IP object. 

For an SA in tunnel mode, the bare PC may be a client that 
is tunneling its own packets, or a router/security gateway that is 
tunneling a received IP datagram. 

 

 

Figure 4.  IPsec inter-layer communication 

D. Bare PC Optimizations 
In a bare PC, IPsec is integrated within the implementation 

of an AO such as a Web or email server, a VoIP or email client, 
or a security gateway. However, since there is no OS, all IPsec 
processing is self-contained and can be optimized for a given 
AO. Furthermore, since the AO intertwines IPsec and other 
protocols, inter-layer communications are very efficient. For 
example, a security application (or other layers) may directly 
access the Ethernet buffer for sending IP datagrams.  

As shown in Fig. 2 and Fig. 4, the bare PC architecture 
allows all protocol layers in an AO to directly access and 
manipulate IPsec header information as needed. This is in 
contrast to standard OS-based implementations of IPsec, in 
which IPsec is implemented in the OS kernel and key exchange 
and management is controlled from user-space. In such 
systems, IPsec may be integrated within the IP code, exist as a 
separate layer between IP and the link layer (bump-in-the-
stack), or be incorporated in a hardware device between a 
router and the network (bump-in-the-wire). In a bare PC, IPsec 
and other protocol objects are part of the same AO. Thus, 
IPsec-related processing is more efficient (since no system calls 
are needed and IP as well as higher layer protocols 
communicate directly with IPsec).  

IPsec on a bare PC also benefits from the elimination of 
data copying from application to Ethernet buffers. As noted 
before, the AO has direct access to the Ethernet buffer and data 
in a packet is not duplicated. Thus, IPsec objects can 
manipulate headers and access the data for authentication and 
encryption with minimum delay. As discussed in IKE-SA 
Management section, the key exchange message processing is 
also streamlined. Furthermore, the intertwining of protocols 
within the bare PC architecture enables information to be 
stored during SA establishment and recovered during 
subsequent SA lookup with less overhead than in an OS-based 
system. 

V. RESULTS 
This section contains a description of experiments 

conducted using IPsec on a bare PC and the results obtained. 
Results for OS-based systems (with unessential services 
disabled) are included when possible as a means for 
comparison and also for identifying areas of improvement in 
future bare PC implementations of IPsec. 



A. Experimental Setup 
The small test LAN used for experiments consists of five 

PCs connected by a 100 Mbps Cisco FastHub 400 series as 
shown in Fig. 5. The hardware specifications for the PCs are 
given in Table 1. 

A and B are PCs running a Web server AO that supports 
IPsec. C and D are PCs that run StrongS/WAN 4.2.12 on Linux 
(Fedora 10 Kernel Version 2.6.27.5-117-fc10.i686 Kernel 
Version: 2.6.27.5-117-fc10.i686 and Ubuntu 8.1 Kernel 
Version 2.6.27-7-server, respectively), and E is a PC running 
Wireshark Version 1.2.1 [20] on Windows XP to monitor 
network traffic. 

 

 

 

 

 

 

Figure 5.  Test LAN 

TABLE I.  HARDWARE SPECIFICATIONS FOR THE PCS IN THE TEST LAN 

Computer Processor RAM NIC 
A 2.4 MHz 512 MB 3COM 905CX 10/100 
B 2.4 MHz 512 MB 3COM 905CX 10/100 
C 3.2 MHz 1024 MB Intel PRO/1000 MT 
D 2.4 MHz 512 MB 3COM 905CX 10/100 
E 2.4 MHz 1024 MB Intel PRO/1000 MT 

B. Performance Metrics 
To measure the IPsec overhead on a bare PC, we use these 

metrics: 1) internal (processing) times to measure the 
computing overhead for ESP processing; 2) ping response 
times to measure the delay in receiving a response when 
packets are protected by ESP; 3) HTTP response and 
connection times to measure the impact of ESP protection on 
Web traffic; 4) IKEv2 message processing time to measure the 
impacts of selecting different modular exponential groups 
(ModP) for DH exchange. 

C. Internal ESP Timing 
To determine the ESP packet processing time, we modified 

the AO on machine A (bare PC). The modification included 
creation of checkpoints for capturing processor ticks. The 
processor ticks corresponded to the various ESP operations 
associated with incoming and outgoing packets. These 
operations are shown in Table 2. 

To conduct the experiment, we sent ICMP packets, with 
packet (payload) sizes varying from 64 to 1024 bytes in 64-
byte increments, from machine C (Linux Fedora) to machine A 
(bare PC). The experiment was repeated 5 times for each data 
size and the reported results are averages (the variances were 
negligible and are omitted). The time to process ICMP packets 
were not included in these internal timings. 

TABLE II.  OPERATIONS ASSOCIATED WITH PROCESSING OF INCOMING 
AND OUTGOING ESP PACKETS 

Incoming Traffic 

Service Operation 

IPsec SA lookup 
Anti-replay window 
Data integrity verification 
Packet decryption 
Decryption verification 

Data integrity MAC calculation 
MAC verification 

Data 
confidentiality 

Packet decryption 
Decryption verification 

Outgoing Traffic 
Service Operation 

IPsec SA lookup 
Padding 
Encryption 
MAC calculation 

Data 
confidentiality 

Data encryption 

Data integrity MAC calculation 

 
 

Fig. 6 shows internal processing times for incoming ESP 
packets with transport mode and with tunnel mode including 
MAC calculation and verification (HMAC-SHA-1), data 
decryption and verification (AES-CBC-128), and total ESP 
processing. 

 

 

 

 

 

 

 

 

 

 

Figure 6.  ESP internal timing for incoming packets 

As expected, an approximately linear relationship between 
packet size and processing time is seen for all three measures 
(regardless of whether transport or tunnel mode is used). Data 
integrity verification takes more time than decryption but the 
difference is about the same for all packet sizes. The difference 
between total ESP processing time and the time for decryption 
and integrity verification is primarily due to overhead 
associated with replay protection and decryption verification, 
which does not vary significantly with packet size. The 
difference in time for integrity verification between tunnel and 
transport mode is essentially constant for all packet sizes, with 
tunnel mode being more expensive as expected. The same is 
true for decryption. However, the results for ESP packet 
processing show that as packet sizes increase, the difference 
between tunnel mode and transport mode becomes less and 



transport mode becomes slightly more expensive than tunnel 
mode for packet sizes greater than about 640 bytes. While it is 
clear that tunneling overhead is dominated by processing 
overhead for larger packets, we were not able to determine why 
transport mode is eventually more expensive. 

Fig. 7 shows the processing times for outgoing ESP 
packets. The correlation between processing time and packet 
size for MAC calculation (HMAC-SHA-1), data encryption 
(AES-CBC-128), and all ESP operations with tunnel and 
transport mode are linear (similar to the case of incoming 
packets) with tunnel mode being slightly more costly. The 
processing times for outgoing ESP packets is approximately 
6% less than those for incoming packets in either mode. This 
difference is due to the additional processing for replay 
protection and integrity and decryption verification on 
incoming packets. 

 

 

 

 

 

 

 

 

 

 
Figure 7.  ESP processing time for outgoing packets 

D. ICMP Response Time 
To measure average ICMP response times, 100 ICMP 

(ping) packets of sizes varying from 64 bytes to 1024 bytes in 
64 byte increments were sent from a) machine B to machine A; 
b) machine C to machine A; and c) machine C to machine D. 
Average response times were measured in three cases: 1) 
without IPsec protection; 2) with IPsec in transport mode; 3) 
with IPsec in tunnel mode.  

 

 

 

 

 

 

 

 

 

 
Figure 8.  ICMP (ping) response time 

The results shown in Fig. 8 indicate, as expected, that 
ICMP response times between bare PCs with or without IPsec 
are least and approximately constant for all packet sizes, while 
ICMP response times between Linux PCs are larger and 
increase with packet size. The difference between ICMP 
response time for transport and tunnel mode is negligible, 
although response time for transport mode is not always 
smaller. Surprisingly, highest ICMP response times are 
between a Linux PC and bare PC (again response time 
increases with packet size and there is a negligible difference 
between response time for tunnel and transport mode). In 
general, ICMP response times in all cases increased by over 
100% with IPsec compared to no IPsec for both tunnel and 
transport mode. Again, it is not clear why the response time for 
certain packet sizes with transport mode is slightly greater than 
with tunnel mode. 

E. HTTP Response and Connection Times 
To measure the impact of ESP on HTTP traffic we used 

http-load [21] running on machine C to measure the response 
time and connection time for a bare PC Web server on machine 
A and an Apache 2.2 Web server on machine D when traffic 
was protected by ESP. The size of the static Web page used 
was 3.5 KB. Tunnel and transport mode were both tested since 
either could be used for secure communication between a bare 
PC Web server and a remote client (in tunnel mode, the bare 
PC server also functions as a security gateway). The results are 
shown in Fig. 9 and Fig. 10. Per the obtained results, with or 
without IPsec, the bare PC Web server’s response time is 
better, and its connection time (which is controlled by the client 
rather than the server) is approximately the same as the 
connection time for the Apache Web server. The performance 
difference between transport and tunnel mode is negligible. 

 

 

 

 

 

 

 

 

 

Figure 9.  HTTP connection time 

 

 

 

 

 

 

 

Figure 10.  HTTP response time 



F. IKEv2 Message Processing Time 
We also conducted tests to compare processing time on a 

bare PC for the two types of IKEv2 messages. The results are 
shown in Fig. 11. While it can be seen that IKE-SA-INIT 
messages have larger processing times than IKE-SA-AUTH 
messages as expected, the difference between processing times 
for the two message types becomes significant as the cost of 
the DH computation increases with larger key sizes. 
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