
Design and Implementation of IPsec on a Bare PC

N. Kazemi, A. L. Wijesinha, and R. Karne
Department of Computer and Information Sciences

Towson University
Towson, MD 21252

nkazem1@students.towson.edu, {awijesinha, rkarne}@towson.edu

Abstract—We consider IPsec as a means to provide security for a
bare (OS-less) PC in a networked environment. We first present
the underlying bare computing architecture that includes IPsec
components. We then describe our design and implementation of
IPsec with ESP and IKEv2 support for a bare PC. Bare PC
optimizations that provide higher efficiency include application
and protocol intertwining, and minimization of inter-layer
communication and data copying. We also evaluate IPsec
performance on a bare PC and compare it with a similar Linux
system. Our experimental results indicate that 1) the cost of ESP
processing is approximately 6% more for incoming versus
outgoing packets; 2) an approximately linear relationship
between ESP processing time and packet size exists for both
tunnel and transport modes; 3) ICMP and HTTP response times
with IPsec are less on a bare PC than on a Linux system.

Keywords-IPsec; network security; bare machine computing;
bare PC; application object; performance

I. INTRODUCTION
In bare machine computing [1], an application executes

directly on the hardware without an Operating System (OS) or
hard disk. The software is designed as an Application Object
(AO) [2] whose executable code resides on a portable bootable
device such as a USB memory stick. There are two main
characteristics of bare machine computing that make it
preferable to a conventional OS-based system in special cases.
First, the absence of an OS and the streamlined design of an
AO result in reduced overhead, which is useful for building
low-cost high-performance systems. Second, security can be
improved since attacks targeting OS vulnerabilities are
eliminated and the smaller simpler AO code is easier to analyze
and secure. This is useful for certain security applications
where an OS is not needed and in fact may introduce hidden
loopholes. Bare PC applications include Web servers [3], email
servers [4], and VoIP clients [5].

Despite the inherent security advantages of bare computing,
it is also necessary to protect AOs against typical security risks
that are present in networked environments. IPsec, which is
commonly used in VPNs to provide confidentiality and data
integrity for IP traffic, is convenient for providing IP-level
security for bare applications and enabling secure
communication with conventional systems.

In this paper, we consider the design and implementation of
IPsec on a bare PC and evaluate its performance. We also
provide some performance comparison with applications that

run on Linux. Due to the novel characteristics of bare machine
computing and its unique architecture, the design and
implementation of IPsec for an AO is different from a
conventional implementation of IPsec in an OS-based system.

IPsec can be efficiently implemented on a bare PC by using
optimizations not easily achieved in conventional systems.
Examples are intertwining the application with network
protocols within an AO, minimizing the cost of inter-layer
communication, and eliminating data copying between
application and network buffers.

The main contributions of this research are: 1) an
implementation of IPsec for a bare (OS-less) PC; 2)
experimental results related to the cost of IPsec processing on a
bare PC; and 3) experimental results related to the increase in
response time of applications when IPsec is present for a bare
PC and for a conventional OS-based (Linux) PC. These results
can serve as a baseline for designing future versions of IPsec
for high-performance or high-security applications and security
gateways running on bare machines.

The rest of this paper is organized as follows. In Section II,
we provide a brief overview of bare machine computing, IPsec,
and the Internet Key Exchange version 2.0 (IKEv2) protocol.
We also review related work. In Section III, we describe the
bare PC architecture relevant to IPsec. We introduce our design
and implementation of IPsec on a bare PC in Section IV. In
Section V, we present experimental results. Section VI contains
the conclusion.

II. BACKGROUND

A. Bare Machine Computing
In bare machine computing, an AO, encapsulating one or

more applications, contains only the minimal functionality
required to run directly on the hardware without using an OS.
In contrast to a conventional system where the OS manages
computer resources on behalf of applications, bare machine
computing uses direct interfaces, to the hardware, that allow
the applications to optimize CPU and memory usage. In
particular, the AO manages task scheduling, concurrency, and
memory. While an OS performs functions to support a broad
variety of applications, an AO is designed to serve the needs of
a particular server or client application (or at most a few related
applications). Thus, overheads associated with OS services are
eliminated or minimized in bare machine computing.

The boot code for a bare PC application loads the self-
contained AO into memory and initiates its execution. An AO
uses a special bare machine API to the hardware [6] and
includes its own device drivers, for example, to manage
network or audio hardware interfaces, if needed by the
application. Since there is no OS, code for a conventional
application cannot be directly ported to a bare computer in
view of system calls i.e., bare computing applications differ
considerably from their OS-based counterparts.

In an OS-based system, the TCP/IP network protocol stack
is viewed as a part of the OS, and conventional applications
access network protocols via a socket interface that provides
general operations needed for communication. In bare machine
computing, an AO intertwines an application with the
necessary protocols enabling optimizations with respect to task
scheduling, data copying, and inter-layer communication. For
example, communication between IPsec, IP, and UDP
protocols in an AO is more efficient than in an OS-based
system.

B. IPsec
IPsec [7] is a standard for protecting IP traffic and it has

been widely used in implementing Virtual Private Networks
(VPNs). However, any application running over IP may
seamlessly benefit from IPsec’s security services. IPsec defines
two protocols: Authentication Header (AH) [8] and
Encapsulating Security Payload (ESP) [9]. Most practical uses
of IPsec are based on ESP, which provides data confidentiality,
and optionally, data-origin authentication and data-integrity
verification. It may also be used for replay-attack protection
and traffic flow confidentiality. Communicating peers use ESP
headers and ESP trailers that are placed inside IP datagrams to
communicate ESP information.

IPsec supports two modes, transport and tunnel. In transport
mode, IPsec protects upper layer protocol packets. In this
mode, the endpoints of the IPsec connection are also the
endpoints of communication. In tunnel mode (used in VPNs),
an IP datagram is prefixed with an extra IP header and the
entire IP datagram is protected. In this mode, one (or both
endpoints) of an IPsec connection is usually a security gateway
or router that implements IPsec. Therefore, in tunnel mode,
these endpoints may or may not be the endpoints of
communication.

In addition to ESP (or AH), the cryptographic algorithms,
and a key management component, IPsec requires a Security
Policy Database (SPD) and a Security Association Database
(SAD). These databases define the security services that are
afforded to network traffic, the IPsec connections between the
two endpoints, and associated information for processing IP
datagrams. The current bare PC implementation of IPsec
includes minimal functionality for SPD and SAD, since it is
only designed to support existing bare PC applications.
However, it can be extended to support more complex IPsec
requirements such as those for security gateways and VPNs.

C. The Internet Key Exchange Version 2.0 (IKEv2)
The key management component of IPsec used for

managing Security Associations (SAs) is implemented via IKE,

which exists in two versions IKEv1 [10] and IKEv2 [11].
Although many VPNs and OSs still support IKEv1, it has
several shortcomings that are addressed in IKEv2. IPsec on a
bare PC only supports IKEv2.

Using IKEv2, an initiator and a responder may exchange
four IKE messages to establish SAs for an IPsec connection.
The pair of IKE-SA-AUTH messages that follow the initial
pair of IKE-SA-INIT messages are cryptographically protected.
IKEv2 messages contain one or more payloads. For example,
the IKE-SA-INIT messages shown in Fig. 1 contain Security
Association (SA), Key Exchange (KE), and Nonce (N)
payloads.

Figure 1. A sample IKEv2 message exchange to establish IKE SAs

IPsec endpoints perform a Diffie-Hellman (DH) exchange
via IKE-SA-INIT messages to securely establish a shared
secret, which is then used by a Pseudo-Random Function
(PRF) to generate the required keys for cryptographic
algorithms that are used by ESP and AH. The PRF and the
cryptographic algorithms are negotiated using SA payloads.
The exchange of IKE-SA-INIT and IKE-SA-AUTH messages
results in the creation of four SAs: a pair of SAs for IKE traffic,
and a pair of SAs (CHILD-SAs) for protecting IP traffic in
each direction between initiator and responder.

D. Related Work
IPsec has been the subject of numerous studies. In [12],

IPsec was implemented on several OSs including Linux and
OpenBSD using lightweight kernel-user space communication,
improved lookup speed and packet processing, and
minimization of routing table lookups. The implementations
used triple DES for encryption. Performance measurements
including ICMP response times, and TCP/UDP throughput for
various packet sizes were also provided. Early work such as
[13] focused on the impact of hardware acceleration on
performance by measuring throughput and transfer time. In
[14], QoS support was added to an IPsec implementation on
Linux. In [15], IPsec overhead with respect to ESP and AH was
measured. In [16], ESP and IKEv1 performance was evaluated
in a single client setting using MD5 for MAC calculations, and
it was found that IKE overhead exceeded ESP overhead by a
factor of 3. In [17], performance of IKEv1 with multiple clients
was studied and caching techniques were shown to
significantly reduce its overhead. It was also noted that IPsec
ESP overhead significantly degraded HTTP performance of a
VPN server in a multi-client environment compared to a native
TCP/IP implementation.

In [18], a study of IPsec performance using ESP and AH in
tunnel and transport mode determined that IPsec processing
time increases linearly with packet size and that StrongS/WAN
[19] performs better than native IPsec with Linux 2.6.9 for

large packets but the opposite is true for small packets. The
authors indicated that integration of native IPsec with the
kernel may have been the reason for its improved performance
for small packets. This study included ESP with AES-128
encryption (no authentication) and AH with SHA-1.

Our study of IPsec differs from the preceding studies in that
we consider the design and implementation of IPsec on a bare
(OS-less) machine and evaluate its performance. We consider
IKEv2 for key exchange and ESP with data confidentiality,
data origin authentication, data integrity, and replay services.

III. ARCHITECTURE
The bare PC architecture to support a typical AO that

includes IPsec is shown in Fig. 2. The block titled “IPsec
Boundary” contains components that relate to IPsec processing.
The architecture is flexible i.e., depending on the encapsulating
AO and the context in which IPsec is applied, some elements
of this architecture can be eliminated or new elements can be
added. For example, an IPsec gateway may not include a TCP
object unless it needs a Web interface for administrative
purposes.

Figure 2. Bare PC architecture with IPsec components

A. Tasks
When a bare PC is booted, the Main task starts. This task

runs whenever no other task is running, and it can activate
other tasks as needed. For example, the Main task starts the
Receive task and a series of tasks for other services.

The Task Scheduler (TS) is a multiplexor mechanism that
switches between the Main, the Receive, and other tasks in the
Active Tasks Circular List (ATCL). It selects a single task for
execution, giving higher priority to the Receive and Main tasks.
A task runs as a single thread of execution until it requires an
event to continue, in which case it is suspended or delayed. The
tasks in the ATCL are eligible for execution if 1) their wait
time elapses; or 2) a resume event occurs. Selection of an
active task is done in a FIFO manner.

Each task pool is associated with a service (function) that
an AO offers. When a service request arrives, an entry from the
appropriate task pool is assigned to the request i.e., an available
task is activated. The activated task is handled by a
corresponding task handler, which provides the logic that an
executing task follows until it is completed and returned to the
corresponding task pool. For example, when a new IPsec
connection request arrives, a task from the handshake task pool
is assigned to it. This task follows the execution logic in the
Handshake Task Handler (HTH) until the connection is
established or timed out.

B. Transition Control Block Table
The Transition Control Block (TCB) table is a data

structure that maintains task-related information. An array of
fixed (but configurable) size is used to implement the TCB
table. Each element of this array represents a task that is in one
of the three states: idle, pending execution, or executing. Two
circular lists (not shown in Fig. 2) that correspond to the first
two states provide pointers to elements of the TCB table. This
design offers fast access to retrieve tasks.

Ethernet

IP UDP IPsec

Handshake
(HTH)

Task Control Block
Table

(TCBT)S
A

s

Download Pointer
Descriptor (DPD)

Cryptographic
Library (CL)

Dynamic Memory
Manager (DMM)

Program
Memory

TCP

NIC Driver

TCB 1

TCB 2

...

TCB n

T2,5T2,4T1,2Tm,1Tn,5 Running Task (T2,4)

DELAY = 0 or RESUME = 1

IPsec Boundary

Upload Pointer
Description (UPD)

Task Pool 1 Task Pool 2 Task Pool n

Activate Deactivate Activate Deactivate Activate Deactivate

Active Tasks Circular List (ATCL)

Main

Receive

Services Tasks

Task Scheduler (TS)

C. Upload and Download Pointer Descriptors
The Upload Pointer Descriptor (UPD) and Download

Pointer Descriptor (DPD) are buffers that store incoming and
outgoing network frames, respectively. They are implemented
as circular lists. The device driver for the NIC stores the
incoming frames in the UPD and retrieves outgoing frames
from the DPD for transmission on the link.

When an Ethernet frame arrives on the link, the Receive
task handles it by requesting a new TCB table entry or updating
an existing one. This entry is then forwarded to the Ethernet
object and packet processing follows the usual path through
upper layers except that information may also be conveniently
exchanged between layers if needed. Such processing may
result in the activation of more tasks according to the type of
the packet and its processing needs. Throughout the lifetime of
the packet, the incoming frame stays in the UPD while it is
being processed so that the frame is easily accessible to any
upper layer protocols. The Receive task frees up the UPD entry
when packet processing has been completed. Outgoing frames
are processed in a similar manner except that they follow a
downward path through the upper layers.

D. Network and Security Services
The Ethernet, IP, TCP, and UDP objects provide customary

network-related services. If the bare PC were a router/security
gateway/firewall, the IP object would include additional
functionality, and if NAT were also used, it would manage a

NAT table and make the necessary changes to packet headers.
IPsec interacts with IP when handling ESP packets and with
UDP during the key exchange phase. The key exchange is
handled by the HTH. In a bare PC, this communication is very
efficient since all protocols can communicate directly with
IPsec as needed.

The Cryptographic Library (CL) provides cryptographic
operations. It includes encryption (and decryption) algorithms
and hash functions.

E. Memory Management
The Dynamic Memory Manager object allows an AO to

directly manage program memory. It provides primitive
services for dynamic memory allocation and also provides
usage statistics. A buffer in RAM is assigned to each service
(or application) that the AO provides. For example, if the AO
includes Web server and IPsec services, one chunk of memory
is allocated to each service by specifying a base memory
address and a length. A memory allocation method is called to
dynamically allocate memory to a program variable. Memory
de-allocation is also explicitly requested in a similar manner.
Memory allocation is based on a heuristic algorithm that
combines the best-fit and first-fit algorithms for memory
allocation and dynamically expands and shrinks unused
memory blocks to minimize memory fragmentation.

IV. DESIGN AND IMPLEMENTATION
The design of IPsec for a bare PC is based on the preceding

bare machine architecture and thus differs from a conventional
OS-based design. In particular, it does not rely on any OS-
based concepts, for example, kernel and user modes, or OS
functions. An AO is self-sufficient and it handles the necessary
task scheduling, memory management, and concurrency
control.

A. Objects
The IPsec implementation on a bare PC supports: 1) set up

and management of SAs; 2) IKEv2; 3) data protection using
ESP; 4) transport and tunnel modes; 5) data confidentiality
service using AES-CBC-128; 6) data integrity verification
services using HMAC-SHA1-96; 7) key expansion function
based on HMAC-SHA1; 8) authentication service using Pre-
Shared Keys (PSKs); and 9) replay attack protection.

The main objects that support IPsec are: 1) IPsec; 2)
Handshake; 3) BigInt; 4) SHA1; 5) HMAC-SHA1; and 6)
AES. The last four objects are provided by the CL. Fig. 2
shows the IPsec-related objects in bold.

The IPsec object provides all IPsec-related operations
including parsing and constructing IKE messages, generating
key material, and processing ESP packets. Specific examples
are methods to respectively: parse an incoming IKE-SA-INIT
message; construct a response to an IKE-SA-INIT message;
generate keys for cryptographic algorithms; verify authenticity
of an incoming ESP packet; and construct an ESP packet. This
object also includes a method that analyzes an incoming IKE-
SA message, initializes an SA, and requests activation of a
handshake task.

The handshake object contains the code for the HTH that
implements the handshake logic for establishing SAs. The
handshake object relies on the IPsec object for message
processing.

The BigInt object provides arithmetic functions for working
with big integers. For example, this object provides a method
for modular exponentiation of two big integers. Using a given
key, the HMAC-SHA-1 produces a 20-byte Message
Authentication Code (MAC) based on a SHA-1 hash value
produced by the SHA-1 object. The AES object provides
encryption and decryption services based on the AES
algorithm.

B. IKE-SA Management
The HTH implements a state machine, shown in Fig. 3,

which handles two scenarios (one for an initiator i and one for a
responder r), when establishing an IPsec connection.

Figure 3. State transition diagram for HTH

Upon arrival of a UDP packet that contains an IKE-SA
message, the UDP object forwards the message to the IPsec
object, which performs the following operations to process the
message:

1. For an IKE-SA-INIT message

a. requests a new TCB table entry (activate a
handshake task),

b. requests creation of a new buffer for a new SA,

c. updates the requested TCB table entry,

d. and, starts the corresponding handshake task.

2. For other IKE-SA messages

a. requests a lookup for an existing TCB table entry,

b. updates the entry to resume the task,

c. and, resumes the corresponding handshake task.

In the bare PC IPsec implementation, outgoing messages
are directly manipulated in the DPD. For example, in response
to the initiator’s IKE-SA-INIT message, the responder’s HTH
acquires a pointer to the buffer (a DPD entry) by sending a
request to the Ethernet object. This pointer is passed to the
IPsec object which constructs a response and passes the pointer
and the length of the message to the UDP object. The latter
adds a UDP header to the message and sends the updated
pointer to the IP object. Similarly, the IP object adds an IP
header to the UDP packet in the buffer, adjusts the pointer, and
calls the Ethernet object for further processing.

C. ESP Packets Processing
The bare PC IPsec implementation uses the ESP protocol to

protect data packets. IPsec protection is enabled by setting a
global flag, ACTIVE_IPSEC. Fig. 4 shows the inter-layer
communication for processing data packets.

Incoming ESP packets are encapsulated in IP datagrams.
The IP object recognizes such datagrams by inspecting the
protocol ID field in the datagram’s header and removing the IP
header from the datagram before forwarding the encapsulated
ESP packet to the IPsec object. To process an incoming ESP
packet, the IPsec object:

1. determines the security parameters of the packet by
performing an SA lookup,

2. ensures that the packet has not been replayed,

3. checks packet integrity,

4. decrypts the packet and verifies success,

5. and, removes the ESP-related data and passes the
encapsulated plaintext content directly to the object
corresponding to the Next Protocol field in the ESP
packet.

If any of the above operations fails, the packet is dropped.

For outgoing packets, when IPsec is enabled, the IP, TCP,
UDP, or ICMP object forwards the packet directly to the IPsec
object for processing. To process an outgoing packet the IPsec
object:

1. determines if the packet is subject to IPsec protection

2. performs the following operations when an SA exists:

a. pads the packet (if needed),
b. adds the ESP header to the packet,
c. encrypts the packet,
d. adds the ESP trailer to the packet,
e. and, if the SA is for tunnel mode, adds an inner

IP header to the packet;

3. and, passes the packet to the IP object.

For an SA in tunnel mode, the bare PC may be a client that
is tunneling its own packets, or a router/security gateway that is
tunneling a received IP datagram.

Figure 4. IPsec inter-layer communication

D. Bare PC Optimizations
In a bare PC, IPsec is integrated within the implementation

of an AO such as a Web or email server, a VoIP or email client,
or a security gateway. However, since there is no OS, all IPsec
processing is self-contained and can be optimized for a given
AO. Furthermore, since the AO intertwines IPsec and other
protocols, inter-layer communications are very efficient. For
example, a security application (or other layers) may directly
access the Ethernet buffer for sending IP datagrams.

As shown in Fig. 2 and Fig. 4, the bare PC architecture
allows all protocol layers in an AO to directly access and
manipulate IPsec header information as needed. This is in
contrast to standard OS-based implementations of IPsec, in
which IPsec is implemented in the OS kernel and key exchange
and management is controlled from user-space. In such
systems, IPsec may be integrated within the IP code, exist as a
separate layer between IP and the link layer (bump-in-the-
stack), or be incorporated in a hardware device between a
router and the network (bump-in-the-wire). In a bare PC, IPsec
and other protocol objects are part of the same AO. Thus,
IPsec-related processing is more efficient (since no system calls
are needed and IP as well as higher layer protocols
communicate directly with IPsec).

IPsec on a bare PC also benefits from the elimination of
data copying from application to Ethernet buffers. As noted
before, the AO has direct access to the Ethernet buffer and data
in a packet is not duplicated. Thus, IPsec objects can
manipulate headers and access the data for authentication and
encryption with minimum delay. As discussed in IKE-SA
Management section, the key exchange message processing is
also streamlined. Furthermore, the intertwining of protocols
within the bare PC architecture enables information to be
stored during SA establishment and recovered during
subsequent SA lookup with less overhead than in an OS-based
system.

V. RESULTS
This section contains a description of experiments

conducted using IPsec on a bare PC and the results obtained.
Results for OS-based systems (with unessential services
disabled) are included when possible as a means for
comparison and also for identifying areas of improvement in
future bare PC implementations of IPsec.

A. Experimental Setup
The small test LAN used for experiments consists of five

PCs connected by a 100 Mbps Cisco FastHub 400 series as
shown in Fig. 5. The hardware specifications for the PCs are
given in Table 1.

A and B are PCs running a Web server AO that supports
IPsec. C and D are PCs that run StrongS/WAN 4.2.12 on Linux
(Fedora 10 Kernel Version 2.6.27.5-117-fc10.i686 Kernel
Version: 2.6.27.5-117-fc10.i686 and Ubuntu 8.1 Kernel
Version 2.6.27-7-server, respectively), and E is a PC running
Wireshark Version 1.2.1 [20] on Windows XP to monitor
network traffic.

Figure 5. Test LAN

TABLE I. HARDWARE SPECIFICATIONS FOR THE PCS IN THE TEST LAN

Computer Processor RAM NIC
A 2.4 MHz 512 MB 3COM 905CX 10/100
B 2.4 MHz 512 MB 3COM 905CX 10/100
C 3.2 MHz 1024 MB Intel PRO/1000 MT
D 2.4 MHz 512 MB 3COM 905CX 10/100
E 2.4 MHz 1024 MB Intel PRO/1000 MT

B. Performance Metrics
To measure the IPsec overhead on a bare PC, we use these

metrics: 1) internal (processing) times to measure the
computing overhead for ESP processing; 2) ping response
times to measure the delay in receiving a response when
packets are protected by ESP; 3) HTTP response and
connection times to measure the impact of ESP protection on
Web traffic; 4) IKEv2 message processing time to measure the
impacts of selecting different modular exponential groups
(ModP) for DH exchange.

C. Internal ESP Timing
To determine the ESP packet processing time, we modified

the AO on machine A (bare PC). The modification included
creation of checkpoints for capturing processor ticks. The
processor ticks corresponded to the various ESP operations
associated with incoming and outgoing packets. These
operations are shown in Table 2.

To conduct the experiment, we sent ICMP packets, with
packet (payload) sizes varying from 64 to 1024 bytes in 64-
byte increments, from machine C (Linux Fedora) to machine A
(bare PC). The experiment was repeated 5 times for each data
size and the reported results are averages (the variances were
negligible and are omitted). The time to process ICMP packets
were not included in these internal timings.

TABLE II. OPERATIONS ASSOCIATED WITH PROCESSING OF INCOMING
AND OUTGOING ESP PACKETS

Incoming Traffic

Service Operation

IPsec SA lookup
Anti-replay window
Data integrity verification
Packet decryption
Decryption verification

Data integrity MAC calculation
MAC verification

Data
confidentiality

Packet decryption
Decryption verification

Outgoing Traffic
Service Operation

IPsec SA lookup
Padding
Encryption
MAC calculation

Data
confidentiality

Data encryption

Data integrity MAC calculation

Fig. 6 shows internal processing times for incoming ESP
packets with transport mode and with tunnel mode including
MAC calculation and verification (HMAC-SHA-1), data
decryption and verification (AES-CBC-128), and total ESP
processing.

Figure 6. ESP internal timing for incoming packets

As expected, an approximately linear relationship between
packet size and processing time is seen for all three measures
(regardless of whether transport or tunnel mode is used). Data
integrity verification takes more time than decryption but the
difference is about the same for all packet sizes. The difference
between total ESP processing time and the time for decryption
and integrity verification is primarily due to overhead
associated with replay protection and decryption verification,
which does not vary significantly with packet size. The
difference in time for integrity verification between tunnel and
transport mode is essentially constant for all packet sizes, with
tunnel mode being more expensive as expected. The same is
true for decryption. However, the results for ESP packet
processing show that as packet sizes increase, the difference
between tunnel mode and transport mode becomes less and

transport mode becomes slightly more expensive than tunnel
mode for packet sizes greater than about 640 bytes. While it is
clear that tunneling overhead is dominated by processing
overhead for larger packets, we were not able to determine why
transport mode is eventually more expensive.

Fig. 7 shows the processing times for outgoing ESP
packets. The correlation between processing time and packet
size for MAC calculation (HMAC-SHA-1), data encryption
(AES-CBC-128), and all ESP operations with tunnel and
transport mode are linear (similar to the case of incoming
packets) with tunnel mode being slightly more costly. The
processing times for outgoing ESP packets is approximately
6% less than those for incoming packets in either mode. This
difference is due to the additional processing for replay
protection and integrity and decryption verification on
incoming packets.

Figure 7. ESP processing time for outgoing packets

D. ICMP Response Time
To measure average ICMP response times, 100 ICMP

(ping) packets of sizes varying from 64 bytes to 1024 bytes in
64 byte increments were sent from a) machine B to machine A;
b) machine C to machine A; and c) machine C to machine D.
Average response times were measured in three cases: 1)
without IPsec protection; 2) with IPsec in transport mode; 3)
with IPsec in tunnel mode.

Figure 8. ICMP (ping) response time

The results shown in Fig. 8 indicate, as expected, that
ICMP response times between bare PCs with or without IPsec
are least and approximately constant for all packet sizes, while
ICMP response times between Linux PCs are larger and
increase with packet size. The difference between ICMP
response time for transport and tunnel mode is negligible,
although response time for transport mode is not always
smaller. Surprisingly, highest ICMP response times are
between a Linux PC and bare PC (again response time
increases with packet size and there is a negligible difference
between response time for tunnel and transport mode). In
general, ICMP response times in all cases increased by over
100% with IPsec compared to no IPsec for both tunnel and
transport mode. Again, it is not clear why the response time for
certain packet sizes with transport mode is slightly greater than
with tunnel mode.

E. HTTP Response and Connection Times
To measure the impact of ESP on HTTP traffic we used

http-load [21] running on machine C to measure the response
time and connection time for a bare PC Web server on machine
A and an Apache 2.2 Web server on machine D when traffic
was protected by ESP. The size of the static Web page used
was 3.5 KB. Tunnel and transport mode were both tested since
either could be used for secure communication between a bare
PC Web server and a remote client (in tunnel mode, the bare
PC server also functions as a security gateway). The results are
shown in Fig. 9 and Fig. 10. Per the obtained results, with or
without IPsec, the bare PC Web server’s response time is
better, and its connection time (which is controlled by the client
rather than the server) is approximately the same as the
connection time for the Apache Web server. The performance
difference between transport and tunnel mode is negligible.

Figure 9. HTTP connection time

Figure 10. HTTP response time

F. IKEv2 Message Processing Time
We also conducted tests to compare processing time on a

bare PC for the two types of IKEv2 messages. The results are
shown in Fig. 11. While it can be seen that IKE-SA-INIT
messages have larger processing times than IKE-SA-AUTH
messages as expected, the difference between processing times
for the two message types becomes significant as the cost of
the DH computation increases with larger key sizes.

[2] R. K. Karne, “Application-Oriented Object Architecture: A
Revolutionary Approach,” 6th International Conference, HPC Asia 2002,
Bangalore, Karnataka, India, December 2002.

[3] L. He, R. Karne, and A. Wijesinha, "The Design and Performance of a
Bare PC Web Server", International Journal of Computers and Their
Applications, vol. 15, no. 2, pp. 100 - 112, June 2008.

[4] G. Ford, R. Karne, A. Wijesinha, and P. Appiah-Kubi, “The Design and
Implementation of a bare PC Email Server,” 33rd Annual IEEE
International Computer Software and Applications Conference
(CompSAC 2009), pp. 480-485, Seattle, WA, July 2009.

[5] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S. Girumala,
“A Peer-to-Peer bare PC VoIP Application,” Proceedings of the IEEE
Consumer and Communications and Networking Conference, IEEE
Press, Las Vegas, NV, 2007.

[6] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to Run C++
Applications on a Bare PC?” Proceedings of the 6th International
Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing, IEEE Computer Society,
Washington DC, 2005, pp. 50-55.

[7] S. Kent and K. Seo, "Security Architecture for the Internet Protocol,"
December 2005, RFC 4301.

[8] S. Kent, "IP Authentication Header," December 2005, RFC 4302.
[9] S. Kent, "IP Encapsulating Security Payload (ESP)," December 2005,

RFC 4303.
[10] D. Harkins, D. Carrel, "Internet Key Exchange," 1998, RFC 2409.
[11] E. C. Kaufman, "Internet Key Exchange (IKEv2) Protocol," 2005, RFC

4306. Figure 11. IKEv2 message processing time

[12] A. D. Keromytis, J. Ioannidis, and J. M. Smith, “Implementing IPsec,”
Proceedings of Global Internet (GlobeCom) 1997, pp. 1948-1952,
November 1997. VI. CONCLUSION

We described the design and implementation of IPsec on a
bare PC with no OS. The bare PC architecture enables IPsec to
be efficiently implemented by intertwining protocols and
application, minimizing inter-layer communication cost, and
eliminating data copying between application and network
buffers. Our experimental results indicate that IPsec
performance on a bare PC as measured by ESP processing
time, ICMP (ping) response time, and HTTP response time for
a Web server application is better than IPsec performance on
Linux. Our results can serve as a baseline for designing future
versions of IPsec for high-performance or high-security bare
PC applications, and devices such as security gateways running
on bare machines.

[13] S. Miltchev, S. Ioannidis, and A. Keromytis, “A study of the relative
costs of network security protocols,” USENIX, 2002.

[14] L. Volker, M. Scholler, and M. Zitterbart, "Introducing QoS mechanisms
into the IPsec packet processing," 32nd IEEE Conference on Local
Computer Networks (LCN 2007), pp. 360-367, 2007.

[15] G. C. Hadjichristophi, N. J. Davis IV, and S. F. Midkiff, “IPSec
overhead in wireline and wireless networks for web and email
applications,” 22nd IEEE International Performance, Computing, and
Communications Conference, Phoenix, Arizona, April 2003.

[16] C. Shue, Y. Shin, M. Gupta, and J. Y. Choi, “Analysis of IPSec
overheads for VPN servers,” IEEE ICNP’s NPSec Workshop, 2005.

[17] C. A. Shue, M. Gupta, and S. A. Myers, "IPSec: Performance Analysis
and Enhancements," IEEE, Indianapolis, 2007, pp. 1527-1532.

[18] H. Niedermayer, A. Klenk, and G. Carle, “The Networking Perspective
of Security Performance - a Measurement Study,” MMB 2006, pp. 119-
136, Nurnberg,Germany, March 2006.

REFERENCES [19] A. Steffen. StrongSwan. [Online]. http://www.strongswan.org
[1] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “DOSC: Dispersed

Operating System Computing”, OOPSLA ’05, 20th Annual ACM
Conference on Object Oriented Programming, Systems, Languages, and
Applications, Onward Track, ACM, San Diego, CA, October 2005, pp.
55-61.

[20] (2009, June) WIRESHARK. [Online]. http://www.wireshark.org
[21] ACME Laboratories, http-load. [Online].

http://acme.com/software/http_load.

http://www.strongswan.org/
http://www.wireshark.org/

	I. Introduction
	II. Background
	A. Bare Machine Computing
	B. IPsec
	C. The Internet Key Exchange Version 2.0 (IKEv2)
	D. Related Work

	III. Architecture
	A. Tasks
	B. Transition Control Block Table
	C. Upload and Download Pointer Descriptors
	D. Network and Security Services
	E. Memory Management

	IV. Design and Implementation
	A. Objects
	B. IKE-SA Management
	C. ESP Packets Processing
	D. Bare PC Optimizations

	V. Results
	A. Experimental Setup
	B. Performance Metrics
	C. Internal ESP Timing
	D. ICMP Response Time
	E. HTTP Response and Connection Times
	F. IKEv2 Message Processing Time

	VI. conclusion
	References

