

Abstract—Bare PC applications do not use an operating
system or kernel. The bare PC architecture avoids buffer
copying, minimizes interrupts, uses a single thread of
execution for processing network packets, and incorporates
novel scheduling to minimize CPU utilization. We design a
bare PC Web server that can serve both dynamic and static
content. Measurements of response time, connection time and
throughput for workloads containing requests for dynamic
and static content indicate that the server has better
performance than the Apache and IIS Web servers. For
example, the bare PC server has a maximum request rate
that is twice that of the Apache and IIS servers when serving
dynamic content for small dataset sizes. Furthermore, at
capacity the CPU utilization of the bare PC server is 1/5th
that of the other servers. The bare PC server can also sustain
a higher maximum request rate for dynamic pages with a
given request rate for static pages. The studies demonstrate
that the performance of the bare PC server when serving
dynamic content is limited only by the latency of the
database server.

Index Terms—Application Object, Bare PC, Dynamic
Content, Performance, Web Server.

I. INTRODUCTION
A bare PC runs applications directly over the hardware

without an operating system (OS) or any type of kernel
installed on the machine. Since only the required
functionality for running on the hardware is implemented,
applications can perform better on bare PC systems than
on OS-based systems. Bare PC servers provide an
alternative approach to designing high-performance
servers without incurring any OS-related overhead. Self-
contained self-executing bare computing applications may
be carried on a portable storage medium such as a USB
flash drive and run on a PC without using an OS or a hard
disk.

In previous studies, a bare PC Web server that can
serve only static content was shown to perform
significantly better than the popular Apache and IIS
servers, and the high-performance Tux server when
running on an ordinary desktop [4, 5]. However,
workloads of Web servers contain a mix of requests for
dynamic and static content. To better characterize bare PC
Web server performance, we extend the design of the
existing bare PC Web server enabling it to handle both
dynamic and static pages, and conduct experiments to

measure its performance. The results are compared with
those for Apache and IIS Web servers running the same
workloads (we are unable to compare the bare PC Web
server with the Tux server since it only handles static Web
pages).

The rest of this paper is as follows. Section 2 provides a
brief overview of related work. Section 3 describes the
design of a bare PC Web server that can serve dynamic
and static content. Section 4 contains the results of
experiments that were conducted to study server
performance, and Section 5 contains the conclusion.

II. RELATED WORK

Many attempts have been made to address the growth in
size and complexity of the OS, and to improve
performance. Examples include Microkernel [2] and
Exokernel [3] that move OS functionality to application
domains and eliminate OS abstractions; OSKit [8], a
complete set of OS components; and TinyOS [9], an
operating system designed for embedded sensor networks.
In addition to streamlining the OS, many techniques
including new socket functions, per-byte and per-
connection optimizations [14] and caching systems [13]
have been used to improve Web server performance; and
architectural designs such as [15] have enabled high-
performance portable Web servers to be built. Linux-
based Tux is an example of a Web server that incorporates
several optimizations to significantly improve throughput
under conditions of high load [1]. More recently, a
comparison of OS-based Web servers using static
workloads has shown that event-driven and hybrid
pipeline-based architectures perform better than a thread-
per-connection design [16]. In contrast to conventional
systems, a bare PC Web server optimizes performance by
eliminating the OS layer completely and completely
dedicating processor and memory resources to the
application.

III. WEB SERVER DESIGN

Bare PC Web server design is based on the dispersed
operating system computing (DOSC) concept [10] in
which an application object (AO) [12] contains the code
required to boot, load and execute applications on the

Long He, Ramesh K. Karne, Alexander L. Wijesinha, and Ali Emdadi
Department of Computer & Information Sciences

Towson University
Towson, MD 21225 USA

A Study of Bare PC Web Server Performance
for Workloads with Dynamic and Static Content

2009 11th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3738-2/09 $25.00 © 2009 IEEE

DOI 10.1109/HPCC.2009.34

494

hardware. The AO manages memory, tasks and execution
flow, and communicates directly to the hardware through
an API [11]. A single AO may consist of multiple
programs to implement a complex user application or
several applications. Real memory is used by an AO so
that no virtual memory or paging is required, and
minimization of interrupts and data copying are used to
improve performance.

The Web server runs on any IA-32 (Intel Architecture
32-bit) compatible PC. It uses 512 MB of memory. The
code has less than 10K executable C++ statements
including the code for the hardware interfaces but
excluding part of the Ethernet driver that has about 1500
lines of assembly code. The executable is 200K bytes not
including the boot code. There are only two interrupts: a
hardware timer interrupt and a network card transmit
interrupt. To optimize performance, the implementations
of the HTTP, TCP and IP protocols and the Ethernet
driver are lean and tightly integrated with the server
application.

A. Web Server Operation
Fig. 1 shows the internal design flow of the bare PC

Web server. The numbered labels describe server
operation. Scheduling involves only four types of tasks:
MAIN (idle task), RCV, HTTP, and PHP. The RCV task
has higher priority than the HTTP and PHP tasks. When a
new packet arrives (1), the RCV task runs (2), reads data
from the UPD (upload program descriptor) buffer and
validates the packet (3). In case of TCP, the IPHandler()
(4) and TCPHandler (5) process the packet. The latter
creates a TCP control block (TCB) entry and updates the
state of a given request (6). Each request has a separate
TCB entry during its lifetime. When the RCV task
terminates, control returns back to the MAIN task (7). If a
received packet requires that a response be sent, the
TCPHandler() calls SendMiscPkt() (8), which does the
relevant TCP, IP, and Ethernet processing (9). The DPD
(download program descriptor) pointers (10) are then
updated before returning to the MAIN task (11).

When a GET() arrives from a client (12), the
TCPHandler() parses the request, pops an HTTP task
from the HttpStack and inserts it into the Run List (13). In
the MAIN task, if there is an HTTP or PHP task in the
Run List, it will be scheduled to run (14) if the RCV task
is not running. When an HTTP task runs, it sends packets

by calling SendNPkt() (15). When all packets are
successfully sent, control returns to the MAIN task (16).
There can be many HTTP tasks running in the system
concurrently that follow the same thread of execution as
described. When an HTTP task has to wait for a client
response, it will call Suspend() to return control to the
MAIN task and resume when the response is received.

In case of a dynamic Web page request, two linked
TCB entries are used to store state information: one for
the HTTP request, and the other for the PHP request to
the DB server. A PHP task is inserted into the Run List
when the TCPHandler() detects a request for a PHP file
(17). If more than one packet has to be sent, the PHP task
calls SendNPkt() to send data (22). When the response
data arrives from the DB Server, it is stored in the DB
Buffer (18). The PHP task parses the requested PHP file
and dynamically modifies it to include the data from the
database (19). This file is stored in the DPD (20). Once
the file is ready to be sent, the PHP task inserts an HTTP
task and sets up pointers for the outgoing data in the TCB
(21). The HTTP task sends the data to the client in the
same manner as for a static page request. When the PHP
task is waiting for a response from the DB Server, it
suspends itself and returns to the MAIN task (24). Upon
request completion, a TCB entry is deleted and the task is
replaced in its stack (23).

B. Message Exchange
Fig. 2 shows the message exchange between the Web

server and the client consisting of handshake, file transfer,
and disconnection phases. It also shows the message
exchange (based on MySQL protocol v10) between the
Web server and the DB server to handle an HTTP request
for a dynamic Web page consisting of a connection phase
for exchange of a greeting message and password
signature, and a tabular response phase during which data
is transferred. When a GET request for a PHP file arrives,
a TCP connection is established with the DB server. The
DB server then sends a “Greetings” message to the Web
server with a salt value. The latter is used to generate a
password signature which is sent in a “Password”
message. Additional messages as shown in the figure are
exchanged before the data is sent.

495

 Fig. 1. Internal Design Flow of the Bare PC Web Server

IV. PERFORMANCE MEASUREMENTS

We conduct several experiments to study the
performance of the bare PC Web server and to compare
its performance with the Apache and IIS Web servers
when the latter are tuned for maximum performance. The
servers (including the DB server) and clients run on a 2.4
GHz Dell Optiplex GX260 with 512MB memory, which
is a commodity single-CPU PC. The clients and the
Apache server run Red Hat Linux 2.4.20-8. The DB
servers run MySQL server version 5.0 on Windows XP
(for bare PC and Apache) and SQL Server 2005 (for IIS).
For all experiments involving dynamic Web pages, the
client PCs, Web server and DB server are connected by a
100 Mbps Netgear FS 608.v2 Ethernet switch. A gigabit
Ethernet switch was not used since the throughput in this
case is limited not by network bandwidth but by the
latency of the DB server (see Sections A and F). The
HTTP version is 1.1. The tools used for workload
generation are http_load-12mar2006 [6, 17] for static
content and httperf-0.8 [7] for dynamic content.

Fig 2. Message Exchange

The throughput is the average number of bits per
second transferred by the Web server. The response time

Insert()

HTTP

ETH DRVR

DPD UPD

IPHandler()

TCPHandler()

8

SendMiscPkt()
- FormatTCPPkt()
- FormatIPPkt()
- FormatETHPkt()

TCB

RCV

MAIN

3

6

7

5

1

2

4

SendNPkt()
- FormatTCPPkt()
- FormatIPPkt()
- FormatETHPkt()
(Sliding Window)

PHP

Complete()

Run List

PHPStack HTTPStack

HTTPParser

InsertHTTPTask()

InsertPHPTask()
PHPParser

DB Buffer

HTTP File

PHP File

InsertHTTPTask()

9

10

11

12

16

13

14
15

17

18

19

20

21

22

23

 24

Client Web Server

SYN
SYN - ACK

ACK
Get

SYN
SYN - ACK

ACK
Greetings
Password

Password OK
Database Name

Database Name OK
Request Query

Query Results
Quit
FIN
ACK

FIN - ACK
ACK

HTTP

FIN
FIN - ACK

ACK

 Response Time
 Handshake

Connection

Tabula
Response

Disconnection

HTTP

Handshake

ACK

DAT

Client DB Server

- ACK
ACK

ACK
ACK

Greetings
Password

Password OK
Database Name

Database Name OK
Request Query

Query Results
Quit
FIN
ACK

FIN - ACK
ACK

HTTP

FIN
FIN - ACK

ACK

Connection

Tabula
Response

Disconnection

HTTP

Disconnection

Handshake

ACK

DAT

File Transfer Phase
(Dynamic pages only)

 File Transfer Phase
(Static pages only)

 Connection Time

496

is the average time to complete the TCP handshake, and
the connection time is the average time for the server to
transfer the HTTP data to the client and close the
connection (Fig. 2). The connection time for a dynamic
Web page includes the time to connect to the database and
retrieve the data. The dataset size referred to below is the
size of the file that is transferred to the client by the Web
server after it receives the tabular response from the DB
server.

A. Static Web Pages
Our previous studies of a bare PC Web server capable

only of handling only static pages used a 100 Mbps switch
[4, 5]. To determine the capacity (i.e., maximum number
of supported requests/sec) of the extended Web server
design when serving only static Web pages we used a
gigabit Ethernet switch. The response and connection time
respectively for the IIS and bare PC servers for up to 2000
request/sec with a 3593 byte file are shown in Fig. 3 and
Fig. 4. We only compare these two servers as Apache’s
performance degrades rapidly when the rate exceeds 2000
requests/sec (for rates up to 1000 requests/sec, the
response time of the servers are similar). The connection
time (after the handshake) is dominated by the delay for
the GET request and the disconnection time. We found
that the capacity of the bare PC server is 6000
requests/sec compared to 3000 requests/sec for the IIS
and Apache servers. However, the response time of the
bare PC server only remains stable until 5000 requests/sec
and rapidly increases thereafter. The connection time for
the server shows similar behavior except that it only
increases slightly after 5000 requests/sec because of the
small file size. At capacity, the CPU utilization of the IIS
and Apache servers reaches 99%. In contrast, the bare PC
server CPU utilization is respectively 41% and 82% for
3000 and 6000 requests/sec, and approximately linear for
up to 5000 requests/sec.

B. Dynamic Web Pages
 We studied the performance of the bare PC Web server
when serving only dynamic Web pages with a dataset size
of 211 bytes. In this case, the original PHP file is 469
bytes, and the actual data returned by the DB server
consists of 11 bytes within a 414-byte TCP Payload. The
Web server reformats the PHP file resulting in the 211-
byte HTTP file (plus a 151-byte HTTP header) that is
transferred to the client. The capacity of the bare PC Web
server is 1000 dynamic page requests/sec with a
corresponding response time of 66.7 ms but its
performance starts to degrade when the request rate
exceeds 800 requests/sec. In contrast, the capacity of the
Apache and IIS servers is 600 requests/sec and the
corresponding response times are 1812 ms and 2189 ms
respectively with a significant increase in response and
connection times after 400 requests/sec. The server
response and connection times for up to 400 dynamic

page requests/sec are shown in Fig. 5 and Fig. 6
respectively. The similarity in performance of the bare PC
and IIS servers is because the MySQL server requires the
bare PC server to open a new TCP connection for each
request whereas the SQL server maintains persistent TCP
connections to the IIS server. We also observed that the
CPU utilization of the Apache and IIS servers reaches
99% at 600 requests/sec (with 427 threads at capacity)
and 500 requests/sec respectively, while the bare PC
server’s CPU utilization is only 17.7% for 600
requests/sec and 29% at capacity.
C. Dynamic and Static Web Pages

To compare performance of the servers with requests
for a mix of static and dynamic Web pages, we measured
the response times with 1000 static page requests/sec for a
file size of 3593 bytes and varying dynamic page request
rates (up to 400 requests/sec) for a dataset size of 211
bytes. As shown in Fig. 7, the Apache server and IIS
server reach their capacity with increased response times
at 300 and 400 dynamic page requests/sec respectively,
but the bare PC server’s response times for these
workloads are stable. Similar behavior was observed with
connection times. We also measured the capacity of each
server for dynamic page requests corresponding to a given
static page request rate (for the above file and dataset
sizes). The results shown in Fig. 8 indicate that for all
static page request rates, the bare PC server has higher
capacity than the other two servers.

D. Dataset Size
The response and connection times shown in Fig. 9 and

Fig. 10 respectively correspond to fixing the dynamic
page request rate at 100 requests/sec for small (211 bytes),
medium (10,217 bytes) and large (19,248 bytes) dataset
sizes respectively. These results suggest that the bare PC
server will perform better than the Apache and IIS servers
for dynamic Web page requests irrespective of the dataset
size. The response and connection times for the bare PC
server with a varying dynamic page request rate for the
same (small, medium, and large) dataset sizes are shown
in Fig. 11 and Fig. 12 respectively. We found that for
dataset sizes up to about 10K bytes, the response and
connection times of the bare PC server are moderate for
all request rates. For larger dataset sizes (close to 20K
bytes), the connection time is large for all request rates
and the response time increases significantly when the
request rate exceeds 100 requests/sec. This behavior is to
be expected since the DB server has more data to send
when the dataset size is large. Again, the results suggest
that DB latency limits the performance of the bare PC
Web server.

E. Throughput
Fig. 13 shows server throughput with dynamic page

requests for a fixed dataset size of 211 bytes when the

497

request rate is varied. The bare PC server throughput
increases linearly until 900 requests/sec, whereas the
Apache and IIS server throughput increases linearly until
500 requests/sec; these rates are close to the respective
dynamic content capacities of the servers noted earlier.
Fig. 14 shows similar throughput behavior when the
workload consists of 1000 static page requests (file
size=3593 bytes) and a varying number of dynamic page
requests (dataset size=211 bytes). The bare PC, Apache
and IIS server throughput is linear up to 400, 200 and 300
dynamic page requests/sec respectively. In OS-based
servers, there is more overhead due to scheduling a large
number of threads, and maximum CPU utilization is
reached even for moderately large workloads.

If f and g are the file sizes, and r and s are the request
rates for dynamic and static page requests respectively,
since there are 3 ACKs per request sent by the server
(ACKs for SYN and GET, and the final ACK), the
expected server throughput is given by
 ,)3/()3/(sMSSghgrMSSfhf 3h3h

where h is the header overhead due to Ethernet, IP and
TCP; and MSS is the TCP maximum segment size. Table
1 shows the expected throughput for various dynamic and
static page request rates assuming a 211-byte dataset (plus
a 151-byte HTTP header) and a 3593-byte static page file.
The expected values are close to the measured bare PC
server throughput in Fig. 14 with 1000 static page
requests/sec and for dynamic requests rates up to 400
request/sec (the expected throughput is also close to the
measured throughput for the IIS and Apache servers up to
300 dynamic page requests/sec). The measured
throughput for dynamic page requests only (Fig. 13) is
much lower than the expected throughput due to DB
server latency.

TABLE 1
EXPECTED THROUGHPUT: DYNAMIC AND STATIC REQUESTS

F. Database Latency
The respective times for the handshake, connection,

tabular response, and disconnect phases of a bare PC DB
connection (Fig. 2) are shown in Fig. 15 for various
dataset sizes when making 100 dynamic page requests/sec.
Note that since the request rate is small, the handshake,
connection, and disconnection times are fairly stable but
the tabular response time increases significantly for larger
dataset sizes. Fig. 16 shows the time for handshake,

connection, tabular response, and disconnection phases
for a fixed dataset size of 211 bytes and varying request
rates. When the rate increases, all phases except for the
handshake incur moderately increased times due to the
increased load. The handshake time is the dominant
contributor to response time and it shows a larger increase
when the request rate increases from 300 request/sec to
600 requests/sec. This explains the difference in the
measured throughput in Fig. 13 and expected throughput
in Table 1.

V. CONCLUSION
The bare PC Web server exploits an OS-less

architecture to minimize the overhead when processing
dynamic and static requests. In particular, the novel server
design includes integration of lean network protocols,
efficient task scheduling, interrupt reduction, minimal data
copying, and direct hardware/driver interfaces. Our
experimental results indicate that the bare PC Web server
has significantly better performance and lower CPU
utilization than the Apache and IIS servers for workloads
consisting of requests for dynamic and static content.

REFERENCES
[1] T. Brecht, D. Pariag, and L. Gammo, “Accept()able strategies for
improving Web server performance,” Proc. Usenix 2004 Annual
Technical Conference, General Track, pp. 227–240, 2004.
[2] B. Ford, M. Hibler, J. Lepreau, J. R. McGrath, and P. Tullman,
“Interface and execution models in the Fluke kernel,” Proc. Third
Symposium on Operating Systems Design and Implementation, pp. 101-
115, 1999.
[3] G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceno, R.
Hunt, and T. Pinckney, “Fast and flexible application-level networking
on exokernel system,” ACM Transactions on Computer Systems, vol.
20, no. 1, pp. 49-83, Feb. 2002.
[4] L. He, R. K. Karne, A. L. Wijesinha, S. Girumala, and G. H.
Khaksari, “Design issues in a bare PC Web server,” Proc. SNPD 2006,
pp. 165-170, 2006.
[5] L. He, R. K. Karne, and A. L. Wijesinha, “The design and
performance of a bare PC Web server,” The International Journal of
Computers and Their Applications, vol. 15, no. 2, pp. 100-112, June
2008.
[6] http_load, http://www.acme.com/software/http_load
[7] SourceForge.net:httperf, http://sourceforge.net/projects/httperf
[8] The OSKit Project, http://www.cs.utah.edu/flux/oskit
[9] TinyOS Community Forum||An open-source OS for the networked
sensor regime, http://www.tinyos.net
[10] R. K. Karne, K. Venkatasamy, T. Ahmed, and N. Rosa, “DOSC:
Dispersed Operating System Computing,” Proc. OOPSLA 2005,
Onward Track, San Diego, CA, Oct. 2005.
[11] R. K. Karne, K. Venkatasamy, T. Ahmed, ”How to run C++
applications on a bare PC,” Proc. SNPD 2005, 6th ACIS International
Conference, Towson, MD, pp. 50-55, May 2005.
[12] R. K. Karne, R. Gattu, R. Dandu, X. Zhang, and J. Vodela,
“Application-oriented object architecture: a revolutionary approach,”
Poster Paper, 6th International Conference on High Performance
Computing, Bangalore, India, Dec. 2002.
[13] H. Kim, V. Pai, and S. Rixner, “Increasing web server throughput
with network interface data caching,” Proc. 10th International
Conference on Architectural support for programming languages and
operating systems, San Jose, California, pp. 239-250, Oct. 2002.
[14] E. Nahum, T. Barzilai, and D. D. Kandlur, “Performance issues in
WWW servers,” IEEE/ACM Transactions on Networking, vol. 10, no.1,
pp. 2-11, Feb. 2002.

 Dynamic Static Throughput
400 1000 33.4
300 1000 33.0
200 1000 32.5
100 1000 32.0
600 0 2.9
800 0 3.8

1000 0 4.8
0 6000 189.2

498

[15] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An efficient
and portable web server,” Proc. Usenix 1999 Annual Technical
Conference, pp. 199–212, Monterey, CA, June 1999.
[16] D. Pariag, T. Brecht, A. Harji, P. Buhr, and A. Shukla,
“Comparing the performance of Web server architectures,” Proc.
EuroSys ’07, pp. 231-243, Lisbon, Portugal, Mar. 2007.

[17] L. Titchkosky, M. Arlitt, and C. Williamson, “A. performance
comparison of dynamic Web technologies,” ACM Sigmetrics
Performance Evaluation Review, vol. 31, no. 3, pp. 2-11, 2003.

 Fig. 3. Response Time: Static Requests Fig. 4. Connection Time: Static Requests Fig. 5. Response Time: Dynamic Requests

 Fig. 6. Connection Time: Dynamic Requests Fig. 7. Response Time: Dynamic and Static Requests Fig. 8. Dynamic vs. Static Request Rates

 Fig. 9. Response Time vs Dataset Size Fig. 10. Connection Time vs Dataset Size Fig. 11. Bare PC Response Time

 Fig 12. Bare PC Connection Time Fig. 13. Throughput: Dynamic Requests Fig. 14. Throughput: Dynamic and Static Requests

 Fig. 15. Database Latency vs. Dataset Size Fig. 16. Database Latency vs. Dynamic Request Rate

0
0.4
0.8
1.2
1.6

100 Dynamic Requests/s 300 Dynamic Requests/s
Dataset 211 Bytes 600 Dynamic Requests/s

Time (ms)

Handshake Connection Tabular Response Disconnection

0
0.3 0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7

Data Size 211 Bytes Data Size 10217 Bytes
100 Dynamic Requests/s Data Size 19248 Bytes

Time (ms)

Handshake Connection Tabular Response Disconnection

18
20
22
24
26
28
30

100 150 200 250 300 350 400
Requests/s, 1000 Static Requests/s, File Size 3593 Bytes, Dataset 211 Bytes

Throughput (Mbps)

Bare PC Apach IIS

0
200
400
600
800

1000
1200
1400
1600

0 200 400 600 800 1000
Request/s, Dataset 211 Bytes

Throughput (Kbps)

Bare PC Apach IIS

0
5

10
15
20
25
30
35

0 40 80 120 160 200
Requests/s

Connection Time (ms)

Dataset 211 Bytes Dataset 10217 Bytes Dataset 19248 Bytes

0 2 4 6 8
10 12 14 16 18

0 40 80 120 160 200
Requests/s

Response Time (ms)

Dataset 211 Bytes Dataset 10217 Bytes Dataset 19248 Bytes

0
10
20
30
40
50

0 5000 10000 15000 20000
Dataset (Bytes), 100 Requests/s

Connection Time (ms)

Bare PC Apach IIS

0

2

4

6

8

10

0 5000 10000 15000 20000
 Dataset (bytes)
100 Dynamic Requests/s

Response Time (ms)

Bare PC Apach IIS

0
1
2
3
4
5
6
7
8

0 100 200 300 400
Requests/s, Dataset 211 Bytes

Connection Time (ms)

Bare PC Apache IIS

0
100
200
300
400
500
600

100 150 200 250 300 350 400
1000 Static Requests/s, File Size 3593 Bytes, Dataset 211 Bytes

Response Time (ms)

Bare PC Apach IIS

200
300
400
500
600
700

0 200 400 600 800 1000
Static Requests/s, File Size 3593 Bytes

Dynamic Requests/s (Dataset 211 Bytes)

Bare PC Apach IIS

0
0.5

1
1.5

2
2.5

3

0 400 800 1200 1600 2000
Requests/s, File Size 3593 Bytes

Response Time (ms)

Bare PC IIS

0
0.2
0.4
0.6
0.8

0 400 800 1200 1600 2000
Requests/s, File Size 3593 Bytes

Connection Time (ms)

Bare PC IIS

0
2
4
6
8

0 100 200 300 400
Requests/s, Dataset 211 Bytes

Response Time (ms)

Bare PC Apach IIS

499

