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Abstract—A bare PC is an ordinary computer that runs 
applications without an operating system (OS). It thus provides 
immunity from attacks that target specific OS vulnerabilities 
while eliminating the OS overhead in a conventional system. 
We describe a novel implementation of TLS that runs on a 
bare PC. The TLS implementation differs from a conventional 
TLS implementation in that it is included within a bare PC 
application that manages its own CPU tasks, directly interfaces 
to the hardware, and communicates with network protocols 
without using a standard socket interface. Furthermore, the 
unique software architecture of a bare PC enables the TLS, 
TCP, and application protocols to be intertwined, thereby 
reducing the communication overhead compared to that of a 
conventional system. As an example, we give details of the 
internal architecture of a bare PC TLS Web server. We then 
illustrate intertwining of the TLS, TCP, and HTTP protocols. 
In particular, we show how a state transition model that 
represents events and actions in the TLS Web server is used to 
develop the intertwined protocol code. We also discuss the 
testing methodology, note some challenges with respect to 
implementing TLS on a bare PC, and outline the measures 
taken to address them. 

Keywords- Bare PC, Application Object (AO), protocol 
intertwining, Transport Layer Security(TLS), Web server.  

I.  INTRODUCTION 

TLS (Transport Layer Security) is a widely used protocol 
for securing network communications on the Internet. 
Conventional implementations of TLS require the support of 
an Operating System (OS) or OS-kernel. This paper 
describes a novel implementation of the TLS protocol on a 
bare PC, which is an ordinary desktop or laptop computer 
that can run applications directly over the hardware (without 
using any form of an OS or OS kernel). In a bare PC, the 
minimal operating environment necessary for an application 
to execute on given hardware is included in the application 
itself.  

The bare PC TLS implementation differs from a 
conventional TLS implementation in many ways. The main 
difference is that in a bare PC, the TLS, TCP, and application 
protocols are tightly coupled via protocol intertwining, which 
reduces communication overhead compared to that of a 
conventional system with an OS-controlled protocol stack. 
Other differences relate to the management of underlying 
CPU tasks by the bare PC application and the absence of a 
standard socket interface for network communication.  

In particular, we consider the implementation of a bare 
PC TLS Web server and provide details of its software 
architecture and implementation. We also illustrate protocol 
intertwining with respect to the TLS, TCP, and HTTP 
protocols. 

A discussion of the tradeoffs in using a bare PC versus an 
OS-based system to run applications is not within the scope 
of this paper. However, two advantages of a bare PC system 
may be noted. First, a bare PC, which does not use an OS, 
cannot be compromised by attacks that target vulnerabilities 
of a specific OS. Moreover, the self-contained bare PC code 
is smaller, simpler, and easier to analyze for security flaws 
than the code in an OS-based system. Second, bare PC 
applications perform better than their OS counterparts due to 
the elimination of OS overhead.  

The rest of this paper is organized as follows. In Section 
II, we provide a brief overview of bare machine computing. 
In Section III, we review related work. In Section IV, we 
describe the implementation of TLS on a bare PC, using the 
example of a TLS Web server. We also discuss protocol 
intertwining, the testing methodology, and some challenges 
associated with implementing TLS on a bare PC. In Section 
V, we present the conclusion.  

II. OVERVIEW OF A BARE PC SYSTEM 

A bare PC runs a single Application Object (AO) [1] that 
contains a given small set of applications (usually one or 
two). Each AO, which resides on a portable storage medium 
such as a USB flash drive, is completely self-contained and 
has the necessary code to boot and execute on IA32 (Intel 
32-bit) CPUs (it can also currently run in 32-bit mode on a 
64-bit processor). The AO includes C++ interfaces to the 
hardware [2] and its own device drivers such as those for 
network interface cards/on-board chips and audio hardware 
if needed by the application. A simple menu-driven interface 
is available for configuring the AO.  

Bare PC and OS-based systems differ significantly with 
respect to system call handling, API design, networking and 
user interfaces, memory, file, and process/task management, 
exception handling, and program loading, initiation and 
termination. In essence, data and control flow in a bare PC 
application are tightly coupled since the AO encapsulates the 
necessary protocols, operating environment (including 
interfaces to the hardware), and application logic. Thus, the 
AO programmer manages CPU and memory as there is no 
OS. Examples of bare PC applications include an HTTP-only 



(i.e., non-TLS) Web server [3], email server [4], and VoIP 
softphone [5]. 

III.  RELATED WORK 

The latest version of the TLS specification is TLS 
Version 1.2 [6]. The main differences between this version 
and TLS Version 1.1 [7], which we have implemented, relate 
to the replacement of the SHA-1 and MD5 protocols with 
SHA256 due to the security weaknesses of the former. The 
current TLS version also allows a new cryptographic 
operation known as authenticated encryption with additional 
data encryption (AEAD). In [8] and [9] respectively, use of 
the HTTP/1.1 upgrade mechanism to initiate a secure 
connection on port 80, and HTTP over TLS with port 443 as 
the default are documented.   

Many implementations of TLS are based on OpenSSL 
[10], which is a comprehensive TLS toolkit that runs on OS-
based systems. In contrast, a small functional 
implementation of TLS whose goal is cryptographic 
verification is described in [11]. While their TLS server, like 
ours, is shown to interoperate with popular browsers, it 
implements an earlier version of TLS (1.0), and executes on 
.NET, which is an OS-based environment.     

Most of the previous work on TLS is primarily concerned 
with improving performance. In [12], performance of a TLS 
Web server is improved by an operating system extension 
implemented in OpenBSD that reduces system calls, context 
switching, and data copying. The bare PC implementation 
also eliminates system calls and OS-related overhead, and 
allows all protocol layers to manipulate a single copy of the 
data (i.e., with zero data copying), but there is no OS present. 
The detailed study of TLS performance in [13] shows that 
RSA operations dominate cost, and that optimization efforts 
should focus on the TLS handshake phase as opposed to the 
data transfer phase. In [14], a technique to reduce server load 
by assigning expensive handshake operations to the client is 
described. Such techniques are designed and tested in OS-
based systems and require many facilities provided by the 
OS. For example, hardware accelerators that are frequently 
used to improve TLS performance [13] require OS support. 
TLS on a bare PC system can be likewise optimized, but 
optimizations must be handled by the application since there 
is no OS. Since our current TLS implementation does not 
include such performance enhancements, we do not discuss 
bare PC TLS performance in this paper. 

IV. TLS IMPLEMENTATION 

A. Adapting the  TLS Protocol 

TLS on a bare PC is based on TLS Version 1.1 and 
currently supports AES encryption (with CBC block cipher 
mode), RSA key exchange, and a few essential alert 
messages including close notify. Since TLS on a bare PC 
always runs as part of an application that is encapsulated 
within an AO, it is easier and more convenient to describe 
TLS in the context of a specific application. In this paper, we 
only focus on the TLS implementation for a bare PC Web 
server. We do not consider a bare PC TLS client 
implementation.  

We first give a brief overview of TLS in the context of 
the bare PC Web server. A detailed specification of TLS is 
given in [6, 7]. TLS consists of four protocols: Handshake 
Protocol, Alert Protocol, Change Cipher Spec Protocol, and 
the Record Protocol. TLS consists of two layers, where the 
first three protocols run on the Record Protocol, which itself 
runs on TCP. Application protocols such as HTTP, if 
protected by TLS, also run on the Record Protocol. TLS 
provides encryption, data integrity, and authentication of 
peer identity. The Alert Protocol comprises several messages 
that are classified as fatal or warning, and serve to handle 
errors or provide notifications. Alert messages are encrypted. 
The Change Cipher Spec Protocol uses a single encrypted 1-
byte message with value 1 before using the newly negotiated 
security parameters.  

TLS Version 1.1 also defines a secure pseudo-random 
function (PRF) that XORs a pair of data expansion functions 
based on HMAC with SHA-1 and MD5 as the underlying 
hash functions. The PRF produces any desired number of 
bytes and is used in generating the master secret from the 
exchanged premaster secret; encryption keys and MAC 
secrets for read and write operations; and the finished 
message. The Handshake Protocol is used to negotiate 
security parameters and set up a shared master secret. It 
establishes a TLS session that enables the application to 
securely exchange data over a TLS connection. Since session 
establishment is expensive, new connections may be set up 
within an existing session.  

The TLS Handshake Protocol begins with an exchange of 
respective hello messages between the client and server. 
These hello messages are used to negotiate the key 
exchange, encryption and MAC algorithms to be used. The 
bare PC Web server supports only specific algorithms as 
noted above and requests for alternates are rejected. Next, 
the server sends its RSA certificate and the hello done 
message. The client then sends an RSA-encrypted premaster 
secret, which is processed by the server to compute the 
master secret and encryption and MAC keys. The handshake 
terminates with the exchange of the respective change cipher 
spec and finished messages by client and server. The finished 
messages, which are encrypted and authenticated, enable the 
client and server to verify that the security parameters 
established during the handshake are correct. Following the 
handshake, HTTP messages are fragmented into records of at 
most 214 bytes that are AES-encrypted along with the MAC. 
An explicit per-record IV, CBC mode, and padding are used 
to protect the application data as specified in TLS Version 
1.1. Application data is not compressed.  

B. TLS Web Server Architecture 

Fig. 1 shows the internals of the bare PC HTTP/TLS 
architecture for a Web server AO including the relevant 
handlers, objects, and CPU tasks. For ease of reference, each 
block in this figure is assigned a numeric label. Since our 
focus in this paper is on the TLS implementation on a bare 
PC, we do not provide a detailed description of other 
protocols or the Ethernet NIC driver that are needed by the 
Web server. We also omit details of upper-level processing 
that is different depending on whether a request is for a static 



or dynamic Web page. For details concerning the design, 
implementation, and performance of a HTTP
Web server (without TLS), see [3].  

The single Web server AO residing 
mass storage device, encapsulates the 
application, the necessary protocols including TLS, the 
network interface card (NIC) driver, and 
code used to start the bare PC (1) and launch 
Since there is no OS in a bare PC, the NIC Driver (20) and 
its interfaces are directly accessible to the 

When the AO is loaded, it starts the Main Task (2). This
task, which runs whenever no other tasks are running in t
machine, selects the next task to be run (3) through its 
multiplexor logic (4). For example, the 
Receive Task (RCV) when an incoming packet (that has 
arrived on the link) has been placed in 
network interface hardware. Other tasks in this system 
include TLS Handshake tasks and HTTP tasks.

When the Receive Task runs, it reads the 
Ethernet buffer (19). If the packet contains a HTTP/
request, the respective Ethernet, IP, TCP
(17) process the packet in a single thread of execution 
update the state in the TCP Table (TCB) (23).  The TCB acts 
as a centralized state controller for all requests in the system. 
When the Web server AO is designed, the 
does not include any delay in the above single thread of 
execution to process the packet. During this thread, a request 
may also send a response such as an ACK to the client.  
Once the received packet is processed and the appropriate 
response is sent, the Receive Task returns control back to the 
Main Task. 

However, as described previously, before the application 
data can be protected by TLS, the TLS handshake protocol 
must be used to establish the security parameters for a TLS 
session between a client and the server. 
connection to port 443 is established 
connection as specified in [11]), a TLS Task is popped from 
the TLS Task Stack (7) and inserted into a circular list (5). 
This TLS Task, which runs when it is scheduled
Task, is only used for handshake messages
handshake is completed, the task will be returned to its stack 
pool (7). The entire TLS handshake process is modeled as a 
State Transition Diagram (STD) (12), which is part of the 
TLS Object (10). This object contains the necessary logic to 
perform all TLS operations. 

After the TLS handshake is completed, a TLS flag will 
be set for a given TLS connection. This connection is 
terminated as usual when a TLS close_notify alert
the client is received (for a specification of server behavior 
related to incomplete closures, see [11]). Once a TL
connection is established, if a message containing 
by the client is received, it will be processed by the 
respective handlers (17). The TCP handler
services of the TLS handler to decrypt (15)
the packet. If the message contains a GET command, an 
HTTP Task will be popped from the HTTP Task Stack (6) 
and inserted into the circular list (5). This HTTP Task will 
run when it is scheduled by the Main Task. The HTTP Task 
processes the GET request, encrypts 
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HTTP-only bare PC 
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does not include any delay in the above single thread of 
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pool (7). The entire TLS handshake process is modeled as a 
State Transition Diagram (STD) (12), which is part of the 
TLS Object (10). This object contains the necessary logic to 

After the TLS handshake is completed, a TLS flag will 
be set for a given TLS connection. This connection is 
terminated as usual when a TLS close_notify alert sent by 
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ted to incomplete closures, see [11]). Once a TLS 
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HTTP Task will be popped from the HTTP Task Stack (6) 
and inserted into the circular list (5). This HTTP Task will 
run when it is scheduled by the Main Task. The HTTP Task 

the GET request, encrypts the HTTP packet 

containing the response data (14)
sends the packet. This is also done using 
execution (17). The HTTP handler (18) 
that processes the GET request
handler. The latter requests the TLS handler to perform the 
necessary cryptographic operations.
returned to the TCP handler, which invokes the lower layer 
handlers (17) to send the packet. 

Since outgoing data may require many packets with 
associated round-trip delays for each packet, this process will 
suspend for a period of time and return control to the Main 
Task after its single thread of execution. If a round
expires, or an ACK arrives, this proc
The process ends when all the data has been sent 
successfully to the client and its task will be returned to the 
HTTP Task Stack (6) upon completion. There can be a pool 
of TLS tasks (8) and HTTP tasks (9) running in the system at 
any given time. The HTTP Task uses the HTTP Object (11) 
and the associated STD (13) to implement its logic.

 

Figure 1.  Bare PC TLS architecture for a Web server

C. Protocol Intertwining 

The bare PC TLS architectu
coupling between the data and
which enables protocols, operating environment, and
application logic to be encapsulated 
monolithic AO. In particular, the TCP handshake is 
intertwined with the TLS handshake, while 
and HTTP protocols are intertwined during the processing 
and transfer of encrypted data, and again during the closing. 
This intertwining is represented in the integrated message 
exchange for these protocols shown in Fig. 2
of an OS, the application itself controls the underlying CPU 

containing the response data (14), attaches the MAC, and 
. This is also done using a single thread of 
The HTTP handler (18) contains the code 

GET request and gives it to the TCP 
the TLS handler to perform the 

necessary cryptographic operations. After this, the packet is 
to the TCP handler, which invokes the lower layer 

handlers (17) to send the packet.  
may require many packets with 

trip delays for each packet, this process will 
suspend for a period of time and return control to the Main 
Task after its single thread of execution. If a round-trip timer 
expires, or an ACK arrives, this process will be resumed. 
The process ends when all the data has been sent 
successfully to the client and its task will be returned to the 
HTTP Task Stack (6) upon completion. There can be a pool 
of TLS tasks (8) and HTTP tasks (9) running in the system at 

given time. The HTTP Task uses the HTTP Object (11) 
and the associated STD (13) to implement its logic.  

 
Bare PC TLS architecture for a Web server. 

The bare PC TLS architecture in Fig. 1 exhibits tight 
data and control flow of an application, 

protocols, operating environment, and 
application logic to be encapsulated within a single 
monolithic AO. In particular, the TCP handshake is 
intertwined with the TLS handshake, while the TCP, TLS, 

are intertwined during the processing 
and transfer of encrypted data, and again during the closing. 
This intertwining is represented in the integrated message 

these protocols shown in Fig. 2. In the absence 
of an OS, the application itself controls the underlying CPU 



tasks, while protocols that are implemented as part of the 
application communicate directly via their associated 
handlers.  

During the design phase, the protocol intertwining show
in Fig. 2 and the corresponding events/actions were modeled 
using a state transition diagram. In case of 
handshake messages, there are three states TLS_START, 
SR_CLNT_HELLO, and SR_KEY_EXCH
these states and the associated events/act
transition diagram was used to develop the code for the TLS 
handshake. As an example, the C++ implementation of the 
SR_CLNT_HELLO state in Fig. 4 contains 
illustrates intertwining with TCP. 

Figure 2.  Intertwined protocol message excha
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application communicate directly via their associated 

col intertwining shown 
corresponding events/actions were modeled 

diagram. In case of the TLS 
handshake messages, there are three states TLS_START, 
SR_CLNT_HELLO, and SR_KEY_EXCH. Fig. 3 shows 
these states and the associated events/actions. The state 
transition diagram was used to develop the code for the TLS 
handshake. As an example, the C++ implementation of the 

contains TLS code that 

 
Intertwined protocol message exchange. 

Figure 3.  Bare PC TLS handshake states and events.

D. Testing 

The bare PC TLS Web server implementation 
with different file sizes and for a variety of client/server 
interactions using both the Internet Explorer and Firefox 
Web browsers. The exchanged 
using Wireshark during the TLS handshake and the 
subsequent TLS-protected data transfer. The relevant data 
was then compared against data obtained for identical 
browser transactions with Web servers running on Linux and 
Windows to identify possible problems. We also 
and validated the intertwined protocol states to ensure 
desired behavior during the various phases of TLS operation
These tests verified interoperability of 
server with both browsers.  
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case TLS_START:  //2001        
  if  ((tcp.getTCBState(tcbrno) == ESTAB) &           

       (tcp.getTCBPacketArrived(tcbrno) == 1)) //client hello 
 { 

  tcp.resetTCBPacketArrived(tcbrno); 
  m1 = tcp.getTCBMsgPtr(tcbrno, length); //get pointer   

  flag = processMessage(m1);  //process message 
  for(int i=0; i <32; i++) //client_hello random bytes 11-43 

    clientHello[i] = m1[11+i]; 
  for(i=0; i < 135; i++)  

    clientHelloNoRecord[i] = m1[5+i]; //capture client hello 
  if (flag==0) 

  { 
  formatTLSPacket(m2, tls1);//format outgoing packet 

  assignIntToChar(randTime, tls1->sh.rand.GMTTime, 0);//time     
  for (j =0; j < 28; j++) 

     randBytes[j] = tls1->sh.rand.random_bytes[j]; 
  for (j =0; j < 868; j++) 

     serverMessagesNoRecord[j] = m2[j + 5];  
//server hello, certificate, and server hello done  

  messageSize = 873; 
  retcode = tcp.updateTCBEntry 

  (tcbrno, (unsigned long)m2, messageSize, 0);  
 //update file size and pointer in the TCB     

  retcode = tcp.setTCBTempFlag  
  (tcbrno, TPUSH|TACK); //flags  

  retcode = tcp.setTCBTempSeqNum 
  (tcbrno, tcp.getTCBSNDNXT(tcbrno));//set seqnum  

  retcode = tcp.TLSSendN(tcbrno); //send message 
  retcode = tcp.setTCBSNDNXT(tcbrno, messageSize); 

  statec = SR_KEY_EXCH;  //Go to next state  
  retcode = tcp.setTCBTLSState(tcbrno, statec); //save the state  

  statec = tcp.getTCBTLSState(tcbrno);     
 } //end of flag==0  

} //end of flag arrived and estab    
break; 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  TLS code with protocol intertwining. 

E. Challenges 

The main challenges in implementing TLS on a bare PC 
stem from the inability to used OS-based components, 
libraries, and tools in software development on a bare PC. 
Application development on a bare PC is more tedious since 
standard support tools, debuggers, and environments are OS-
dependent and cannot be used. Also, each application 
program inherits execution knowledge, which requires the 
AO programmer to be involved in the systems aspects of 
programming including resource and task management. 
Some challenges and the measures taken to address them are 
as follows: 

1. testing and verifying operational correctness of 
cryptographic algorithms and protocols: we 
developed a Windows-based TLS tool for 
validating algorithms and protocol states. 

2. generating certificates and verifying signatures: we 
developed a certificate tool for generating RSA 
keys, and constructing and signing X.509 
certificates.   

3. managing and allocating memory dynamically 
from within the AO, including the memory 

required for RSA calculations: we developed a 
memory management module for dynamic memory 
allocation. 

V. CONCLUSION 

The design and implementation of TLS on a bare PC 
differs significantly from the usual OS-based implementation 
that relies on a conventional TCP/IP stack. The streamlined 
software architecture enables the direct self-management of 
tasks by the TLS Web server application and facilitates 
efficient communication between the TLS, TCP and HTTP 
protocols by intertwining. A state transition diagram served 
as the basis to develop the intertwined protocol code. The 
TLS Web server implementation was tested and verified, and 
found to interoperate correctly with popular browsers. 
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