
Implementing the TLS Protocol on a Bare PC

A. Emdadi, R. Karne, and A. L. Wijesinha
Department of Computer & Information Sciences

Towson University
Towson, MD 21252

{aemdadi, rkarne, awijesinha}@towson.edu

Abstract—A bare PC is an ordinary computer that runs
applications without an operating system (OS). It thus provides
immunity from attacks that target specific OS vulnerabilities
while eliminating the OS overhead in a conventional system.
We describe a novel implementation of TLS that runs on a
bare PC. The TLS implementation differs from a conventional
TLS implementation in that it is included within a bare PC
application that manages its own CPU tasks, directly interfaces
to the hardware, and communicates with network protocols
without using a standard socket interface. Furthermore, the
unique software architecture of a bare PC enables the TLS,
TCP, and application protocols to be intertwined, thereby
reducing the communication overhead compared to that of a
conventional system. As an example, we give details of the
internal architecture of a bare PC TLS Web server. We then
illustrate intertwining of the TLS, TCP, and HTTP protocols.
In particular, we show how a state transition model that
represents events and actions in the TLS Web server is used to
develop the intertwined protocol code. We also discuss the
testing methodology, note some challenges with respect to
implementing TLS on a bare PC, and outline the measures
taken to address them.

Keywords- Bare PC, Application Object (AO), protocol
intertwining, Transport Layer Security(TLS), Web server.

I. INTRODUCTION

TLS (Transport Layer Security) is a widely used protocol
for securing network communications on the Internet.
Conventional implementations of TLS require the support of
an Operating System (OS) or OS-kernel. This paper
describes a novel implementation of the TLS protocol on a
bare PC, which is an ordinary desktop or laptop computer
that can run applications directly over the hardware (without
using any form of an OS or OS kernel). In a bare PC, the
minimal operating environment necessary for an application
to execute on given hardware is included in the application
itself.

The bare PC TLS implementation differs from a
conventional TLS implementation in many ways. The main
difference is that in a bare PC, the TLS, TCP, and application
protocols are tightly coupled via protocol intertwining, which
reduces communication overhead compared to that of a
conventional system with an OS-controlled protocol stack.
Other differences relate to the management of underlying
CPU tasks by the bare PC application and the absence of a
standard socket interface for network communication.

In particular, we consider the implementation of a bare
PC TLS Web server and provide details of its software
architecture and implementation. We also illustrate protocol
intertwining with respect to the TLS, TCP, and HTTP
protocols.

A discussion of the tradeoffs in using a bare PC versus an
OS-based system to run applications is not within the scope
of this paper. However, two advantages of a bare PC system
may be noted. First, a bare PC, which does not use an OS,
cannot be compromised by attacks that target vulnerabilities
of a specific OS. Moreover, the self-contained bare PC code
is smaller, simpler, and easier to analyze for security flaws
than the code in an OS-based system. Second, bare PC
applications perform better than their OS counterparts due to
the elimination of OS overhead.

The rest of this paper is organized as follows. In Section
II, we provide a brief overview of bare machine computing.
In Section III, we review related work. In Section IV, we
describe the implementation of TLS on a bare PC, using the
example of a TLS Web server. We also discuss protocol
intertwining, the testing methodology, and some challenges
associated with implementing TLS on a bare PC. In Section
V, we present the conclusion.

II. OVERVIEW OF A BARE PC SYSTEM

A bare PC runs a single Application Object (AO) [1] that
contains a given small set of applications (usually one or
two). Each AO, which resides on a portable storage medium
such as a USB flash drive, is completely self-contained and
has the necessary code to boot and execute on IA32 (Intel
32-bit) CPUs (it can also currently run in 32-bit mode on a
64-bit processor). The AO includes C++ interfaces to the
hardware [2] and its own device drivers such as those for
network interface cards/on-board chips and audio hardware
if needed by the application. A simple menu-driven interface
is available for configuring the AO.

Bare PC and OS-based systems differ significantly with
respect to system call handling, API design, networking and
user interfaces, memory, file, and process/task management,
exception handling, and program loading, initiation and
termination. In essence, data and control flow in a bare PC
application are tightly coupled since the AO encapsulates the
necessary protocols, operating environment (including
interfaces to the hardware), and application logic. Thus, the
AO programmer manages CPU and memory as there is no
OS. Examples of bare PC applications include an HTTP-only

(i.e., non-TLS) Web server [3], email server [4], and VoIP
softphone [5].

III. RELATED WORK

The latest version of the TLS specification is TLS
Version 1.2 [6]. The main differences between this version
and TLS Version 1.1 [7], which we have implemented, relate
to the replacement of the SHA-1 and MD5 protocols with
SHA256 due to the security weaknesses of the former. The
current TLS version also allows a new cryptographic
operation known as authenticated encryption with additional
data encryption (AEAD). In [8] and [9] respectively, use of
the HTTP/1.1 upgrade mechanism to initiate a secure
connection on port 80, and HTTP over TLS with port 443 as
the default are documented.

Many implementations of TLS are based on OpenSSL
[10], which is a comprehensive TLS toolkit that runs on OS-
based systems. In contrast, a small functional
implementation of TLS whose goal is cryptographic
verification is described in [11]. While their TLS server, like
ours, is shown to interoperate with popular browsers, it
implements an earlier version of TLS (1.0), and executes on
.NET, which is an OS-based environment.

Most of the previous work on TLS is primarily concerned
with improving performance. In [12], performance of a TLS
Web server is improved by an operating system extension
implemented in OpenBSD that reduces system calls, context
switching, and data copying. The bare PC implementation
also eliminates system calls and OS-related overhead, and
allows all protocol layers to manipulate a single copy of the
data (i.e., with zero data copying), but there is no OS present.
The detailed study of TLS performance in [13] shows that
RSA operations dominate cost, and that optimization efforts
should focus on the TLS handshake phase as opposed to the
data transfer phase. In [14], a technique to reduce server load
by assigning expensive handshake operations to the client is
described. Such techniques are designed and tested in OS-
based systems and require many facilities provided by the
OS. For example, hardware accelerators that are frequently
used to improve TLS performance [13] require OS support.
TLS on a bare PC system can be likewise optimized, but
optimizations must be handled by the application since there
is no OS. Since our current TLS implementation does not
include such performance enhancements, we do not discuss
bare PC TLS performance in this paper.

IV. TLS IMPLEMENTATION

A. Adapting the TLS Protocol

TLS on a bare PC is based on TLS Version 1.1 and
currently supports AES encryption (with CBC block cipher
mode), RSA key exchange, and a few essential alert
messages including close notify. Since TLS on a bare PC
always runs as part of an application that is encapsulated
within an AO, it is easier and more convenient to describe
TLS in the context of a specific application. In this paper, we
only focus on the TLS implementation for a bare PC Web
server. We do not consider a bare PC TLS client
implementation.

We first give a brief overview of TLS in the context of
the bare PC Web server. A detailed specification of TLS is
given in [6, 7]. TLS consists of four protocols: Handshake
Protocol, Alert Protocol, Change Cipher Spec Protocol, and
the Record Protocol. TLS consists of two layers, where the
first three protocols run on the Record Protocol, which itself
runs on TCP. Application protocols such as HTTP, if
protected by TLS, also run on the Record Protocol. TLS
provides encryption, data integrity, and authentication of
peer identity. The Alert Protocol comprises several messages
that are classified as fatal or warning, and serve to handle
errors or provide notifications. Alert messages are encrypted.
The Change Cipher Spec Protocol uses a single encrypted 1-
byte message with value 1 before using the newly negotiated
security parameters.

TLS Version 1.1 also defines a secure pseudo-random
function (PRF) that XORs a pair of data expansion functions
based on HMAC with SHA-1 and MD5 as the underlying
hash functions. The PRF produces any desired number of
bytes and is used in generating the master secret from the
exchanged premaster secret; encryption keys and MAC
secrets for read and write operations; and the finished
message. The Handshake Protocol is used to negotiate
security parameters and set up a shared master secret. It
establishes a TLS session that enables the application to
securely exchange data over a TLS connection. Since session
establishment is expensive, new connections may be set up
within an existing session.

The TLS Handshake Protocol begins with an exchange of
respective hello messages between the client and server.
These hello messages are used to negotiate the key
exchange, encryption and MAC algorithms to be used. The
bare PC Web server supports only specific algorithms as
noted above and requests for alternates are rejected. Next,
the server sends its RSA certificate and the hello done
message. The client then sends an RSA-encrypted premaster
secret, which is processed by the server to compute the
master secret and encryption and MAC keys. The handshake
terminates with the exchange of the respective change cipher
spec and finished messages by client and server. The finished
messages, which are encrypted and authenticated, enable the
client and server to verify that the security parameters
established during the handshake are correct. Following the
handshake, HTTP messages are fragmented into records of at
most 214 bytes that are AES-encrypted along with the MAC.
An explicit per-record IV, CBC mode, and padding are used
to protect the application data as specified in TLS Version
1.1. Application data is not compressed.

B. TLS Web Server Architecture

Fig. 1 shows the internals of the bare PC HTTP/TLS
architecture for a Web server AO including the relevant
handlers, objects, and CPU tasks. For ease of reference, each
block in this figure is assigned a numeric label. Since our
focus in this paper is on the TLS implementation on a bare
PC, we do not provide a detailed description of other
protocols or the Ethernet NIC driver that are needed by the
Web server. We also omit details of upper-level processing
that is different depending on whether a request is for a static

or dynamic Web page. For details concerning the design,
implementation, and performance of a HTTP
Web server (without TLS), see [3].

The single Web server AO residing
mass storage device, encapsulates the
application, the necessary protocols including TLS, the
network interface card (NIC) driver, and
code used to start the bare PC (1) and launch
Since there is no OS in a bare PC, the NIC Driver (20) and
its interfaces are directly accessible to the

When the AO is loaded, it starts the Main Task (2). This
task, which runs whenever no other tasks are running in t
machine, selects the next task to be run (3) through its
multiplexor logic (4). For example, the
Receive Task (RCV) when an incoming packet (that has
arrived on the link) has been placed in
network interface hardware. Other tasks in this system
include TLS Handshake tasks and HTTP tasks.

When the Receive Task runs, it reads the
Ethernet buffer (19). If the packet contains a HTTP/
request, the respective Ethernet, IP, TCP
(17) process the packet in a single thread of execution
update the state in the TCP Table (TCB) (23). The TCB acts
as a centralized state controller for all requests in the system.
When the Web server AO is designed, the
does not include any delay in the above single thread of
execution to process the packet. During this thread, a request
may also send a response such as an ACK to the client.
Once the received packet is processed and the appropriate
response is sent, the Receive Task returns control back to the
Main Task.

However, as described previously, before the application
data can be protected by TLS, the TLS handshake protocol
must be used to establish the security parameters for a TLS
session between a client and the server.
connection to port 443 is established
connection as specified in [11]), a TLS Task is popped from
the TLS Task Stack (7) and inserted into a circular list (5).
This TLS Task, which runs when it is scheduled
Task, is only used for handshake messages
handshake is completed, the task will be returned to its stack
pool (7). The entire TLS handshake process is modeled as a
State Transition Diagram (STD) (12), which is part of the
TLS Object (10). This object contains the necessary logic to
perform all TLS operations.

After the TLS handshake is completed, a TLS flag will
be set for a given TLS connection. This connection is
terminated as usual when a TLS close_notify alert
the client is received (for a specification of server behavior
related to incomplete closures, see [11]). Once a TL
connection is established, if a message containing
by the client is received, it will be processed by the
respective handlers (17). The TCP handler
services of the TLS handler to decrypt (15)
the packet. If the message contains a GET command, an
HTTP Task will be popped from the HTTP Task Stack (6)
and inserted into the circular list (5). This HTTP Task will
run when it is scheduled by the Main Task. The HTTP Task
processes the GET request, encrypts

or dynamic Web page. For details concerning the design,
HTTP-only bare PC

 on a bootable USB
ates the Web server

application, the necessary protocols including TLS, the
driver, and the load and boot
(1) and launch the application.

, the NIC Driver (20) and
its interfaces are directly accessible to the application.

rts the Main Task (2). This
uns whenever no other tasks are running in the

selects the next task to be run (3) through its
multiplexor logic (4). For example, the Main Task runs the

when an incoming packet (that has
arrived on the link) has been placed in memory by the

Other tasks in this system
include TLS Handshake tasks and HTTP tasks.

s the packet from the
If the packet contains a HTTP/TLS

et, IP, TCP, and TLS Handlers
(17) process the packet in a single thread of execution and
update the state in the TCP Table (TCB) (23). The TCB acts
as a centralized state controller for all requests in the system.
When the Web server AO is designed, the AO programmer
does not include any delay in the above single thread of
execution to process the packet. During this thread, a request
may also send a response such as an ACK to the client.
Once the received packet is processed and the appropriate

is sent, the Receive Task returns control back to the

However, as described previously, before the application
data can be protected by TLS, the TLS handshake protocol

to establish the security parameters for a TLS
 Thus, after the TCP
 (requesting a TLS

, a TLS Task is popped from
into a circular list (5).

is scheduled by the Main
is only used for handshake messages; when the

handshake is completed, the task will be returned to its stack
pool (7). The entire TLS handshake process is modeled as a
State Transition Diagram (STD) (12), which is part of the
TLS Object (10). This object contains the necessary logic to

After the TLS handshake is completed, a TLS flag will
be set for a given TLS connection. This connection is
terminated as usual when a TLS close_notify alert sent by

is received (for a specification of server behavior
ted to incomplete closures, see [11]). Once a TLS

a message containing data sent
, it will be processed by the
The TCP handler invokes the

(15) and authenticate
If the message contains a GET command, an

HTTP Task will be popped from the HTTP Task Stack (6)
and inserted into the circular list (5). This HTTP Task will
run when it is scheduled by the Main Task. The HTTP Task

the GET request, encrypts the HTTP packet

containing the response data (14)
sends the packet. This is also done using
execution (17). The HTTP handler (18)
that processes the GET request
handler. The latter requests the TLS handler to perform the
necessary cryptographic operations.
returned to the TCP handler, which invokes the lower layer
handlers (17) to send the packet.

Since outgoing data may require many packets with
associated round-trip delays for each packet, this process will
suspend for a period of time and return control to the Main
Task after its single thread of execution. If a round
expires, or an ACK arrives, this proc
The process ends when all the data has been sent
successfully to the client and its task will be returned to the
HTTP Task Stack (6) upon completion. There can be a pool
of TLS tasks (8) and HTTP tasks (9) running in the system at
any given time. The HTTP Task uses the HTTP Object (11)
and the associated STD (13) to implement its logic.

Figure 1. Bare PC TLS architecture for a Web server

C. Protocol Intertwining

The bare PC TLS architectu
coupling between the data and
which enables protocols, operating environment, and
application logic to be encapsulated
monolithic AO. In particular, the TCP handshake is
intertwined with the TLS handshake, while
and HTTP protocols are intertwined during the processing
and transfer of encrypted data, and again during the closing.
This intertwining is represented in the integrated message
exchange for these protocols shown in Fig. 2
of an OS, the application itself controls the underlying CPU

containing the response data (14), attaches the MAC, and
. This is also done using a single thread of
The HTTP handler (18) contains the code

GET request and gives it to the TCP
the TLS handler to perform the

necessary cryptographic operations. After this, the packet is
to the TCP handler, which invokes the lower layer

handlers (17) to send the packet.
may require many packets with

trip delays for each packet, this process will
suspend for a period of time and return control to the Main
Task after its single thread of execution. If a round-trip timer
expires, or an ACK arrives, this process will be resumed.
The process ends when all the data has been sent
successfully to the client and its task will be returned to the
HTTP Task Stack (6) upon completion. There can be a pool
of TLS tasks (8) and HTTP tasks (9) running in the system at

given time. The HTTP Task uses the HTTP Object (11)
and the associated STD (13) to implement its logic.

Bare PC TLS architecture for a Web server.

The bare PC TLS architecture in Fig. 1 exhibits tight
data and control flow of an application,

protocols, operating environment, and
application logic to be encapsulated within a single
monolithic AO. In particular, the TCP handshake is
intertwined with the TLS handshake, while the TCP, TLS,

are intertwined during the processing
and transfer of encrypted data, and again during the closing.
This intertwining is represented in the integrated message

these protocols shown in Fig. 2. In the absence
of an OS, the application itself controls the underlying CPU

tasks, while protocols that are implemented as part of the
application communicate directly via their associated
handlers.

During the design phase, the protocol intertwining show
in Fig. 2 and the corresponding events/actions were modeled
using a state transition diagram. In case of
handshake messages, there are three states TLS_START,
SR_CLNT_HELLO, and SR_KEY_EXCH
these states and the associated events/act
transition diagram was used to develop the code for the TLS
handshake. As an example, the C++ implementation of the
SR_CLNT_HELLO state in Fig. 4 contains
illustrates intertwining with TCP.

Figure 2. Intertwined protocol message excha

tasks, while protocols that are implemented as part of the
application communicate directly via their associated

col intertwining shown
corresponding events/actions were modeled

diagram. In case of the TLS
handshake messages, there are three states TLS_START,
SR_CLNT_HELLO, and SR_KEY_EXCH. Fig. 3 shows
these states and the associated events/actions. The state
transition diagram was used to develop the code for the TLS
handshake. As an example, the C++ implementation of the

contains TLS code that

Intertwined protocol message exchange.

Figure 3. Bare PC TLS handshake states and events.

D. Testing

The bare PC TLS Web server implementation
with different file sizes and for a variety of client/server
interactions using both the Internet Explorer and Firefox
Web browsers. The exchanged
using Wireshark during the TLS handshake and the
subsequent TLS-protected data transfer. The relevant data
was then compared against data obtained for identical
browser transactions with Web servers running on Linux and
Windows to identify possible problems. We also
and validated the intertwined protocol states to ensure
desired behavior during the various phases of TLS operation
These tests verified interoperability of
server with both browsers.

PC TLS handshake states and events.

TLS Web server implementation was tested
erent file sizes and for a variety of client/server

both the Internet Explorer and Firefox
sers. The exchanged messages were captured

g Wireshark during the TLS handshake and the
protected data transfer. The relevant data

was then compared against data obtained for identical
browser transactions with Web servers running on Linux and

entify possible problems. We also analyzed
the intertwined protocol states to ensure

desired behavior during the various phases of TLS operation.
These tests verified interoperability of the bare PC TLS Web

case TLS_START: //2001
 if ((tcp.getTCBState(tcbrno) == ESTAB) &

 (tcp.getTCBPacketArrived(tcbrno) == 1)) //client hello
 {

 tcp.resetTCBPacketArrived(tcbrno);
 m1 = tcp.getTCBMsgPtr(tcbrno, length); //get pointer

 flag = processMessage(m1); //process message
 for(int i=0; i <32; i++) //client_hello random bytes 11-43

 clientHello[i] = m1[11+i];
 for(i=0; i < 135; i++)

 clientHelloNoRecord[i] = m1[5+i]; //capture client hello
 if (flag==0)

 {
 formatTLSPacket(m2, tls1);//format outgoing packet

 assignIntToChar(randTime, tls1->sh.rand.GMTTime, 0);//time
 for (j =0; j < 28; j++)

 randBytes[j] = tls1->sh.rand.random_bytes[j];
 for (j =0; j < 868; j++)

 serverMessagesNoRecord[j] = m2[j + 5];
//server hello, certificate, and server hello done

 messageSize = 873;
 retcode = tcp.updateTCBEntry

 (tcbrno, (unsigned long)m2, messageSize, 0);
 //update file size and pointer in the TCB

 retcode = tcp.setTCBTempFlag
 (tcbrno, TPUSH|TACK); //flags

 retcode = tcp.setTCBTempSeqNum
 (tcbrno, tcp.getTCBSNDNXT(tcbrno));//set seqnum

 retcode = tcp.TLSSendN(tcbrno); //send message
 retcode = tcp.setTCBSNDNXT(tcbrno, messageSize);

 statec = SR_KEY_EXCH; //Go to next state
 retcode = tcp.setTCBTLSState(tcbrno, statec); //save the state

 statec = tcp.getTCBTLSState(tcbrno);
 } //end of flag==0

} //end of flag arrived and estab
break;

Figure 4. TLS code with protocol intertwining.

E. Challenges

The main challenges in implementing TLS on a bare PC
stem from the inability to used OS-based components,
libraries, and tools in software development on a bare PC.
Application development on a bare PC is more tedious since
standard support tools, debuggers, and environments are OS-
dependent and cannot be used. Also, each application
program inherits execution knowledge, which requires the
AO programmer to be involved in the systems aspects of
programming including resource and task management.
Some challenges and the measures taken to address them are
as follows:

1. testing and verifying operational correctness of
cryptographic algorithms and protocols: we
developed a Windows-based TLS tool for
validating algorithms and protocol states.

2. generating certificates and verifying signatures: we
developed a certificate tool for generating RSA
keys, and constructing and signing X.509
certificates.

3. managing and allocating memory dynamically
from within the AO, including the memory

required for RSA calculations: we developed a
memory management module for dynamic memory
allocation.

V. CONCLUSION

The design and implementation of TLS on a bare PC
differs significantly from the usual OS-based implementation
that relies on a conventional TCP/IP stack. The streamlined
software architecture enables the direct self-management of
tasks by the TLS Web server application and facilitates
efficient communication between the TLS, TCP and HTTP
protocols by intertwining. A state transition diagram served
as the basis to develop the intertwined protocol code. The
TLS Web server implementation was tested and verified, and
found to interoperate correctly with popular browsers.

REFERENCES
[1] R. K. Karne, K. V. Jaganathan, T. Ahmed, and N. Rosa, “DOSC:

Dispersed Operating System Computing”, OOPSLA ’05, 20th Annual
ACM Conference on Object Oriented Programming, Systems,
Languages, and Applications, Onward Track, ACM, San Diego, CA,
pp. 55-62, Oct. 2005.

[2] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to Run C++
Applications on a Bare PC” Proceedings of the 6th International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, IEEE Computer
Society, Washington DC, pp. 50-55, 2005.

[3] L. He, R. Karne, and A. Wijesinha, "The Design and Performance of
a Bare PC Web Server", International Journal of Computers and Their
Applications, vol. 15, pp. 100 - 112, June 2008.

[4] G. Ford, R. Karne, A. Wijesinha, and P. Appiah-Kubi, “The Design
and Implementation of a bare PC Email Server,” 33rd Annual IEEE
International Computer Software and Applications Conference
(COMPSAC), pp. 480-485, Seattle, WA, July 2009.

[5] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S.
Girumala, “A Peer-to-Peer bare PC VoIP Application,” Proceedings
of the IEEE Consumer and Communications and Networking
Conference (CCNC), pp. 803-807, IEEE Press, Las Vegas, NV, 2007.

[6] T. Dierks and E. Rescorla, "The Transport Layer Security (TLS)
Protocol Version 1.2," August 2008, RFC 5246.

[7] T. Dierks and E. Rescorla, "The Transport Layer Security (TLS)
Protocol Version 1.1," April 2006, RFC 4346.

[8] R. Khare and S. Lawrence, “Upgrading to TLS within HTTP/1.1,”
May 2000, RFC 2817.

[9] E. Rescorla, “HTTP over TLS,” May 2000, RFC 2818.

[10] OpenSSL: The open source toolkit for SSL/TLS

http://www.openssl.org.

[11] K. Bhargavan and R. Corin, “Cryptographically Verified
Implementations for TLS,” 15th ACM conference on Computer and
Communications Security, Alexandria, VA, USA, pp. 459-468, Oct.
2008.

[12] M. Burnside and A. D. Keromytis, “ The case for crypto protocol
awareness inside the OS kernel,” ACM SIGARCH Computer
Architecture News 58. Vol. 33, pp. 58-64, March 2005.

[13] C. Coarfa, P. Druschel, and D. S. Wallach, “Performance Analysis of
TLS Web Servers,” ACM Transactions on Computer Systems Vol.
24, pp. 39-69, Feb. 2006.

[14] C. Castelluccia, E. Mykletun, and G. Tsudik, “Improving Secure
Server Performance by Re-balancing SSL/TLS Handshakes,”ASIAN
ACM Symposium on Information, Computer and Communications
Security, Taipei, Taiwan, pp. 26-34, 2006.

