Implementing the TLS Protocol on a Bare PC

A. Emdadi, R. Karne, and A. L. Wijesinha
Department of Computer & Information Sciences
Towson University
Towson, MD 21252
{aemdadi, rkarne, awijesinha}@towson.edu

Abstract—A bare PC is an ordinary computer that runs
applications without an operating system (OS). Ithus provides
immunity from attacks that target specific OS vulneabilities
while eliminating the OS overhead in a conventionabystem.
We describe a novel implementation of TLS that runson a
bare PC. The TLS implementation differs from a conentional
TLS implementation in that it is included within a bare PC
application that manages its own CPU tasks, diregtlinterfaces
to the hardware, and communicates with network prodcols
without using a standard socket interface. Furthernore, the
unique software architecture of a bare PC enableshe TLS,
TCP, and application protocols to be intertwined, hereby
reducing the communication overhead compared to thaof a
conventional system. As an example, we give detaitd the
internal architecture of a bare PC TLS Web serverWe then
illustrate intertwining of the TLS, TCP, and HTTP protocols.
In particular, we show how a state transition modelthat
represents events and actions in the TLS Web serves used to
develop the intertwined protocol code. We also disss the
testing methodology, note some challenges with resg to
implementing TLS on a bare PC, and outline the meases
taken to address them.

Keywordss Bare PC, Application Object (AO),
intertwining, Transport Layer Security(TLS), Web server.

protocol

l. INTRODUCTION
TLS (Transport Layer Security) is a widely usedtpcol

In particular, we consider the implementation dbaae
PC TLS Web server and provide details of its softwa
architecture and implementation. We also illustgaiatocol
intertwining with respect to the TLS, TCP, and HTTP
protocols.

A discussion of the tradeoffs in using a bare PGu&an
OS-based system to run applications is not withendcope
of this paper. However, two advantages of a bareytm
may be noted. First, a bare PC, which does notans@s,
cannot be compromised by attacks that target vahil@res
of a specific OS. Moreover, the self-contained &@zcode
is smaller, simpler, and easier to analyze for sgctlaws
than the code in an OS-based system. Second, lare P
applications perform better than their OS countespdue to
the elimination of OS overhead.

The rest of this paper is organized as followsSéttion
Il, we provide a brief overview of bare machine guiting.

In Section lll, we review related work. In Sectiovi, we
describe the implementation of TLS on a bare P@gudhe
example of a TLS Web server. We also discuss pobtoc
intertwining, the testing methodology, and somellehges
associated with implementing TLS on a bare PC.dcatiBn

V, we present the conclusion.

Il. OVERVIEW OF ABARE PCSYSTEM

A bare PC runs a single Application Object (AO) flit
contains a given small set of applications (usualhe or

for securing network communications on the Internettwo)_ Each AO, which resides on a portable storagdium

Conventional implementations of TLS require thepsrp of

such as a USB flash drive, is completely self-cioreth and

an Operating System (OS) or OS-kernel. This papefas the necessary code to boot and execute on (IAB2

describes a novel implementation of the TLS prdtacoa
bare PC, which is an ordinary desktop or laptop mater
that can run applications directly over the haraw@vithout
using any form of an OS or OS kernel). In a bare €
minimal operating environment necessary for anieafibn
to execute on given hardware is included in thdiegton
itself.

The bare PC TLS implementation differs from

conventional TLS implementation in many ways. Thaim

difference is that in a bare PC, the TLS, TCP, gpplication
protocols are tightly coupled via protocol intemwig, which

32-bit) CPUs (it can also currently run in 32-bibde on a
64-bit processor). The AO includes C++ interfacesthe
hardware [2] and its own device drivers such asehfor
network interface cards/on-board chips and audroviaare
if needed by the application. A simple menu-drivigerface
is available for configuring the AO.

Bare PC and OS-based systems differ significanithh w

@respect to system call handling, API design, nekimgr and

user interfaces, memory, file, and process/taskagement,
exception handling, and program loading, initiatiand
termination. In essence, data and control flow ipage PC

reduces communication overhead compared to thaa of application are tightly coupled since the AO enciatss the

conventional system with an OS-controlled protost@ick.
Other differences relate to the management of Ulyidgr
CPU tasks by the bare PC application and the abseha
standard socket interface for network communication

necessary protocols, operating environment (inolydi
interfaces to the hardware), and application loghwus, the

AO programmer manages CPU and memory as there is no
OS. Examples of bare PC applications include anP4omly

(i.e., non-TLS) Web server [3], email server [4hdaVolP
softphone [5].

lll. RELATEDWORK

We first give a brief overview of TLS in the contef
the bare PC Web server. A detailed specificatiofld® is
given in [6, 7]. TLS consists of four protocols: idishake
Protocol, Alert Protocol, Change Cipher Spec Pmtognd

The latest version of the TLS specification is TLSthe Record Protocol. TLS consists of two layersemhthe

Version 1.2 [6]. The main differences between théssion
and TLS Version 1.1 [7], which we have implementethte

first three protocols run on the Record Protocdiiclv itself
runs on TCP. Application protocols such as HTTP, if

to the replacement of the SHA-1 and MD5 protocoithw protected by TLS, also run on the Record PrototalS

SHA256 due to the security weaknesses of the forites

provides encryption, data integrity, and authetitica of

current TLS version also allows a new cryptographidP€eer identity. The Alert Protocol comprises severaksages

operation known as authenticated encryption witthtemhal
data encryption (AEAD). In [8] and [9] respectivelyse of

that are classified as fatal or warning, and s¢ov@andle
errors or provide notifications. Alert messagesearerypted.

the HTTP/1.1 upgrade mechanism to initiate a securéhe Change Cipher Spec Protocol uses a single ecyi-

connection on port 80, and HTTP over TLS with pBtB as
the default are documented.

byte message with value 1 before using the newdyptigted
security parameters.

Many implementations of TLS are based on OpenSSL TLS Version 1.1 also defines a secure pseudo-random

[10], which is a comprehensive TLS toolkit that suom OS-
based systems. In contrast, a small

function (PRF) that XORs a pair of data expansigrcfions

functionabased on HMAC with SHA-1 and MD5 as the underlying

implementation of TLS whose goal is cryptographichash functions. The PRF produces any desired nuwfber

verification is described in [11]. While their Tls®rver, like
ours, is shown to interoperate with popular browseétr
implements an earlier version of TLS (1.0), andcexes on
.NET, which is an OS-based environment.

Most of the previous work on TLS is primarily coneed
with improving performance. In [12], performancea®LS
Web server is improved by an operating system eiian
implemented in OpenBSD that reduces system callgegt
switching, and data copying. The bare PC implentiemta
also eliminates system calls and OS-related ovdrhaad
allows all protocol layers to manipulate a singbpy of the
data (i.e., with zero data copying), but thered0§ present.
The detailed study of TLS performance in [13] shdtet
RSA operations dominate cost, and that optimizagiforts
should focus on the TLS handshake phase as opposled
data transfer phase. In [14], a technique to redeceer load
by assigning expensive handshake operations toli#d is
described. Such techniques are designed and test©&-
based systems and require many facilities provicedhe
OS. For example, hardware accelerators that acgidrly
used to improve TLS performance [13] require OSpsup
TLS on a bare PC system can be likewise optimibed,
optimizations must be handled by the applicatioresithere
is no OS. Since our current TLS implementation doets
include such performance enhancements, we do soush
bare PC TLS performance in this paper.

IV. TLSIMPLEMENTATION
A. Adapting the TLSProtocol

bytes and is used in generating the master sewnet the
exchanged premaster secret; encryption keys and MAC
secrets for read and write operations; and thesHed
message. The Handshake Protocol is used to negotiat
security parameters and set up a shared mastest.sHcr
establishes a TLS session that enables the applicat
securely exchange data over a TLS connection. Siegsion
establishment is expensive, new connections magebelp
within an existing session.

The TLS Handshake Protocol begins with an exchafge
respective hello messages between the client andrse
These hello messages are used to negotiate the key
exchange, encryption and MAC algorithms to be uSéd
bare PC Web server supports only specific algostraa
noted above and requests for alternates are rejeitext,
the server sends its RSA certificate and the hdbhoe
message. The client then sends an RSA-encryptedapter
secret, which is processed by the server to comphee
master secret and encryption and MAC keys. The staic
terminates with the exchange of the respective gdnaipher
spec and finished messages by client and serverfifiished
messages, which are encrypted and authenticatatlectine
client and server to verify that the security paztars
established during the handshake are correct. Wiolipthe
handshake, HTTP messages are fragmented into seabad
most 2* bytes that are AES-encrypted along with the MAC.
An explicit per-record 1V, CBC mode, and padding ased
to protect the application data as specified in Ne$sion
1.1. Application data is not compressed.

TLS on a bare PC is based on TLS Version 1.1 an§ TLSWeb Server Architecture

currently supports AES encryption (with CBC blodkher

Fig. 1 shows the internals of the bare PC HTTP/TLS

mode), RSA key exchange, and a few essential aledrchitecture for a Web server AO including the vale

messages including close notify. Since TLS on a bRC
always runs as part of an application that is esndaped
within an AQ, it is easier and more convenient &satibe
TLS in the context of a specific application. listpaper, we
only focus on the TLS implementation for a bare \R€b

handlers, objects, and CPU tasks. For ease okrefer each
block in this figure is assigned a numeric labehc8 our
focus in this paper is on the TLS implementationacbare
PC, we do not provide a detailed description ofeoth
protocols or the Ethernet NIC driver that are neeb the

server. We do not consider a bare PC TLS clienieb server. We also omit details of upper-levelcpasing

implementation.

that is different depending on whether a requefgria static

or dynamic Web page. For details concerning thegde
implementation, and performance oHZ TP-only bare PC
Web server (without TLS), see [3].

The single Web server AO residilng a bootable USB
mass storage device, encapses the Web server
application, the necessary protocols including TltBe
network interface card (NIGQJriver, andthe load and boot
code used to start the bare B¢ and launcithe application.
Since there is no OS in a bare,Rike NIC Driver (20) an
its interfaces are directly accessible toapplication.

When the AO is loaded, it sta the Main Task (2). Tt
task, which uns whenever no other tasks are runninche
machine, selects the next task to be run (3) througt
multiplexor logic (4). For example, ttMain Task runs the
Receive Task (RCVwhen an incoming packet (that f
arrived on the link) has been placed memory by the
network interface hardwareOther tasks in this syste
include TLS Handshake tasks and HTTP t:

When the Receive Task runs, it reddepacket from the
Ethernet buffer (19)If the packet contains a HTTTLS
request, the respective EthetnlP, TCI, and TLS Handlers
(17) process the packet in a single thread of di@tand
update the state in the TCP Table (TCB) (23). T@G8 acts
as a centralized state controller for all requsthe system
When the Web server AO is designed, AO programmer
does not include any delay in the above singleathref
execution to process the packet. During this threaeques
may also send a response such as an ACK to thet.c
Once the received packet is processed and the [ajgis
responsés sent, the Receive Task returns control bachke
Main Task.

However, as described previously, before the apidin
data can be protected by TLS, the TLS handshakequok
must be usedtb establish the security parameters for a
session between a client and the serVkbus, after the TCP
connection to port 443 is establishé@questing a TLS
connection as specified in [L11B TLS Task is popped fro
the TLS Task Stack (7) and insertiathb a circular list (5)
This TLS Task, which runs whenig schedule by the Main
Task, is only used for handshake messi;; when the
handshake is completed, the task will be returonetststack
pool (7). The entire TLS handshake process is neddas ¢
State Transition Diagram (STD) (12), which is paftthe
TLS Object (10). This object contains the neceskagic to
perform all TLS operations.

After the TLS handshake is completed, a TLS flalj
be set for a given TLS connection. This connecti®
terminated as usual when a TLS close_notify sent by
the clientis received (for a specification of server beha
reladed to incomplete closures, see [11]). Once &S
connection is established, af message containirdata sent
by the client is receivedit will be processed by tt
respective handlers (17)The TCP handl¢ invokes the
services of the TLS handler to decrypb) and authenticate
the packet.If the message contains a GET command
HTTP Task will be popped from the HTTP Task Sta@k
and inserted into the circular list (5). This HTTRsk will
run when it is scheduled by the Main Task. The HTTEBk
processesthe GET request, encryptthe HTTP packet

containing the response data |, attaches the MAC, and
sends the packeThis is also done usira single thread of
execution (17).The HTTP handler (18contains the code
that processes th6&ET reque¢ and gives it to the TCP
handler. The latter requedtse TLS handler to perform tt
necessary cryptographic operatic After this, the packet is
returnedto the TCP handler, which invokes the lower le
handlers (17) to send the pacl

Since outgoing datanay require many packets w
associated rounttip delays for each packet, this process
suspend for a period of time and return contrath® Main
Task after its single thread of execution. If and-trip timer
expires, or an ACK arrives, this pess will be resumed.
The process ends when all the data has been
successfully to the client and its task will beuraed to the
HTTP Task Stack (6) upon completion. There can pea
of TLS tasks (8) and HTTP tasks (9) running inglistem a
anygiven time. The HTTP Task uses the HTTP Object
and the associated STD (13) to implement its |

H eH f| e e Ttee |5 Tis |-
. N T w

19
I DPD/UPD

Handshake

21 '":’"""‘

Get

TCP Table

Network | N ~
) (TCB)
c)
Entries TLS Task] HTTP Task]
22 23 —
12 STD 10 ' 8‘ i 3 g}

,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Running
M Task

Circul
ireufar Complete()

TLS Task

Stack
Program
g 7

Insert()

7

Insert()

Figure 1. Bare PC TLS architecture for a Web se.

C. Protocoal Intertwining

The bare PC TLS architere in Fig. 1 exhibits tight
coupling between théata an control flow of an application,
which enables protocols, operating environment,
application logic to be encapsulatewithin a single
monolithic AO. In particular, the TCP handshake
intertwined with the TLS handshake, whthe TCP, TLS,
and HTTP protocolsare intertwined during the process
and transfer of encrypted data, and again duriegctbsing.
This intertwining is represented in the integratadssag:
exchange fothese protocols shown in Fic. In the absence
of an OS, the application itself controls the uhdeg CPU

tasks, while protocols that are implemented as pfaithe
application communicate directly via their assaaik
handlers.

During the design phase, the prabintertwining shown
in Fig. 2 and theorresponding events/actions were mod:
using a state transitiomiagram. In case ofthe TLS
handshake messages, there are three states TLSTS
SR_CLNT_HELLO, and SR_KEY_EXC. Fig. 3 shows
these states and the associated everions. The state
transition diagram was used to develop the cod¢éhfoifLS
handshake. As an example, the C++ implementatiotihe
SR_CLNT_HELLO state in Fig. 4ontainsTLS code that
illustrates intertwining with TCP.

Client Server

Syn

TCP Connection

Establishment Syn-Ack

Ack

________ A >
H Client_hello
' >
|
. Server_hello,Certificate,
Handshake o server_hello_done
i Client_key_exchagne,
| Finished >
H >
'
H Change_cipher_spec,
_______ X e g Finished
-
1 Application_data
1
'
Data Transfer < Application_data
H Close_notify
H <
H Close_notify
________) S - -
1 Fin_ack
'
TCP Connection Ack
i —
Closing
i Fin_ack
' — -
! >
& o Ack

Figure 2. Intertwined protocol message exnge.

TCP_CONNECTION_ESTAB

TLS_START

SR_CLNT_HELLO

EVENTS: received clientHello
ACTIONS: send
serverHello,certificate,serverHello done

J

SR_KEY_EXCH

EVENTS: received clientKeyExchange,
changeCipherSpec,EncryptedHandshak

eMessage
ACTIONS: send
changeCipherSpec,EncyptedHandshake
Messgae
END_OF_HANDSHAKE \ /

SUSPEND_TLS_TASK / TCP_FLAG_ON

Figure 3. BarePC TLS handshake states and ev

D. Testing

The bare PALS Web server implementatiiwas tested
with different file sizes and for a variety of client/ser
interactions usingooth the Internet Explorer and Firef
Web brovsers. The exchangemessages were captured
using Wireshark during the TLS handshake and
subsequent TLProtected data transfer. The relevant «
was then compared against data obtained for id#
browser transactions with Web servers running onuxiand
Windows to ientify possible problems. We alanalyzed
and validatedthe intertwined protocol states to ens
desired behavior during the various phases of ThSatior.
These tests verified interoperabilitythe bare PC TLS Web
server with both browsers.

caseTLS_START: //2001
if ((tcp.getTCBState(tcbrno) == ESTAB) &
(tcp.getTCBPacketArrived(tcbrno) == 1)jlient hello

{
tcp.resetTCBPacketArrived(tcbrno);
m1 = tcp.getTCBMsgPtr(tcbrno, lengtiet pointer
flag = processMessage(mI)process message
for(int i=0; i <32; i++)//client_hello random bytes 11-43
clientHello[i] = m1[11+i];
for(i=0; i < 135; i++)
clientHelloNoRecord[i] = m1[5+i}/capture client hello
if (flag==0)

formatTLSPacket(m2, tisZjformat outgoing packet
assignintToChar(randTime, tls1->sh.rand.GMTTif)g/time
for (j =0; j < 28; j++)
randBytes][j] = tls1->sh.rand.random_bytes][j];
for (j =0; j < 868; j++)
serverMessagesNoRecord[j] = m2[j + 5];
IIserver hello, certificate, and server hello done

required for RSA calculations: we developed a

memory management module for dynamic memory

allocation.

V. CONCLUSION

The design and implementation of TLS on a bare PC

differs significantly from the usual OS-based inmpéntation
that relies on a conventional TCP/IP stack. Theastlined
software architecture enables the direct self-mamagt of
tasks by the TLS Web server application and fatéi
efficient communication between the TLS, TCP andTHT
protocols by intertwining. A state transition diagr served
as the basis to develop the intertwined protocadlecd he
TLS Web server implementation was tested and eelifand
found to interoperate correctly with popular brovgse

REFERENCES

messageSize = 873; [1] R. K. Karne, K. V. Jaganathan, T. Ahmed, and N.a&R¢®OSC:
retcode = tcp.update TCBENtry Dispersed Operating System Computing”, OOPSLA Zi&h Annual
(tcbrno, (insignedong)m2, messagesSize, 0); ACM Conference on Object Oriented Programming, &yst
/lupdate file size and pointer in the TCB Languages, and Applications, Onward Track, ACM, Bégo, CA,
retcode = tcp.setTCBTempFlag pp. 55-62, Oct. 2005.
(tcbrno, TPUSH|TACK)//flags [2] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “HoaRun C++
retcode = tcp.setTCBTempSeqNum Applications on a Bare PC" Proceedings of the IBiflernational
(tcbrno, tcp.getTCBSNDNXT(tcbrnojjset seqnum Conference on Software Engineering, Artificial Ilfitence,
retcode = tcp.TLSSendN(tchma)end message Networking and Parallel/Distributed Computing, IEEEomputer
retcode = tcp.setTCBSNDNXT (tcbrno, messageSize); Society, Washington DC, pp. 50-55, 2005.
statec = SR_KEY_EXCH//Go to next state M .
a = < ! [3] L. He, R. Karne, and A. Wijesinha, "The Design &wtformance of
rei(t)gt?e (; iCtF(’: 'sZtggEgl}iztsatt:t(ggggfﬁos)t_amve the state a Ba_re P_C Web Server", International Journal of @aters and Their
' } Jlend of flag==0 ’ Applications, vol. 15, pp. 100 - 112, June 2008.
} /lend of flag arrived and estab [4] G. Ford, R. Karne, A. Wijesinha, and P. Appiah;ﬂli{uﬁ'lhe Design
break and Implementation of a bare PC Email Server,” 3&nual IEEE
International Computer Software and Applications nfecence
(COMPSAC), pp. 480-485, Seattle, WA, July 2009.
Figure 4. TLS code with protocol intertwining. [5] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. Hand S.

E. Challenges

The main challenges in implementing TLS on a bae P 6]

Girumala, “A Peer-to-Peer bare PC VoIP Applicatidhroceedings
of the IEEE Consumer and Communications and Netwgrk
Conference (CCNC), pp. 803-807, IEEE Press, LaayveyV, 2007.

T. Dierks and E. Rescorla, "The Transport Layerusige (TLS)

stem from the inability to used OS-based components

libraries, and tools in software development onaeetPC. |7

Application development on a bare PC is more tesigince

standard support tools, debuggers, and environnaeat®S- [g]

dependent and cannot be used. Also, each applicatio May 2000, RFC 2817.

program inherits execution knowledge, which recgiitlee [9] E. Rescorla, “HTTP over TLS,” May 2000, RFC 2818.

AO programmer to be involved in the systems aspeftts [10] OpenSSL: The open source toolkit for SSL/TLS

programming including resource and task management. http:/www.openssl.org.

Some challenges and the measures taken to addezssate [11] k. Bhargavan and R. Corin, “Cryptographically Visif

as follows: Implementations for TLS,” 15th ACM conference onnGiter and
1. testing and verifying operational correctness of Communications Security, Alexandria, VA, USA, @59-468, Oct.

. - 2008.
cryptographic algorithms and protocols: we) .

. 12] M. Burnside and A. D. Keromytis;The case for crypto protocol
developed a Windows-based TLS tool for [12] e v e p

VeIVl) awareness inside the OS kernelXCM SIGARCH Computer
validating algorithms and protocol states. Architecture News 58. Vol. 33, pp. 58-64, March 200

2. generating certificates and verifying signatures: w [13] C. Coarfa, P. Druschel, and D. S. Wallach, “Pertumoe Analysis of
developed a certificate tool for generating RSA ;'fpgvgg ggf‘l’fgs";gg"sﬂanmt'ons on Computer Systems Vol.
keys, and constructing and signing X.509 e EE e '

y-- 9 gning [14] C. Castelluccia, E. Mykletun, and G. Tsudik, “Impirgy Secure
certificates.

° .) Server Performance by Re-balancing SSL/TLS HanashakSIAN
3. managing and allocating memory dynamically ACM Symposium on Information, Computer and Commatians
from within the AQO, including the memory

Security, Taipei, Taiwan, pp. 26-34, 2006.

Protocol Version 1.2," August 2008, RFC 5246.

T. Dierks and E. Rescorla, "The Transport Layerusigc (TLS)
Protocol Version 1.1," April 2006, RFC 4346.

R. Khare and S. Lawrence, “Upgrading to TLS withli@iTP/1.1,”

