

The Performance of a Bare Machine Email Server

George H. Ford, Jr., Ramesh K. Karne, Alexander L. Wijesinha, and Patrick Appiah-Kubi

Department of Computer and Information Sciences

Towson University

Towson, Maryland, USA

gford3@students.towson.edu, rkarne@towson.edu, awijesinha@towson.edu, pappia1@students.towson.edu

Abstract— Bare machine applications run directly over the

hardware without using an operating system or the hard disk.

This paper studies the performance of a bare machine email

server whose design and implementation is based on several

novel architectural features, and targeted at optimizing

performance. The results are compared with those for the

AxiGen and ShareMailPro email servers, and a lean Java-

based email server prototype running on Windows whose

application-level operation closely matches that of the bare

machine email server. For 80,000 emails in a LAN

environment, the bare Machine server processing time is

approximately 2 times faster than a Java-based server, and 2.4

times faster than the AxiGen server. For 5,500 emails in a

WAN environment, the bare machine server performed at

least 1.8 times faster than the Java-based and ShareMailPro

servers. The results indicate that the bare machine email

server outperforms the conventional email servers in LAN and

WAN environments and demonstrate the ability to build high-

performance email servers that run on bare machines.

Keywords- bare Machine Computing (bare), Application

Object, Email Server, SMTP/ POP3, Performance.

I. INTRODUCTION

Email servers involve several protocols, whose
operation, functionality and evolution are specified in
numerous well-known RFCs. The performance of an email
server depends on the ability to optimize and exploit
architectural design features that facilitate efficient
interaction with email clients and other email servers. The
principal application-layer protocols involved in these
applications (SMTP, POP3 and IMAP) and the underlying
TCP/IP network protocol suite also influence the
performance of the server. Optimizing, tweaking, and
intertwining the necessary protocols for supporting a
specific application and simultaneously designing the
architectural features of the server enables performance of a
server to be dramatically improved, thus providing a
blueprint for creating high-performance email servers.

Most of the server designs are based on conventional
operating systems, lean kernels, or virtual machines where a
centralized operating system controls and manages
application resources. The approach presented here is based
on eliminating any OS or kernel operating as middleware
between applications and hardware. In essence, the
application directly communicates to the hardware, thus
eliminating the middleware and any associated layers. This
provides optimal performance and independence to any

operating system environments. The detailed architectural
features, design and implementation were presented in [5].
This paper strictly focuses on performance measurements of
the bare email server, since inclusion of the design details in
this paper would have been too large to present. The bare
machine email server provides an alternative to
conventional email servers. Bare machine servers are self-
contained, self-executing, and application-specific to
achieve higher performance, requiring no OS related
maintenance or dependences. Their design, based on the
bare machine computing paradigm [8, 9] has been
previously shown to be successful in optimizing
performance on an application-specific basis [6, 7, 11],
resulting in an order-of-magnitude performance
improvement over conventional systems.

In the current bare approach, an Application Object
(AO) [10] executes directly on the most popular Intel IA-32
based PCs or devices. One could also design an AO to
execute on RISC based machines. An AO, which consists of
the application program, and all the necessary code to boot,
load, and execute it, including direct interfaces to the
hardware, is a single, monolithic executable code, which
does not use any OS related system calls, kernels, mini/nano
kernels, or any system libraries. The AO is bootable using a
mass-storage medium, such as USB flash memory.

The remainder of this paper presents related work in
Section II, a brief overview of the important architectural
features and their performance implications in Section III,
experimental details and performance results in Section IV,
and the conclusion in Section V.

II. RELATED WORK

Eliminating unnecessary operating system abstractions
was first proposed in [1] by using an Exokernel. Later,
approaches based on micro-kernel [3], TinyOS [15] and lean
OS libraries [17] attempted to provide a minimal OS
interface to run applications. Attempts to provide an
intricate bypass of OS-based system calls was performed by
systems such as IO-Lite and Flash [12]. Bare metal Linux
[16] applications were used in manufacturing to bring up
(boot) hardware. Sandboxing techniques have also been
used on x86 systems [4] to extend OS kernel abilities to
execute application plug-ins on OS hosts. However,
sandboxing and customized kernel approaches still require
some OS elements existence to support their applications.

Prior research related to email server architectures have
focused on OS-based threading features. Threaded

mailto:gford3@students.towson.edu
mailto:rkarne@towson.edu
mailto:awijesinha@towson.edu
mailto:pappia1@students.towson.edu

communications and processes can provide many
advantages in terms of security and concurrent operations
for users. From a security design approach, existing email
servers are typically deficient in providing features for email
spam filtering, Denial of Service (DoS) sensing and security
awareness [14]. Performance measurements have generally
focused on an email server’s ability to handle large
quantities of emails in a specific time, threading capabilities,
and throughput capacities [2, 13].

All of the above legacy applications use some form of
kernel or OS libraries to run applications. The bare machine
computing approach eliminates the need for any kernel or
OS libraries and bundles the necessary operating
environment within the application, directly communicating
with hardware to manage its resources. The bare email
server presented here is based on this approach.

III. BARE MACHINE ARCHITECTURAL PERFORMANCE

CHARACTERISTICS

This section identifies the key performance
characteristics and novel architectural features of bare
machine computing, which can be leveraged when building
high-performance email servers. These characteristics are
difficult to replicate in a conventional OS-based application.
The bare approach is currently focused on a set of selected
networking application-specific systems, although the
concept can be extended to enterprise applications. Other
examples of successful bare systems include VoIP [11], and
Web Server [6] applications.

The bare machine computing approach does have some
drawbacks in its design approach and portability with
existing systems. First, the design of an AO requires
indepth knowledge of systems programming and application
programming, thus making the AO programmer’s job harder
than conventional application programming. Howerver,
once an AO is designed, it does not depend upon any
upcoming OS releases, thus avoiding subsequent porting of
an AO to a new platform. This current design also assumes
a single, stable underlying architecture (e.g. IA32), thus
making the current system specific to this architecture.
Secondly, porting current applications to bare machine
computing is a daunting effort due to system calls and
libraries. In order to port conventional applications to a bare
machine computing, it requires that all system calls and
libraries must be transformed into direct hardware interfaces
that can be invoked in the application, thus making it
difficult to port OS-based applications to bare AOs.

Some of the unique architectural characteristics which
illustrate performance improvements for bare machine email
servers are summarized in the following subsections.

A. Protocols

The bare machine approach to designing and
implementing application-specific servers and systems uses
intertwining of the necessary protocols [5]. Such
intertwining is based on the programmer’s ability to include
these protocols in an optimal fashion within a single
instance of code, avoiding the restrictions due to

conventional layered stacks used in OS-based systems,
enabling the design of high-performance network
applications.

B. Concurrent Requests

Multiple task pools (POP3, SMTP, and Relay
Forwarding) are created at initialization to handle
concurrent requests. Each of the above task types is handled
as a generic task, which saves time by avoiding the dynamic
creation of tasks at run-time and improving response time.

C. Concurrency Control

Each email request and its state information are stored in
a Transition Control Block (TCB) table, in addition to the
parameters used by the reentrant code. In an email server,
each request’s state information is independent of other
requests. The simultaneous sharing of resources is avoided
by creating independent resources for each request and
maintaining their state information in the TCB. This TCB
information is used in task scheduling and may be used in
migrating email servers.

D. Task Scheduling

Unlike the OS-driven task scheduling, the bare approach
implements a user-driven technique. At development time,
an AO programmer designs a task schedule for a given task
as a single thread of execution, thus eliminating the need for
a centralized task scheduler. When an application needs to
wait for an event then the program is suspended. When the
relevant event arrives, the task resumes execution. This
approach has been demonstrated in building high
performance bare Web Servers [6].

E. Client Interactions

OS-based email server designs are focused on
application layer request-response interactions with clients.
In the bare approach, the request-response interactions are
modeled based upon State Transition Diagram behaviors.
This alleviates the overhead associated with OS-based
servers due to their use of API libraries and layered
approaches. The result is faster throughput performance,
and an ability to process more emails in a given time.

F. System Operation

Contemporary applications require OS-based kernel
utilities and programs to start the system, load the
application, and manage resources. The bare approach
provides the ability to run a self-contained, monolithic
executable code capable of bootstrap loading and providing
resource management directly within the application. This
allows the bare application to avoid any need for an OS
when a user boots and executes the application from USB
flash memory or similar storage media.

G. Volatile Memory and Persistant Storage

Legacy email servers rely upon OS-based features for
memory usage which require caching and paging, and
virtual memory management with disk I/O. Since there is no
OS in the bare approach, it frees up the use of physical
memory for specific applications. Persistent storage in the

bare is provided by USB flash memory, which can serve as
large mass storage. Thus, USB flash memory can provide a
portable storage medium for both the bare application and
its data.

H. Input / Output

When OS-based applications use I/O, they require use of
system calls or an API. In the bare application design,
interrupt usage is limited to keyboard, hardware timer, and
the NIC device. Limited BIOS interrupts are used during
the boot process and in acquiring device addresses. Some
popular device drivers have been developed for the bare
applications, where they can invoke in-line calls to the
device driver which results in an increased I/O performance.

I. Security

Bare applications are simple, small in code size, and
immune to attacks that exploit known OS vulnerabilities. A
high-performance bare machine email server would be
easier to secure than a complex OS-based server especially
due to its streamlined architectural design.

IV. PERFORMANCE MEASUREMENTS AND ANALYSIS

The performance measurements and analysis, presented
below, demonstrates and validates the bare machine
computing architectural design and implementation
approach as described in [5]. These results also indicate that
similar performance enhancements can be achieved in other
types of servers using this bare email server approach.

A. Experimental Setup and Components

This paper focuses on the performance of a bare email
server running on an ordinary desktop PC. Experiments
were conducted using Dell OptiPlex PCs with 2.4 GHz
Pentium 4 processors and 3COM 905CX NICs. For
comparison with the bare email server, email servers
running on Windows XP including a Java-based email
server prototype with equivalent functionality and optimized
with the just-in-time compiler, as well as ShareMailPro and
AxiGen were used. All unnecessary services executing on
the MS-Windows-based systems were disabled.
Additionally, file I/O was disabled on the Java-based server
prototype and it was limited to displaying only a simple text
status string for monitoring purposes (it had no GUI). It was
observed during tests that the conventional email servers
also cached messages into memory.

The bare email server, like its Java-based counterpart,
supports SMTP, POP3, authentication, MIME encoding,
and relay forwarding. In addition to conducting extensive
tests to verify correct operation of the bare server, its ability
to interoperate with many popular email clients and servers
was verified. Clients used in performance testing included
SMTP Stress Test Checker v1.0, Mozilla Thunderbird,
Pegasus, MS-Outlook Express, Alpine, eM-Client, Dream
Mail, Eudora 7, IncrediMail, and Mulberry; a Java-based
client, and a bare email client were used for testing specific
aspects of bare email server operation. The SMTP Stress
Test Checker v1.0 generates and sends bulk emails to the

server for an email size (up to 1KB). This tool also allows
up to 100 concurrent threaded connections, each with a
tester specified quantity of emails. This test tool maintains
statistics on the email transactions. In addition, email
transactions for all threaded connections are captured with
the Ethereal / Wireshark network tool, which allows
handshaking, packet and timing analysis to be determined.

The application object for the email server consists of
C/C++ code in addition to some hardware interfaces coded
in assembly language. The bare server contains 31,743 lines
of code including 10,000 lines of comments, and 14,000
executable statements. The resulting single monolithic
executable (AO) consists of 512 sectors of code (256 KB).

B. Performance Results and Analysis

A variety of performance measurements were conducted
on bare, Java, ShareMailPro, and Axigen email servers to
investigate the following:

 Determining LAN based throughput processing times

 Determining WAN based throughput processing times

 Measurement of internal message protocol timing

 Effects on different topologies used for implementation
of the scheduling queue mechanism.

1) LAN Measurements

For LAN measurements, the Stress Checker Tool and the
Wireshark network capturing tool were running on MS-
Windows with no other applications running on the machine
(A). The email servers were running on another dedicated
machine (B). Machines A and B were connected through an
isolated LAN in the research lab.

Figure 1. bare Server Processing Time

Figure 1 illustrates the bare email server processing

times with respect to a large number of emails. This graph
also shows the effects due to different numbers of threads
used in processing the emails (1, 10 and 100 threads). These
measurements were obtained using the Stress Test Checker
v1.0 tool.

The stress tool can be used to send up to 100,000 emails,
with multiple threaded connections. Multiple threads
reduce the bare email server processing time compared to a
single thread, but varying the number of threads from 10 to
100 yields a negligible change in performance. For example,

the processing time for 10 threads versus 100 threads differs
by approximately 3 seconds, whereas the difference
between 1 and 10 threads is 89 seconds (for 10,000 emails).

The bare task processing is designed as a single thread of
execution without interruption. In addition, it also
intertwines the protocols and avoids the overhead of running
the server application on an OS. The multi-tasking effect in
the bare applications has diminishing returns as the number
of tasks grows in the system. Multi-tasking has less variance
in bare applications than in OS based applications for the
following reasons:

 When a task is running, there are minimal interrupts
which interrupt the task (since the task was designed to
run without interruptions)

 There are no system calls or another API to compete for
the CPU cycle

 The CPU cycle was already optimized for running
useful work related to tasks (no I/O)

 If I/O is needed, the program is designed to suspend (so
other tasks can run)

 The CPU time is essentially pre-optimized to run bare
machine applications.

Figures 2-4 show measurements with varying threads (1,

10,100) for the various email servers (bare, Java-based
prototype, ShareMailPro, and AxiGen). Figure 2 only shows
processing time data for three servers (bare, Java-based
prototype, and AxiGen) for 80,000 processed emails when
the message size is less than 1KB i.e., 1 Ethernet packet. As
shown in Figure 2 for 1 thread, the bare server processing
time is 1.99 times faster than the Java-based prototype and
2.36 times better than the AxiGen server.

Figure 2. Server Performance Measure with 1 Thread

The processing time of the ShareMailPro server was
excessive when testing with the stress tool. Hence, Figure 3
and 4 only show results for up to 10,000 emails to illustrate
the performance improvements with respect to the bare
server. For 10 threads and 10,000 emails, the bare server
processing time is 9.46 times better than the Java-based
prototype, 14.7 times faster than the AxiGen server, and
18.29 times faster than the ShareMailPro server; and for 100
threads and 10,000 emails, the bare server processing time is
3.43 times faster than the Java-based prototype, 2.95 times
faster than the AxiGen server, and 10.65 times faster than
the ShareMailPro server. As the number of threads and the

number of emails increased, the performance of the Java-
based prototype improved as it leverages multi-tasking
capabilities of its OS-based environment. It is expected that
the performance of this Java-based server will be closer to
that of the bare server if full multi-tasking capabilities are
implemented. Similar improvements due to multi-tasking
effects were observed in AxiGen and ShareMailPro servers
when the number of threads increased. However, the
ShareMailPro behavior has larger processing time than the
AxiGen server that is likely due to its extensive set of built-
in features and complex processing logic.

Figure 3. Server Performance Measure with 10 Threads

Figure 4. Server Performance Measure with 100 Threads

Figure 5. Server Performance for various Email Sizes

Additional LAN measurements were performed varying
the email attachment sizes from 1KB to 2MB. As shown in
Figure 5, the bare server average processing time for a 2MB
email attachment was 3.32 times faster than the AxiGen
server, 53 times faster than the Java-based server; and 34
times faster than the ShareMailPro server. Figure 6 shows
that with a 2 MB attachment the throughputs are
respectively 4.35, 16, and 24 times greater for the bare
server compared to the AxiGen, ShareMailPro and the Java-
based servers. These results indicate that the bare email
server is superior to conventional servers when large email
sizes are involved.

Figure 6. Server Performance for various Email Sizes

2) WAN Measurements

For WAN measurements, the Stress Checker Tool was
running on a Windows machine with no other applications
running (A), connected to the Internet in a remote location.
The email servers were running on another dedicated
machine (B) in the research lab. The Wireshark Network
Analysis tool was running on yet another Windows Machine
(C) located in the research lab. Both machines B and C are
connected in the research lab, with B having a static IP
address reachable from the Internet.

The performance of the various servers was also tested
over the Internet using a remote client located 40 miles
away (the Visual Trace Route tool showed that 18 hops
were followed between the client and server locations
during the tests, which were performed during a contiguous
time period). Figure 7 shows the average processing time of
5,500 email requests with less than 1KB message size (1
Ethernet packet). Only 5,500 emails were used in this test as
the test site firewalls terminated the connection due to the
large number of emails sent during a short period of time for
the same connection. The bare server total processing time
measured 1260 seconds, compared to 2270 seconds for the
Java-based server and 2338 seconds for the ShareMailPro
server (overall, the bare server performs about 1.8 times
faster than the other servers). Figure 8 shows the throughput
for the above tests, which shows improvement by a factor of
2 compared to the other servers.

Figure 7. Server Performance with 1KB Data over WAN

Figure 8. Server Performance with 1KB Data over WAN

Figure 9. Server Performance Measure of 5500 Messages based
on 1KB of Data over WAN

During these Internet tests, Wireshark traces were

captured to analyze the throughput of the bare,
ShareMailPro, and Java-based servers. Figure 9 shows the
three graphs from Wireshark compared in one chart, where
the y-axis depicts the maximum scale of 10,000 bytes/sec
throughput and the x-axis shows the processing times in

seconds. In the top graph, the Java-based Server shows a
running time of 2300 seconds with a throughput range of
4,000 to 6,000 bytes per second. In the middle graph, The
Share Mail Pro Server shows a running time of 2340
seconds with a throughput range of 3,500 to 5,000 bytes per
second. In the bottom graph, The Bare Email Server shows
a running time of 1245 seconds, with a throughput range of
9,800 to 10,000 bytes per second. Notice that on the WAN
testing, the Bare Server finished processing 5,500 email
messages (1KB each) in 1245 seconds as compared to 2340
seconds for the other servers.

The average processing time for the three servers over
the Internet with email attachments of 1 KB to 2 MB is
shown in Figure 10. The bare server is 2.4 times faster than
the Java-based server and 2.1 times faster than the
ShareMailPro server.

Figure 10. Server Performance for various WAN Email Sizes

Figure 11. Server Performance for various WAN Email Sizes

Figure 11 shows the corresponding throughput for the

three servers with a 2MB email attachment. The throughput
for the bare server is 2.54 times that of the Java-based server
and is 2.18 times that of ShareMailPro. Again, these
throughput improvements demonstrate the capability of the
bare server to process larger email sizes in less time
compared to conventional servers. However, as expected,
the WAN measurements over the Internet take longer times
due to network delays and thus exhibit reduced throughput
capacities compared to the LAN environment. As these

results indicate, bare servers perform better than their OS-
based counterparts in both LAN and Internet environments
due to their streamlined architectural characteristics and
protocol optimizations.

3) Internal Message Protocol Timing
In order to identify any internal performance

bottlenecks, request-response timings were determined
using a message size of less than 1 KB. Figure 12 illustrates
the internal timings associated with LAN-processed
messages for four servers (bare, Java-based, AxiGen, and
ShareMailPro).

Starting with the client SYN packet through the MAIL
FROM command, each server demonstrated the same
processing time behavior. From the MAIL FROM
command to the start of the Message Body, the AxiGen and
ShareMailPro servers exhibit a jump in processing time
whereas the Java-based and bare servers remain stable. It is
believed that this behavior reflects the additional
functionality and features built into the commercial servers
(the Java-based and bare servers have the same functional
designs). From the transfer of the message body by the
client until the ACK is sent by the server, the three non-bare
servers had a 140 msec spike in the amount of processing
time due to socket overhead involved in OS-based systems.
In contrast, such a spike is not seen with the socketless bare
server design which intertwines protocols and application
thus eliminating the overhead of a conventional OS-
controlled protocol stack. All servers exhibit stable
processing time behavior from the final message body ACK
to closing of the connection.

Figure 12. Client/Server Handshake 1KB Data LAN
Performance

Figure 13 shows the processing time for a single
message on the WAN. Only three servers (bare, Java-based,
and ShareMailPro) were used for comparison of internal
timings on a WAN (Internet). The spike observed from the
message body through the ACK in a LAN measurements are
also seen in the WAN tests. The results in Figure 12 and 13
also identify the steps where internal processing times
dominate the relatively stable Internet network delays.

Figure 13. Client/Server Handshake 8KB Data WAN

Performance for various Email Servers

Figures 14 and 15 show the results of WAN experiments
in which 100 emails were processed with the three servers
(bare, Java-based, and ShareMailPro). Figure 14 shows the
effect of one thread used for 100 emails for a typical email
message handshake, and Figure 15 shows the processing
results for four threads with 25 emails for a typical email
message handshake. Whereas Figure 13 illustrated the client
sending one message to the email servers, Figure 14
represents 100 messages sent from the stress test client.
Comparison shows that the WAN processing time behavior
pattern is similar to that of the LAN, as expected.

Figure 14. Client/Server Handshake 1KB Data WAN
Performance using 1 Thread * 100 Emails

Figure 15 illustrates the processing time, for a typical

client-server handshake, for four threads with 25 emails
processed by the three servers (bare, Java-based and
ShareMailPro). The client server handshake for the
ShareMailPro and the Java-based server show more
perturbations in processing time than the bare server, which
demonstrates relatively stable behavior. In an OS-based
environment, additional non-intertwined processing,
layering effects, thread scheduling, and context switching
may result in unpredictable execution response times. In the
bare server, client requests results in a resume event which

allows the suspended task to run as a single thread of
execution. This results in a more stable behavior for
processing times in the bare server.

Figure 15. Client/Server Handshake

4) Effects of Multi-level Queues and Scheduling
In the original approach, a single ready queue was used

with a First-Come-First-Served (FCFS) scheduling
technique. Later, a double queue approach was explored in
which a Resume Queue (RQ) handles active email event
requests and a Delay Queue (DQ) is used for suspended
tasks. In the double queue approach, when a task is initiated
it is placed in the RQ, and when it is suspended it is placed
in the DQ. When an associated event arrives, the task is
resumed by taking it from the DQ and inserting it into the
RQ. The RQ acts as a conventional ready queue in this
approach.

Figure 16. Performance Measures by Different Queue
Scheduling Algorithms

Figure 16 demonstrates the effect on processing time for
a quantity of 100,000 emails when these two queuing
approaches are used. The double queue scheduling resulted
in 5.3 times faster in processing time than a single queue
approach. As shown in Figure 17, the maximum queue size
is reduced from 488 to 137 in double queue scheduling,
which resulted in faster performance for the bare server.

Figure 17. Performance Measurements for Different Queue
Sizes vs. Number of Threads.

V. CONCLUSION

This research and paper has studied the performance of a
bare machine (OS-less) email server and compared it with a
functionally equivalent Java server prototype and two
commercial servers (AxiGen and ShareMailPro).
LAN/WAN measurements, internal message protocol
timings, and improved task scheduling methods were
presented. The LAN measurements indicated that the bare
server performs 1.99 times faster than the Java-based server,
and 2.36 times faster than the AxiGen server. For WAN
measurements, the bare server performed 1.8 times faster
than the Java server and 1.86 times faster than the Shared
Mail Pro server. The internal handshake timings, as
measured, identified the protocol timing points that are
critical to performance. The bare server’s performance was
also shown to improve by a factor of 5.3 by using a double
queue scheduling technique. These results enabled us to
identify several novel bare machine architectural
characteristics that could be exploited when designing high-
performance email application-specific servers.

ACKNOWLEDGMENT

This research team is grateful to the late Dr. Frank Anger
of NSF for his encouragement and support of early bare
machine research, supported by NSF SGER grant CCR-
0120155.

REFERENCES

[1] D. R. Engler and M.F. Kaashoek, “Exterminate All Operating

System Abstractions,” 5th Workshop on Hot Topics in

Operating Systems, USENIX, May 1995, p. 78.

[2] J. Erman, A. Mahanti, M. Arlitt and C. Williamson,

“Identifying and Discriminating Between Web and Peer-to-

Peer Traffic in the Network Core,” Network Issues in the

Web, WWW 2007, 8 May, Banff, Alberta, Canada

[3] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullman,

“Interface and Execution Models in the Fluke Kernel,”

Proceedings of the 3rd Symposium on Operating Systems

Design and Implementation, USENIX Technical Program,

New Orleans, LA, February 1999, pp. 101-115.

[4] B. Ford, and R. Cox, Vx32: “Lightweight User-level

Sandboxing on the x86”, USENIX Annual Technical

Conference, USENIX, Boston, MA, June 2008.

[5] G. Ford, R. Karne, A. Wijesinha, and P. Appiah-Kubi, “The

Design and Implementation of a bare PC Email Server,” 33rd

Annual IEEE International Computer Software and

Applications Conference (CompSAC 2009), Seattle, WA,

July 2009, accepted for publication.

[6] L. He, R. K. Karne, and A. L. Wijesinha, “Design and

performance of a bare PC web server,” International Journal

of Computer and Applications, Acta Press, June 2008.

[7] L. He, R. K. Karne, and A. L. Wijesinha, “A Study of bare PC

Web Server Performance for Workloads with Dynamic and

Static Content,” Symposium on Advances on High

Performance Computing and Networking (AHPCN-09), The

11th IEEE International Conference on High Performance

Computing and Communications, June 2009.

 [8] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “DOSC:

Dispersed Operating System Computing”, OOPSLA ’05, 20th

Annual ACM Conference on Object Oriented Programming,

Systems, Languages, and Applications, Onward Track, ACM,

San Diego, CA, October 2005, pp. 55-61.

[9] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to Run

C++ Applications on a Bare PC?” Proceedings of the 6th

International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing,

IEEE Computer Society, Washington DC, 2005, pp. 50-55.

 [10] R. K. Karne, “Application-Oriented Object Architecture: A

Revolutionary Approach,” 6th International Conference, HPC

Asia 2002, Centre for Development of Advanced Computing,

Bangalore, Karnataka, India, December 2002.

 [11] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S.

Girumala, “A Peer-to-Peer bare PC VoIP Application,”

Proceedings of the IEEE Consumer and Communications and

Networking Conference, IEEE Press, Las Vegas, NV, 2007.

[12] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An

efficient and portable web server,” Proc. Usenix 1999 Annual

Technical Conference, pp. 199–212, Monterey, CA.

[13] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson and B.

Tierney, “A First Look at Modern Enterprise Traffic,”

Internet Measurement Conference 2005, USENIX

Association, Proceedings of the 5th ACM SIGCOMM,

October 2005.

[14] A. Pathak, S. Roy, and Y. Hu, “A Case for a Spam-Aware

Mail Server Architecture,” 4th Conference on Email and

Anti-Spam (CEAS) 2007, Microsoft Corporation, Mountain

View, CA, August 2007.

[15] “Tiny OS,” Tiny OS Open Technology Alliance, University

of California, Berkeley, CA, 2004, http://www.tinyos.net/

[16] T. Venton, M. Miller, R. Kalla, and A. Blanchard, “A Linux-

based tool for hardware bring up, Linux development, and

manufacturing,” IBM Systems Journal., Vol. 44 (2), IBM

Corporation, NY, 2005, pp. 319-330.
[17] “The OS kit project,” School of Computing, University of

Utah, Salt Lake, UT, June 2002,
http://www.cs.utah.edu/flux/oskit

http://www.tinyos.net/
http://www.cs.utah.edu/flux/oskit

