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Abstract— Bare machine applications run directly over the 

hardware without using an operating system or the hard disk. 

This paper studies the performance of a bare machine email 

server whose design and implementation is based on several 

novel architectural features, and targeted at optimizing 

performance. The results are compared with those for the 

AxiGen and ShareMailPro email servers, and a lean Java-

based email server prototype running on Windows whose 

application-level operation closely matches that of the bare 

machine email server. For 80,000 emails in a LAN 

environment, the bare Machine server processing time is 

approximately 2 times faster than a Java-based server, and 2.4 

times faster than the AxiGen server. For 5,500 emails in a 

WAN environment, the bare machine server performed at 

least 1.8 times faster than the Java-based and ShareMailPro 

servers. The results indicate that the bare machine email 

server outperforms the conventional email servers in LAN and 

WAN environments and demonstrate the ability to build high-

performance email servers that run on bare machines. 

Keywords- bare Machine Computing (bare), Application 

Object, Email Server, SMTP/ POP3,  Performance. 

I. INTRODUCTION 

Email servers involve several protocols, whose 
operation, functionality and evolution are specified in 
numerous well-known RFCs. The performance of an email 
server depends on the ability to optimize and exploit 
architectural design features that facilitate efficient 
interaction with email clients and other email servers. The 
principal application-layer protocols involved in these 
applications (SMTP, POP3 and IMAP) and the underlying 
TCP/IP network protocol suite also influence the 
performance of the server. Optimizing, tweaking, and 
intertwining the necessary protocols for supporting a 
specific application and simultaneously designing the 
architectural features of the server enables performance of a 
server to be dramatically improved, thus providing a 
blueprint for creating high-performance email servers.  

Most of the server designs are based on conventional 
operating systems, lean kernels, or virtual machines where a 
centralized operating system controls and manages 
application resources.  The approach presented here is based 
on eliminating any OS or kernel operating as middleware 
between applications and hardware.  In essence, the 
application directly communicates to the hardware, thus 
eliminating the middleware and any associated layers.  This 
provides optimal performance and independence to any 

operating system environments. The detailed architectural 
features, design and implementation were presented in [5].  
This paper strictly focuses on performance measurements of 
the bare email server, since inclusion of the design details in 
this paper would have been too large to present.  The bare 
machine email server provides an alternative to 
conventional email servers. Bare machine servers are self-
contained, self-executing, and application-specific to 
achieve higher performance, requiring no OS related 
maintenance or dependences. Their design, based on the 
bare machine computing paradigm [8, 9] has been 
previously shown to be successful in optimizing 
performance on an application-specific basis [6, 7, 11], 
resulting in an order-of-magnitude performance 
improvement over conventional systems.        

In the current bare approach, an Application Object 
(AO) [10] executes directly on the most popular Intel IA-32 
based PCs or devices.  One could also design an AO to 
execute on RISC based machines. An AO, which consists of 
the application program, and all the necessary code to boot, 
load, and execute it, including direct interfaces to the 
hardware, is a single, monolithic executable code, which 
does not use any OS related system calls, kernels, mini/nano 
kernels, or any system libraries. The AO is bootable using a 
mass-storage medium, such as USB flash memory.  

The remainder of this paper presents related work in 
Section II, a brief overview of the important architectural 
features and their performance implications in Section III, 
experimental details and performance results in Section IV, 
and the conclusion in Section V. 

II. RELATED WORK 

Eliminating unnecessary operating system abstractions 
was first proposed in [1] by using an Exokernel. Later, 
approaches based on micro-kernel [3], TinyOS [15] and lean 
OS libraries [17] attempted to provide a minimal OS 
interface to run applications. Attempts to provide an 
intricate bypass of OS-based system calls was performed by 
systems such as IO-Lite and Flash [12]. Bare metal Linux 
[16] applications were used in manufacturing to bring up 
(boot) hardware. Sandboxing techniques have also been 
used on x86 systems [4] to extend OS kernel abilities to 
execute application plug-ins on OS hosts. However, 
sandboxing and customized kernel approaches still require 
some OS elements existence to support their applications. 

Prior research related to email server architectures have 
focused on OS-based threading features. Threaded 
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communications and processes can provide many 
advantages in terms of security and concurrent operations 
for users.  From a security design approach, existing email 
servers are typically deficient in providing features for email 
spam filtering, Denial of Service (DoS) sensing and security 
awareness [14].  Performance measurements have generally 
focused on an email server’s ability to handle large 
quantities of emails in a specific time, threading capabilities, 
and throughput capacities [2, 13]. 

All of the above legacy applications use some form of 
kernel or OS libraries to run applications. The bare machine 
computing approach eliminates the need for any kernel or 
OS libraries and bundles the necessary operating 
environment within the application, directly communicating 
with hardware to manage its resources. The bare email 
server presented here is based on this approach.   

 

III. BARE MACHINE ARCHITECTURAL PERFORMANCE 

CHARACTERISTICS 

This section identifies the key performance 
characteristics and novel architectural features of bare 
machine computing, which can be leveraged when building 
high-performance email servers. These characteristics are 
difficult to replicate in a conventional OS-based application. 
The bare approach is currently focused on a set of selected 
networking application-specific systems, although the 
concept can be extended to enterprise applications. Other 
examples of successful bare systems include VoIP [11], and 
Web Server [6] applications.  

The bare machine computing approach does have some 
drawbacks in its design approach and portability with 
existing systems.  First, the design of an AO requires 
indepth knowledge of systems programming and application 
programming, thus making the AO programmer’s job harder 
than conventional application programming.  Howerver, 
once an AO is designed, it does not depend upon any 
upcoming OS releases, thus avoiding subsequent porting of 
an AO to a new platform. This current design also assumes 
a single, stable underlying architecture (e.g. IA32), thus 
making the current system specific to this architecture.  
Secondly, porting current applications to bare machine 
computing is a daunting effort due to system calls and 
libraries.  In order to port conventional applications to a bare 
machine computing, it requires that all system calls and 
libraries must be transformed into direct hardware interfaces 
that can be invoked in the application, thus making it 
difficult to port OS-based applications to bare AOs.   

Some of the unique architectural characteristics which 
illustrate performance improvements for bare machine email 
servers are summarized in the following subsections.   

A. Protocols 

The bare machine approach to designing and 
implementing application-specific servers and systems uses 
intertwining of the necessary protocols [5]. Such 
intertwining is based on the programmer’s ability to include 
these protocols in an optimal fashion within a single 
instance of code, avoiding the restrictions due to 

conventional layered stacks used in OS-based systems, 
enabling the design of high-performance network 
applications. 

B. Concurrent Requests 

Multiple task pools (POP3, SMTP, and Relay 
Forwarding) are created at initialization to handle 
concurrent requests. Each of the above task types is handled 
as a generic task, which saves time by avoiding the dynamic 
creation of tasks at run-time and improving response time. 

C. Concurrency Control 

Each email request and its state information are stored in 
a Transition Control Block (TCB) table, in addition to the 
parameters used by the reentrant code. In an email server, 
each request’s state information is independent of other 
requests. The simultaneous sharing of resources is avoided 
by creating independent resources for each request and 
maintaining their state information in the TCB. This TCB 
information is used in task scheduling and may be used in 
migrating email servers. 

D. Task Scheduling 

Unlike the OS-driven task scheduling, the bare approach 
implements a user-driven technique. At development time, 
an AO programmer designs a task schedule for a given task 
as a single thread of execution, thus eliminating the need for 
a centralized task scheduler.  When an application needs to 
wait for an event then the program is suspended. When the 
relevant event arrives, the task resumes execution.  This 
approach has been demonstrated in building high 
performance bare Web Servers [6]. 

E. Client Interactions 

OS-based email server designs are focused on 
application layer request-response interactions with clients.  
In the bare approach, the request-response interactions are 
modeled based upon State Transition Diagram behaviors. 
This alleviates the overhead associated with OS-based 
servers due to their use of API libraries and layered 
approaches.  The result is faster throughput performance, 
and an ability to process more emails in a given time. 

F. System Operation 

Contemporary applications require OS-based kernel 
utilities and programs to start the system, load the 
application, and manage resources.  The bare approach 
provides the ability to run a self-contained, monolithic 
executable code capable of bootstrap loading and providing 
resource management directly within the application.  This 
allows the bare application to avoid any need for an OS 
when a user boots and executes the application from USB 
flash memory or similar storage media.  

G. Volatile Memory and Persistant Storage 

Legacy email servers rely upon OS-based features for 
memory usage which require caching and paging, and 
virtual memory management with disk I/O. Since there is no 
OS in the bare approach, it frees up the use of physical 
memory for specific applications.  Persistent storage in the 



 

 

bare is provided by USB flash memory, which can serve as 
large mass storage. Thus, USB flash memory can provide a 
portable storage medium for both the bare application and 
its data. 

H. Input / Output 

When OS-based applications use I/O, they require use of 
system calls or an API. In the bare application design, 
interrupt usage is limited to keyboard, hardware timer, and 
the NIC device.  Limited BIOS interrupts are used during 
the boot process and in acquiring device addresses.  Some 
popular device drivers have been developed for the bare 
applications, where they can invoke in-line calls to the 
device driver which results in an increased I/O performance. 

I. Security 

Bare applications are simple, small in code size, and 
immune to attacks that exploit known OS vulnerabilities. A 
high-performance bare machine email server would be 
easier to secure than a complex OS-based server especially 
due to its streamlined architectural design. 

 

IV. PERFORMANCE MEASUREMENTS AND ANALYSIS 

The performance measurements and analysis, presented 
below, demonstrates and validates the bare machine 
computing architectural design and implementation 
approach as described in [5].  These results also indicate that 
similar performance enhancements can be achieved in other 
types of servers using this bare email server approach.  

A. Experimental Setup and Components 

This paper focuses on the performance of a bare email 
server running on an ordinary desktop PC. Experiments 
were conducted using Dell OptiPlex PCs with 2.4 GHz 
Pentium 4 processors and 3COM 905CX NICs. For 
comparison with the bare email server, email servers 
running on Windows XP including a Java-based email 
server prototype with equivalent functionality and optimized 
with the just-in-time compiler, as well as ShareMailPro and 
AxiGen were used. All unnecessary services executing on 
the MS-Windows-based systems were disabled. 
Additionally, file I/O was disabled on the Java-based server 
prototype and it was limited to displaying only a simple text 
status string for monitoring purposes (it had no GUI). It was 
observed during tests that the conventional email servers 
also cached messages into memory.   

The bare email server, like its Java-based counterpart, 
supports SMTP, POP3, authentication, MIME encoding, 
and relay forwarding. In addition to conducting extensive 
tests to verify correct operation of the bare server, its ability 
to interoperate with many popular email clients and servers 
was verified. Clients used in performance testing included 
SMTP Stress Test Checker v1.0, Mozilla Thunderbird, 
Pegasus, MS-Outlook Express, Alpine, eM-Client, Dream 
Mail, Eudora 7, IncrediMail, and Mulberry; a Java-based 
client, and a bare email client were used for testing specific 
aspects of bare email server operation.  The SMTP Stress 
Test Checker v1.0 generates and sends bulk emails to the 

server for an email size (up to 1KB).  This tool also allows 
up to 100 concurrent threaded connections, each with a 
tester specified quantity of emails.  This test tool maintains 
statistics on the email transactions.  In addition, email 
transactions for all threaded connections are captured with 
the Ethereal / Wireshark network tool, which allows 
handshaking, packet and timing analysis to be determined. 

The application object for the email server consists of 
C/C++ code in addition to some hardware interfaces coded 
in assembly language. The bare server contains 31,743 lines 
of code including 10,000 lines of comments, and 14,000 
executable statements. The resulting single monolithic 
executable (AO) consists of 512 sectors of code (256 KB). 

B. Performance Results and Analysis 

A variety of performance measurements were conducted 
on bare, Java, ShareMailPro, and Axigen email servers to 
investigate the following:  

 Determining LAN based throughput processing times  

 Determining WAN based throughput processing times  

 Measurement of internal message protocol timing 

 Effects on different topologies used for implementation 
of the scheduling queue mechanism.  

 

1) LAN Measurements 

For LAN measurements, the Stress Checker Tool and the 
Wireshark network capturing tool were running on MS-
Windows with no other applications running on the machine 
(A).  The email servers were running on another dedicated 
machine (B).  Machines A and B were connected through an 
isolated LAN in the research lab. 

 

 
 

Figure 1.  bare Server Processing Time  

 
Figure 1 illustrates the bare email server processing 

times with respect to a large number of emails. This graph 
also shows the effects due to different numbers of threads 
used in processing the emails (1, 10 and 100 threads). These 
measurements were obtained using the Stress Test Checker 
v1.0 tool.   

The stress tool can be used to send up to 100,000 emails, 
with multiple threaded connections.  Multiple threads 
reduce the bare email server processing time compared to a 
single thread, but varying the number of threads from 10 to 
100 yields a negligible change in performance. For example, 



 

 

the processing time for 10 threads versus 100 threads differs 
by approximately 3 seconds, whereas the difference 
between 1 and 10 threads is 89 seconds (for 10,000 emails).   

The bare task processing is designed as a single thread of 
execution without interruption. In addition, it also 
intertwines the protocols and avoids the overhead of running 
the server application on an OS. The multi-tasking effect in 
the bare applications has diminishing returns as the number 
of tasks grows in the system. Multi-tasking has less variance 
in bare applications than in OS based applications for the 
following reasons:  

 When a task is running, there are minimal interrupts 
which interrupt the task (since the task was designed to 
run without interruptions) 

 There are no system calls or another API to compete for 
the CPU cycle 

 The CPU cycle was already optimized for running 
useful work related to tasks (no I/O) 

 If I/O is needed, the program is designed to suspend (so 
other tasks can run) 

 The CPU time is essentially pre-optimized to run bare 
machine applications.  

 
Figures 2-4 show measurements with varying threads (1, 

10,100) for the various email servers (bare, Java-based 
prototype, ShareMailPro, and AxiGen). Figure 2 only shows 
processing time data for three servers (bare, Java-based 
prototype, and AxiGen) for 80,000 processed emails when 
the message size is less than 1KB i.e., 1 Ethernet packet.  As 
shown in Figure 2 for 1 thread, the bare server processing 
time is 1.99 times faster than the Java-based prototype and 
2.36 times better than the AxiGen server. 

 

 
 

Figure 2.   Server Performance Measure with 1 Thread 
 

The processing time of the ShareMailPro server was 
excessive when testing with the stress tool. Hence, Figure 3 
and 4 only show results for up to 10,000 emails to illustrate 
the performance improvements with respect to the bare 
server. For 10 threads and 10,000 emails, the bare server 
processing time is 9.46 times better than the Java-based 
prototype, 14.7 times faster than the AxiGen server, and 
18.29 times faster than the ShareMailPro server; and for 100 
threads and 10,000 emails, the bare server processing time is 
3.43 times faster than the Java-based prototype, 2.95 times 
faster than the AxiGen server, and 10.65 times faster than 
the ShareMailPro server. As the number of threads and the 

number of emails increased, the performance of the Java-
based prototype improved as it leverages multi-tasking 
capabilities of its OS-based environment. It is expected that 
the performance of this Java-based server will be closer to 
that of the bare server if full multi-tasking capabilities are 
implemented. Similar improvements due to multi-tasking 
effects were observed in AxiGen and ShareMailPro servers 
when the number of threads increased. However, the 
ShareMailPro behavior has larger processing time than the 
AxiGen server that is likely due to its extensive set of built-
in features and complex processing logic. 
 

 
 

Figure 3.  Server Performance Measure with 10 Threads 
 

 

 
 

Figure 4.  Server Performance Measure with 100 Threads 
 

 

 
 

Figure 5.  Server Performance for various Email Sizes 



 

 

 

Additional LAN measurements were performed varying 
the email attachment sizes from 1KB to 2MB. As shown in 
Figure 5, the bare server average processing time for a 2MB 
email attachment was 3.32 times faster than the AxiGen 
server, 53 times faster than the Java-based server; and 34 
times faster than the ShareMailPro server. Figure 6 shows 
that with a 2 MB attachment the throughputs are 
respectively 4.35, 16, and 24 times greater for the bare 
server compared to the AxiGen, ShareMailPro and the Java-
based servers. These results indicate that the bare email 
server is superior to conventional servers when large email 
sizes are involved. 
 

 
 

Figure 6.  Server Performance for various Email Sizes 
 

2) WAN Measurements  

For WAN measurements, the Stress Checker Tool was 
running on a Windows machine with no other applications 
running (A), connected to the Internet in a remote location.  
The email servers were running on another dedicated 
machine (B) in the research lab.  The Wireshark Network 
Analysis tool was running on yet another Windows Machine 
(C) located in the research lab.  Both machines B and C are 
connected in the research lab, with B having a static IP 
address reachable from the Internet.   

The performance of the various servers was also tested 
over the Internet using a remote client located 40 miles 
away (the Visual Trace Route tool showed that 18 hops 
were followed between the client and server locations 
during the tests, which were performed during a contiguous 
time period). Figure 7 shows the average processing time of 
5,500 email requests with less than 1KB message size (1 
Ethernet packet). Only 5,500 emails were used in this test as 
the test site firewalls terminated the connection due to the 
large number of emails sent during a short period of time for 
the same connection. The bare server total processing time 
measured 1260 seconds, compared to 2270 seconds for the 
Java-based server and 2338 seconds for the ShareMailPro 
server (overall, the bare server performs about 1.8 times 
faster than the other servers). Figure 8 shows the throughput 
for the above tests, which shows improvement by a factor of 
2 compared to the other servers.   

 

 
 

Figure 7.  Server Performance with 1KB   Data over WAN 

 
 

 
 

Figure 8.  Server Performance with 1KB   Data over WAN 
 
 

 
 

Figure 9.  Server Performance Measure of 5500 Messages based 
on 1KB of Data over WAN 

 
During these Internet tests, Wireshark traces were 

captured to analyze the throughput of the bare, 
ShareMailPro, and Java-based servers. Figure 9 shows the 
three graphs from Wireshark compared in one chart, where 
the y-axis depicts the maximum scale of 10,000 bytes/sec 
throughput and the x-axis shows the processing times in 



 

 

seconds.   In the top graph, the Java-based Server shows a 
running time of 2300 seconds with a throughput range of 
4,000 to 6,000 bytes per second.  In the middle graph, The 
Share Mail Pro Server shows a running time of 2340 
seconds with a throughput range of 3,500 to 5,000 bytes per 
second.  In the bottom graph, The Bare Email Server shows 
a running time of 1245 seconds, with a throughput range of 
9,800 to 10,000 bytes per second.  Notice that on the WAN 
testing, the Bare Server finished processing 5,500 email 
messages (1KB each) in 1245 seconds as compared to 2340 
seconds for the other servers. 

The average processing time for the three servers over 
the Internet with email attachments of 1 KB to 2 MB is 
shown in Figure 10. The bare server is 2.4 times faster than 
the Java-based server and 2.1 times faster than the 
ShareMailPro server.  

 

 
 

Figure 10.  Server Performance for various WAN Email Sizes 

 
 

 
 

Figure 11.  Server Performance for various WAN Email Sizes 
 
Figure 11 shows the corresponding throughput for the 

three servers with a 2MB email attachment. The throughput 
for the bare server is 2.54 times that of the Java-based server 
and is 2.18 times that of ShareMailPro. Again, these 
throughput improvements demonstrate the capability of the 
bare server to process larger email sizes in less time 
compared to conventional servers. However, as expected, 
the WAN measurements over the Internet take longer times 
due to network delays and thus exhibit reduced throughput 
capacities compared to the LAN environment. As these 

results indicate, bare servers perform better than their OS-
based counterparts in both LAN and Internet environments 
due to their streamlined architectural characteristics and 
protocol optimizations. 

 

3) Internal Message Protocol Timing 
In order to identify any internal performance 

bottlenecks, request-response timings were determined 
using a message size of less than 1 KB. Figure 12 illustrates 
the internal timings associated with LAN-processed 
messages for four servers (bare, Java-based, AxiGen, and 
ShareMailPro).   

Starting with the client SYN packet through the MAIL 
FROM command, each server demonstrated the same 
processing time behavior.  From the MAIL FROM 
command to the start of the Message Body, the AxiGen and 
ShareMailPro servers exhibit a jump in processing time 
whereas the Java-based and bare servers remain stable. It is 
believed that this behavior reflects the additional 
functionality and features built into the commercial servers 
(the Java-based and bare servers have the same functional 
designs). From the transfer of the message body by the 
client until the ACK is sent by the server, the three non-bare 
servers had a 140 msec spike in the amount of processing 
time due to socket overhead involved in OS-based systems. 
In contrast, such a spike is not seen with the socketless bare 
server design which intertwines protocols and application 
thus eliminating the overhead of a conventional OS-
controlled protocol stack. All servers exhibit stable 
processing time behavior from the final message body ACK 
to closing of the connection. 

 
 

 
 

Figure 12.  Client/Server Handshake 1KB Data LAN 
Performance 

 

Figure 13 shows the processing time for a single 
message on the WAN. Only three servers (bare, Java-based, 
and ShareMailPro) were used for comparison of internal 
timings on a WAN (Internet). The spike observed from the 
message body through the ACK in a LAN measurements are 
also seen in the WAN tests. The results in Figure 12 and 13 
also identify the steps where internal processing times 
dominate the relatively stable Internet network delays.     



 

 

 
 

Figure 13.  Client/Server Handshake 8KB Data WAN 

Performance for various Email Servers 

 

Figures 14 and 15 show the results of WAN experiments 
in which 100 emails were processed with the three servers 
(bare, Java-based, and ShareMailPro).  Figure 14 shows the 
effect of one thread used for 100 emails for a typical email 
message handshake, and Figure 15 shows the processing 
results for four threads with 25 emails for a typical email 
message handshake. Whereas Figure 13 illustrated the client 
sending one message to the email servers, Figure 14 
represents 100 messages sent from the stress test client.  
Comparison shows that the WAN processing time behavior 
pattern is similar to that of the LAN, as expected. 

 

 
 

Figure 14.  Client/Server Handshake 1KB Data WAN 
Performance using 1 Thread * 100 Emails 

 
Figure 15 illustrates the processing time, for a typical 

client-server handshake, for four threads with 25 emails 
processed by the three servers (bare, Java-based and 
ShareMailPro). The client server handshake for the 
ShareMailPro and the Java-based server show more 
perturbations in processing time than the bare server, which 
demonstrates relatively stable behavior. In an OS-based 
environment, additional non-intertwined processing, 
layering effects, thread scheduling, and context switching 
may result in unpredictable execution response times. In the 
bare server, client requests results in a resume event which 

allows the suspended task to run as a single thread of 
execution. This results in a more stable behavior for 
processing times in the bare server. 

 

 
 

Figure 15.  Client/Server Handshake  
 
 

4) Effects of Multi-level Queues and Scheduling 
In the original approach, a single ready queue was used 

with a First-Come-First-Served (FCFS) scheduling 
technique.  Later, a double queue approach was explored in 
which a Resume Queue (RQ) handles active email event 
requests and a Delay Queue (DQ) is used for suspended 
tasks.  In the double queue approach, when a task is initiated 
it is placed in the RQ, and when it is suspended it is placed 
in the DQ. When an associated event arrives, the task is 
resumed by taking it from the DQ and inserting it into the 
RQ. The RQ acts as a conventional ready queue in this 
approach. 

 

 
 

Figure 16.  Performance Measures by Different Queue 
Scheduling Algorithms 

 

Figure 16 demonstrates the effect on processing time for 
a quantity of 100,000 emails when these two queuing 
approaches are used.  The double queue scheduling resulted 
in 5.3 times faster in processing time than a single queue 
approach. As shown in Figure 17, the maximum queue size 
is reduced from 488 to 137 in double queue scheduling, 
which resulted in faster performance for the bare server. 



 

 

 
 

Figure 17.  Performance Measurements for Different Queue 
Sizes vs. Number of Threads. 

 

V. CONCLUSION 

This research and paper has studied the performance of a 
bare machine (OS-less) email server and compared it with a 
functionally equivalent Java server prototype and two 
commercial servers (AxiGen and ShareMailPro). 
LAN/WAN measurements, internal message protocol 
timings, and improved task scheduling methods were 
presented. The LAN measurements indicated that the bare 
server performs 1.99 times faster than the Java-based server, 
and 2.36 times faster than the AxiGen server.  For WAN 
measurements, the bare server performed 1.8 times faster 
than the Java server and 1.86 times faster than the Shared 
Mail Pro server. The internal handshake timings, as 
measured, identified the protocol timing points that are 
critical to performance.  The bare server’s performance was 
also shown to improve by a factor of 5.3 by using a double 
queue scheduling technique. These results enabled us to 
identify several novel bare machine architectural 
characteristics that could be exploited when designing high-
performance email application-specific servers. 

 

ACKNOWLEDGMENT 

This research team is grateful to the late Dr. Frank Anger 
of NSF for his encouragement and support of early bare 
machine research, supported by NSF SGER grant CCR-
0120155. 

 

REFERENCES 

[1] D. R. Engler and M.F. Kaashoek, “Exterminate All Operating 

System Abstractions,” 5th Workshop on Hot Topics in 

Operating Systems, USENIX, May 1995, p. 78. 

[2] J. Erman, A. Mahanti, M. Arlitt and C. Williamson, 

“Identifying and Discriminating Between Web and Peer-to-

Peer Traffic in the Network Core,” Network Issues in the 

Web, WWW 2007, 8 May, Banff, Alberta, Canada 

[3] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullman, 

“Interface and Execution Models in the Fluke Kernel,” 

Proceedings of the 3rd Symposium on Operating Systems 

Design and Implementation, USENIX Technical Program, 

New Orleans, LA, February 1999, pp. 101-115. 

[4] B. Ford, and R. Cox, Vx32: “Lightweight User-level 

Sandboxing on the x86”, USENIX Annual Technical 

Conference, USENIX, Boston, MA, June 2008. 

[5] G. Ford, R. Karne, A. Wijesinha, and P. Appiah-Kubi, “The 

Design and Implementation of a bare PC Email Server,” 33rd 

Annual IEEE International Computer Software and 

Applications Conference (CompSAC 2009), Seattle, WA, 

July 2009, accepted for publication. 

[6] L. He, R. K. Karne, and A. L. Wijesinha, “Design and 

performance of a bare PC web server,” International Journal 

of Computer and Applications, Acta Press, June 2008. 

[7] L. He, R. K. Karne, and A. L. Wijesinha, “A Study of bare PC 

Web Server Performance for Workloads with Dynamic and 

Static Content,” Symposium on Advances on High 

Performance Computing and Networking (AHPCN-09), The 

11th IEEE International Conference on High Performance 

Computing and Communications, June 2009. 

 [8] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “DOSC: 

Dispersed Operating System Computing”, OOPSLA ’05, 20th 

Annual ACM Conference on Object Oriented Programming, 

Systems, Languages, and Applications, Onward Track, ACM, 

San Diego, CA, October 2005, pp. 55-61. 

[9]  R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to Run 

C++ Applications on a Bare PC?”  Proceedings of the 6th 

International Conference on Software Engineering, Artificial 

Intelligence, Networking and Parallel/Distributed Computing, 

IEEE Computer Society, Washington DC, 2005, pp. 50-55. 

 [10] R. K. Karne, “Application-Oriented Object Architecture: A 

Revolutionary Approach,” 6th International Conference, HPC 

Asia 2002, Centre for Development of Advanced Computing, 

Bangalore, Karnataka, India, December 2002.  

 [11] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S. 

Girumala, “A Peer-to-Peer bare PC VoIP Application,” 

Proceedings of the IEEE Consumer and Communications and 

Networking Conference, IEEE Press, Las Vegas, NV, 2007.  

[12] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An 

efficient and portable web server,” Proc. Usenix 1999 Annual 

Technical Conference, pp. 199–212, Monterey, CA. 

[13] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson and B. 

Tierney, “A First Look at Modern Enterprise Traffic,” 

Internet Measurement Conference 2005, USENIX 

Association, Proceedings of the 5th ACM SIGCOMM, 

October 2005. 

[14] A. Pathak, S. Roy, and Y. Hu, “A Case for a Spam-Aware 

Mail Server Architecture,” 4th Conference on Email and 

Anti-Spam (CEAS) 2007, Microsoft Corporation, Mountain 

View, CA, August 2007. 

[15] “Tiny OS,” Tiny OS Open Technology Alliance, University 

of California, Berkeley, CA, 2004,       http://www.tinyos.net/ 

[16] T. Venton, M. Miller, R. Kalla, and A. Blanchard, “A Linux-

based tool for hardware bring up, Linux development, and 

manufacturing,” IBM Systems Journal., Vol. 44 (2), IBM 

Corporation, NY, 2005, pp. 319-330. 
[17] “The OS kit project,” School of Computing, University of     

Utah, Salt Lake, UT, June 2002,  
http://www.cs.utah.edu/flux/oskit 

 

http://www.tinyos.net/
http://www.cs.utah.edu/flux/oskit

